

Volume 2, Issue 1, November 2022

Review on Underwater Networks using Deep Learning

G. Prathyusha¹, G. Vamsi Krishna², G. Mohanlal³, G. Hari Krishna Reddy⁴, G. Jyothsna⁵ GMR Institute of Technology, Rajam, Andhra Pradesh, India 20341A0568@gmrit.edu.in¹, 20341A0566@gmrit.edu.in², 20341A0567@gmrit.edu.in³ 20341A0569@gmrit.edu.in⁴, 20341A0570@gmrit.edu.in⁵

Abstract: The development of effective underwater communication systems has become more crucial since, the recent increase in the number of submarine operations. Acoustic is related to a sound or sense of hearing. Underwater Acoustic sensor networks are used to transmit the signals over long distances from the instrument which is placed under the water to the control unit on the seashore. Acoustic signals are used to predict the climatic changes based on the waves produced in the sea/ocean. Different underwater acoustics network models have been tried using mathematical equations and approximations under certain assumptions to enhance the design and development of underwater communication systems by gaining a better understanding of the underwater acoustic channel. For a good and accurate model to design deep learning algorithms are used. Deep learning is a subset of machine learning, which is essentially a neural network with three or more layers. The purpose of the router, whether real or virtual, is to accept, examine and transfer packets of data between computer networks. In this work, deep learning methods such as "Deep Neural Network (DNN)" and "Long Short Term Memory (LSTM)" and some methods like SUN,VBF,DF are used to model the acoustic channel

Keywords: Underwater Acoustic Channel, Deep Neural Network, Long Short Term Memory, acoustic signal.

I. INTRODUCTION

In our earth 75% covered by water that could be rivers and ocean also. The ocean naturally cleans itself because it contains so many marine animals and plants. However, because of the damage that humans are causing to the oceanby discharging various waste products into it, the water has become contaminated and is no longer able to naturally clean itself, which is having an increasingly negative impact on human health. As a result, an instrument with a batteryand other components was introduced to record the elements impacting inside the ocean [1] as study on the oceans turned its attention there. They are unable to replace or replenish the batteries using terrestrial networks. They are unable to comprehend data loss, leading to underwater wired networks, which have a number of drawbacks like expensive network implementation. Later, they introduced wireless underwater communication. It can be done via optical, acoustic, radio frequency, or other signals. Due to their long range communications, they utilized acoustic transmissions [2]. A wireless network made up of separate devices for monitoring natural conditions such as temperature, sound, vibration, pressure, motion, or pollution at various locations is known as an Underwater Wireless Sensor Network (UWSN). The sensor nodes will gather the data, transmit it to the surface station via an underwater sink, and the satellite will control it via an audio medium. The long short-term memory (LSTM) architecture is appropriate for handling and predicting time series events with large intervals [3]. UWSNs have Media Access Control (MAC) protocols created to prevent collisions and reduces the transmission latency and each sensor node transmits the data based on the dedicated time slot so that the transmission collisions are avoided [4].

When the data is received or decoded by the control unit, it is verified to see if the unique code matches, ensuring that there hasn't been any data loss [2]. The noise created by natural disasters like rain, wind, earthquakes, and tsunamis generates a significant amount of data loss, which may have an adverse effect on aquatic life and resultin permanent damage to underwater divers' hearing and backbones [5]. To transmit data from one hop to the next, sensor nodes must have a certain amount of battery life, memory storage, and processing power. Due to the node's decreased battery capacity, they are unable to send data to the next hop so for that they are increasing the transmissionpower [6].

Volume 2, Issue 1, November 2022

The capacity or replacement of batteries in an underwater environment required the introduction of energy-efficient communication sensor nodes utilising the MAC protocol, which lessens data packet collision and prevents the simultaneous overhearing of more data [7]. Batteries in a propelled underwater gadget can be recharged by solar energy anytime they reach the water's surface, negating the need for recharging on a regular basis [8]. It mostly emphasizes three qualities 1. Sound propagation is delayed 2. Swarm movement, which the marine environment causes 3. Partial Network because of the enormous ocean[9].

One of the machine learning approaches called deep learning can be applied to a range of commonplace jobsas well as to other services that carry out physical chores, improve automated processes, and perform analytical workwithout the need for human involvement. It also assists in locating the network's top relay nodes and tracks nodes with high traffic densities by employing a highly dynamic biased track [3]. Deep learning can be used to automatically determine the meteorological conditions underwater, giving the control unit the best level of accuracy. When utilized to retrieve the original characteristics of the underwater sound source, the deep neural network has demonstrated goodperformance.

