

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 3, Issue 2, February 2023

A Literature Review on Various Disease using Data Mining and Machine Learning Techniques

Sheetal Vijayvargiya¹, Priya Jyotiyana², Madhu Choudhary³ Assistant Professor, Department of Computer Science & Engineering^{1,2,3} Jaipur Engineering College and Research Centre, Jaipur, Rajasthan, India

Abstract: A huge number of data mining tools have been developed over the decades, due to widespread and complexity involved in building the data mining applications. Many tools use various algorithm base and methods to carry out many data mining tasks. Every tool has its own pros and cons.Data mining gives an efficient way to retrieve the required data or information from raw and heterogeneous data. There are many methods to predict the medical disease with high accuracy and classification. There are many challenges and issues in data mining for applicable in medical practice. To extract the information and minimize the effort of an expert system for other clinical concern like drug addiction. This review paper aimed at evaluating and analysing a range of data mining tools and techniques for optimally predicting the numerous medical diseases to provide the healthcare section with high competence and more effectiveness. Data mining gives an efficient way to retrieve the required data or information from raw and heterogeneous data. There are many methods to predict the medical disease with high accuracy and classification. There are many challenges and issues in data mining for applicable in medical practice. To extract the information and minimize the effort of an expert system for other clinical concern like drug addiction.

Keywords: Data Mining, Machine Learning, Heart Disease, Feature Extraction, & Deep Learning

I. INTRODUCTION

Data mining will determine the most significant information from the data ware house of the organization, it is powerful technology, tool and knowledge. It is very essential step that collective study huge amount of habitually data. To search latest pattern in healthcare industry, there exist a variety of scalable and interactive data mining methods [1]. In present era, various data mining techniques are developed such as classification, pattern matching, data visualization; clustering and meta rule guided mining [2].

Data mining is broadly used in communication areas, credit review, stock market prediction, marketing, banking, education, health and medicine, forecasting, fraud detection, etc. but data mining hold important presence in each and every field of medical science for the analysis of various diseases such as heart disease, lung cancer, breast cancer, kidney stone liver disorder etc.

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 3, Issue 2, February 2023

II. BACKGROUND

With the unborn blow-up of information communication technologies, data mining will negotiate full eventuality in the knowledge discovery which is hidden in medical data and coincidently retrieve the information and reduce the load of a complete system for various disease under consideration.

Within the matter of knowledge integrity evaluation, two biggest challenges are

- 1. For comparing the two data interpretation (ahead and later) develop the more effective algorithm.
- 2. For assessing the change in particular, develop the algorithm on statistical significance of individual patterns that are collected the data with the help of data mining algorithms.

III. RELATED WORK

Different functionalities proposed by different tools and ways are vaticination of data, pattern matching, categorization, characterization and conception of data. The development and significance of data mining algorithms necessitates the deployment of important software tools. As a result, a number of authors have recommended and used the diversity of data mining tools.

Author	Year of	Disease	Objectives	Accuracy	lechniques	Dataset
	publication	considered				
Uddin,	2019	Heart	Machine learning	88.7%	Hybrid random	UCI
Shahadat, et			technique is applied for		forest with a	machine
al.[4]			finding the important		linear model	learning
			features and improving			repository
			the accuracy for			
			prediction of			
			cardiovascular disease.			
Khourdifi	2019	Heart	Machine learning	99.65%	K-Nearest	UCI
Youness,			algorithms are used to		Neighbour,	machine
and			improve heart disease		Support Vector	learning
Mohamed			prediction and		Machine,	repository
Bahaj [5]			classification		Naive Bayes,	
					Random Forest	
Kaur,	2014	Heart	Data mining algorithm	99.87%	J48 Decision	Pima
Gaganjot,		disease,	are used for the		Tree	Indians
and Amit		Diabetes	prediction of diabetes			Diabetes
Chhabra			contributes to heart			Data Set
			disease and increases			
			the effect of other			
			organs includes kidney			
			disease, nerve damage,			
			blood vessel damage			
			and blindness.			
Rady, El-	2019	stages of	Probabilistic neural	96.7%	Probabilistic	61
Houssainy		chronic	network is used for		Neural	chronic
A., and		kidney	better classification and		Networks	kidney
Ayman S.		disease	prediction for			disease
Anwar			determining the critical			patients
			stages in chronic			-
			kidney disease.			
Singh,	2018	heart disease	To design a proposed	97.14%	GA_Fuzzy_Na	online
Navdeep,			model for heart illness		ive Baise	dataset

TABLE I: Literature review of diseases using data mining techniques

01.