II. LITERATURE SURVEY

- [1]. Huang, L., Zhang, Q., Tan, W., Wang, Y., Zhang, L., He, C., & Tian, Z proposed that they offered a framework for Machine Learning(ML)AMCs for UACs. Then, they provided a straightforward and reliable attention-aided k- nearest neighbour (A-KNN) method, on which an ML AMC approach is built A-KNN-based AMC classifier offers notable advantages of both broad applicability to varied operational contexts and sustainable self-enhancement.. They demonstrated that the ML approaches which are proposed by them have superior performance over traditional model-based methods.
- [2]. Goutham, V., & Harigovindan, V. P. proposed a full-duplex cooperative relaying with NOMA (FD-CR-NOMA) for Underwater wireless sensor networks by considering some characteristics, such as distance dependent usable bandwidth, acoustic spreading, propagation losses, and fading effects. full-duplex cooperative relaying with NOMA (FD-CR-NOMA) improves the performance of energy constrained and bandwidth-limited Underwater wireless sensor networks in terms of ergodic rate, outage probability, and energy efficiency.
- [3]. Hemavathy, N., & Indumathi, P, discussed that the underwater acoustic sensor network has the features of fluidity, sparse deployment, and energy constraint due to the complexity and diversity of the underwater auditory environment, which poses certain difficulties for underwater location technology. This study has presented the deep learning-high dynamic biased track (DL-HDBT) approach to address the issue where node redundancy in the underwater sound sensor network results in low placement efficiency. A DL-HDBT combines the hybrid dynamic biased tracking method with deep learning. Identification is aided by deep learning (DL). Using a high dynamic biastrack, the network's best relay nodes and traffic-congested nodes are monitored. They compared DL-HDBT algorithm with SUN protocol; vector-based routing and traditional directional fooding protocol but DL-HDBT algorithm outputs best performance.
- [4]. Sun, N., Wang, X., Han, G., Peng, Y., & Jiang, J addressed some of the characteristics of Underwater wirelesssensor network such as high bit error rate, very limited bandwidth and high transmission delay, the data transmissioncollision of underwater communication. To reduce the transmission collision and improve the performance of the network they proposed a collision-free time slot scheduling MAC protocol based on multi-level quorum system for high loaded Underwater wireless sensor networks. The MAC protocol has strong adaptability for various network topologies and can effectively minimize transmission collision, cut down on transmission delay, and increase systemenergy efficiency.
- [5]. Mishachandar, B., & Vairamuthu, S. aimed at a spectrum usage model that respects the environment, with a focus on the main consumers, the marine species. In order to facilitate effective-spectrum use and allocation by numerous acoustic systems in the underwater environment, an underwater cognitive acoustic network-based spectrum choice approach is suggested in this research. The suggested strategy exemplifies the idea of efficient spectrum use to address the issues of interference produced by secondary users to the prime users of the ocean and the temporally and geographically underutilised spectral frequencies.

- [6]. Khan, Z. A., Karim, O. A., Abbas, S., Javaid, N., Zikria, Y. B., & Tariq, U. addressed about two issues: First, the UASN network uses more energy because the nodes movement with the water current causes the distance between them to fluctuate. The presence of the void hole, which has an impact on the network's performance, is the second issue with UASNs. Due to the lack of forwarder nodes (FNs) in the network, nodes are unable to transport data to the destination. As a result, a Q-learning based energy-efficient and balanced data gathering (QL-EEBDG) routing protocol is suggested in this study to avoid void holes. It provides alternative neighbour routes for packet transmission and guarantees continuous communication in the network.
- [7]. Roy, A., & Sarma, N. Since drained batteries cannot be recharged or replaced in the underwater environment, it is vital study to develop an energy-efficient Medium Access Control (MAC) protocol for the Underwater Wireless Sensor Networks (UWSNs). The Ordered Contention MAC (OCMAC) protocol is a synchronous duty-cycled reservation-based MAC technique that is proposed in this work. This protocol's fundamental working principle is the scheduling of Ready To Send (RTS) frames, which are used by transmitters to plan data delivery. The protocol increases communication efficiency by removing the possibility of collisions during data transfer.
- [8]. Toky, A., Singh, R. P., & Das, S. Underwater Acoustic Sensor Networks (UWASNs) are becoming a challenging task due to different environmental conditions. For that they introduced a localization schemes for development of UWASNs. The Fundamentals of communication medium for UWASNs are presented.
- [9]. Li, C., Xu, Y., Xu, C., An, Z., Diao, B., & Li, X. propose a novel delay tolerant Media Access Control(MAC) protocol applying for short-packet traffic, to overcome problems brought by long propagation delay and swarm mobility in sparse network. They set up a probability model for throughput of DTMAC, and then give the throughput-optimal value for m and p with the successful transmission probability as tuning parameter.
- [10]. Chen, Y., Tang, Y., Liu, J., Zhang, X., & Xu, X. investigates, how to select the optimal number of relays for multi-hop UWA cooperative networks, by considering both the low probability of detection (PD) and energy consumption. They derive the relationship between probability of detection and the number of relays and then analyze the relationship between energy consumption and the number of relays for the system. The number of relays must bereduced to maintain the same detection probability as the target SNR increases.
- [11]. Bharamagoudra, M. R., Manvi, S. S., & Gonen, B. proposed the depth based scalable and multi-path agent based routing protocols. They introduced the Autonomous Underwater Vehicles(AUV) for to monitor the ocean environment.
- [12]. Jie Chen, Chang Liu, Jiawu Xie, Jie An, Nan Huang discussed about a deep learning-based, data-driven method for separating underwater audio waves. They investigated the characteristics of the Time-Frequency (T-F) mask using the Bi-directional Long Short-Term Memory (Bi-LSTM), and They suggested a T-F mask aware Bi-LSTM for signal separation. The developed Bi-LSTM network is able to extract the discriminative features for separation by taking use of the T-F image's sparseness, which further improves separation performance.
- **[13].** Petroni et al.. dicussed about a promising method which is able to fit with the multipath propagation commonly characterised by UWACs(Underwater acoustic communications) has emerged: spatial division multiple access, which is possible in Multiple-Input Multiple-Output (MIMO) systems. Author looked into the viability of an unique hybrid multiple access method for controlling access to undersea media that operates in a bi-dimensional resource domain, namely space and frequency. By utilising spatial variety and, when applicable, frequency reuse, thismethod aims to reduce multi-user interference.
- [14]. Jiang, S. mostly discussed about the fundamental of network security in general and the main UWAN security threats faced by the physical layer to the transport layer.
- [15]. Cerqueira, L. S., Vieira, A. B., Vieira, L. F., Vieira, M. A., & Nacif, J. A. proposed the COPPER, a Cooperative Protocol for Pervasive Underwater Acoustic Networks. COPPER considers LLC and MAC sublayers and operates synchronously or asynchronously over Time Division Multiple Access using a selective repeat ARQ scheme.

Volume 2, Issue 1, November 2022

- [16]. Su, R., Gong, Z., Zhang, D., Li, C., Chen, Y., & Venkatesan, R. discussed about an important problem that can be solved by the cyclic difference set (CDS)-based coordination asynchronous wake-up strategy is the restricted energy supply of underwater sensor nodes. While improving packet delay and network longevity, the CDS-based asynchronous wake-up approach unfortunately introduces significant delays in neighbour finding.
- [17]. Jie Chen, Chang Liu, Jiawu Xie, Jie An, Nan Huang discussed about a deep learning-based, data-driven method for separating underwater audio waves. They investigated the characteristics of the Time-Frequency (T-F) mask using the Bi-directional Long Short-Term Memory (Bi-LSTM), and They suggested a T-F mask aware Bi- LSTM for signal separation. The developed Bi-LSTM network is able to extract the discriminative features for separation by taking use of the T-F image's sparseness, which further improves separation performance.
- [18]. A. Petroni et al.. dicussed about a promising method which is able to fit with the multipath propagation commonly characterised by UWACs(Underwater acoustic communications) has emerged: spatial division multiple access, which is possible in Multiple-Input Multiple-Output (MIMO) systems. Author looked into the viability of an unique hybrid multiple access method for controlling access to undersea media that operates in a bi-dimensional resource domain, namely space and frequency. By utilising spatial variety and, when applicable, frequency reuse, thismethod aims to reduce multi-user interference.
- [19]. Jiang, S. mostly discussed about the fundamental of network security in general and the main UWAN security threats faced by the physical layer to the transport layer.
- [20]. Cerqueira, L. S., Vieira, A. B., Vieira, L. F., Vieira, M. A., & Nacif, J. A. proposed the COPPER, a Cooperative Protocol for Pervasive Underwater Acoustic Networks. COPPER considers LLC and MAC sublayers and operates synchronously or asynchronously over Time Division Multiple Access using a selective repeat ARQ scheme.