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 3, Issue 2, February 2023

Punjab			recognition using data			repository
Firozpur,			mining techniques that			
and Sonika			are fit for improving			
Jindal			the accuracy of heart			
			infection conclusion.			
Dahiwade	2019		k- nearest neighbor and	84.5%	K-Nearest	UCI
Dhiraj,			convolutional neural		Neighbor	machine
Gajanan			network machine		(KNN) and	learning
Patle, and			learning algorithm are		Convolutional	_
Ektaa			used for prediction of		neural network	
Meshram			general disease		(CNN)	
			symptoms and			
			accuracy.			
Mohan,	2018	Heart	Prediction of	88.7%	Hybrid random	UCI
Senthilkum			cardiovascular disease		forest with a	Cleveland
ar,			hybrid random forest		linear model	dataset
Chandraseg			with linear model is			
ar			used for finding the			
Thirumalai,			important features of			
and Gautam			disease.			
Srivastava						
Kohli,	2018	Heart, Breast	For the prediction of	87.1%,	Logistic	UCI
Pahulpreet			disease various	98.57%	Regression,	repository
Singh, and			classification		Adaptive	
Shriya			algorithms are used and		Boosting	
Arora			backward modeling		C	
			using the p-value test			
			are used for feature			
			selection of each			
			dataset.			
Ali,	2020	heart	Smart healthcare	98.5%	Ensemble deep	Cleveland
Farman, et			system is proposed for		learning model	and
al			the prediction of heart		and feature	Hungarian
			disease using deep		fusion methods	datasets.
			learning and feature			
			fusion approaches.			

IV. CONCLUSION

To reuse the raw data and give a new judgment towards the various conditions a machine literacy system is used. Heart complaint vaticination is gruelling approach in the medical field. On the other hand, the death rate can be significantly controlled if the complaint discovery can be done in early stage and apply the preventative and remedial measures as soon as possible. It's largely desirable to apply the analysis to the real-world dataset rather of theoretical approaches. In future this exploration can be done with various machine literacy ways to more vaticination of these styles and ways.

REFERENCES

- Gil, A.G., Wagner, E.F., Vega, W.A. Acculturation, familism, and alcohol use among Latino adolescent males (Longitudinal relations). J Community Psychol (john wiley & sons) Vol. 28, pp. 443–458, 2000.
- [2] S. H. Liao, P. H. Chu, and P. Y. Hsiao, "Data mining techniques and applications A decade review from 2000 to 2011," Expert Syst. Appl., vol. 39, no. 12, pp. 11303–11311, 2012.

Copyright to IJARSCT www.ijarsct.co.in

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 3, Issue 2, February 2023

- [3] Bhatla, Nidhi, and Kiran Jyoti. "An analysis of heart disease prediction using different data mining techniques." International Journal of Engineering 1.8 (2012): 1-4.
- [4] Uddin, Shahadat, et al. "Comparing different supervised machine learning algorithms for disease prediction." BMC medical informatics and decision making 19.1 (2019): 1-16.
- [5] Khourdifi, Youness, and Mohamed Bahaj. "Heart disease prediction and classification using machine learning algorithms optimized by particle swarm optimization and ant colony optimization." International Journal of Intelligent Engineering and Systems 12.1 (2019): 242-252.
- [6] Kaur, Gaganjot, and Amit Chhabra. "Improved J48 classification algorithm for the prediction of diabetes." International journal of computer applications 98.22 (2014).
- [7] Rady, El-Houssainy A., and Ayman S. Anwar. "Prediction of kidney disease stages using data mining algorithms." Informatics in Medicine Unlocked 15 (2019): 100178.
- [8] Singh, Navdeep, Punjab Firozpur, and Sonika Jindal. "Heart disease prediction system using hybrid technique of data mining algorithms." International Journal of Advance Research, Ideas and Innovations in Technology 4.2 (2018): 982-987.
- [9] Dahiwade, Dhiraj, Gajanan Patle, and Ektaa Meshram. "Designing disease prediction model using machine learning approach." 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2019.
- [10] Mohan, Senthilkumar, Chandrasegar Thirumalai, and Gautam Srivastava. "Effective heart disease prediction using hybrid machine learning techniques." IEEE access 7 (2019): 81542-81554.
- [11] Kohli, Pahulpreet Singh, and Shriya Arora. "Application of machine learning in disease prediction." 2018 4th International conference on computing communication and automation (ICCCA). IEEE, 2018.
- [12] Ali, Farman, et al. "A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion." Information Fusion 63 (2020): 208-222.