S.	Technique	Year	Description	Limitations	Advantages	Performance	Gaps
No						Metric	
1	Deep learning based hybrid dynamic biased	2021	deep learning- high dynamic biased track	Data collision, multipath fading, hidden	The performance of the network improves	Throughput, packet delivery ratio (PDR),	
	track (DL-HDBT) routing for under		(DL-HDBT) ,Deep-Q	other	With an increase in Throughput	end to end delay	
	sensor networks. N.Hemavathy,		DF, VBF.	media can contribute to	Throughput.	residual energy.	
2	A synchronous duty-cycled reservation based MAC protocol for underwater wireless sensor networks HH Ng et al	2021	It describes about the depleted batteries which cannot be replaced at underwater environments and the solution for to reduce the	The energy wasted in overhearing and the idle state.	Eliminates the possible collision during data transmission and improves communication efficiency.	Providing good throughput and reliability, achieve energy saving.	They focus on simulation- based performance evaluations of the OCMAC protocol and compare it with the DL-MAC protocol.
3	Collision-free and	2021	data collision. MAC protocol	Transmission	avoid packet	MAC protocol can	

Table 1: Literature Survey

Volume 2, Issue 1, November 2022

	low delay MAC		based on a	of data a	transmission	effectively avoid	
	protocol based on		multi-level	retransmission	collisions reduce	transmission	
	multi-level quorum		auorum structure	mechanism is	data transmission	collision and	
	system in		to reduce	not reliable	delay and	Good adaptability	
	underwater		transmission	not rendole.	improve system	for different	
	wireless sensor		collision and		energy efficiency	network	
	networks		enhance network		energy enherency.	topologies	
	networks.		performance.			topologies.	
	N. Sun, X. Wang,		-				
	G. Han et al.						
4.	Full-duplex 2	2021	full-duplex	The energy	optimise the	FD-CR-NOMA	Signal
	cooperative		cooperative	efficiency	signal frequency	significantly	frequency and
	relaying with		relaying with	performanc-e	and power	reduced with the	power allocation
	NOMA for the		NOMA (FD-	of FD-CR-	allocation	increase in the	can be enhanced
	performance		CR-NOMA)	NOMA	coefficient for the	impact of residual	further for
	enhancement of		,particle swarm	slightly	full-duplex	SI i.e., f ¼ 1 *	efficiency of
	underwater		optimization	degrading.	cooperative	10^-2.	FD-CR-NOMA.
	acoustic sensor		(PSO)		relaying with		
	networks		algorithm.		NOMA (FD-CR-		
	V.Goutham and				NOMA) and also		
	V.P.Harigovind-an				minimizes the		
					energy		
					consumption		
5.	Q-learning based 2	2021	Sensor nodes are	It will not	To avoid void	Static sink is to be	
	energy-efficient		unable to deliver	help to find	holes the	introduced to	
	and void avoidance		data towards the	more optimal	proposed routing	transfer the data to	
	routing protocol for		destination due	paths for	protocols are used	the control unit	
	underwater		to the absence of	reliable data	so that it provides	without fail.	
	acoustic sensor		forwarder nodes	delivery.	alternative		
	networks.		(FNs) in the		neighbour routes		
	Z.A. Khan et al.		network.		for packet		
					transmission.		
6.	An underwater 2	2021	It mostly	Underestimate	Effective	Environmentally	To implement
	cognitive acoustic		describes about	d issues in	spectrum	friendly spectrum	the proposed
	network strategy		the marine life	Underwater	utilization to	utilization model	ideas like
	for efficient		gets mostly	cognitive	overcome the	with much	Underwater
	spectrum		affected by the	acoustic	problems of	emphasis given to	cognitive
	utilization.		sounds produced	networks	interference	the primary users.	acoustic
	Xiaolin et al		in surroundings	(UCAN).	caused by	1	networks
				<····	secondary users		(UCAN) is
					to the primary		developing as a
					users of the		growing area of
					ocean.		research and
							research efforts
							in the future
7	Optimizing the 2	2021	the ontimal	If no of hons	By reducing the	The number of	ure rature.
, í	number of relays	-021	number of relays	are not	no of hons/relays	relays should be	
	for energy efficient		for multi-hop	reduced there	makes system	increased	
	multi-hon covert		IJWA	will be	energy	appropriately to	
	mun-nop coven		0 11 1	will be a	unor gy	uppropriatery to	

Copyright to IJARSCT www.ijarsct.co.in

	underwater		cooperative	decrease in	consumption is	reduce the overall	
	acoustic		networks, by	efficiency of	relatively low.	energy	
	cooperative		considering both	the system.	, , , , , , , , , , , , , , , , , , ,	consumption of	
	networks.		the low			the multi-hop	
	Y.Chen		probability of			system.	
	Y Tang		detection (PD)			5,500111	
	I Lin et al		and energy				
	b.End of di		consumption				
8	Event driven	2017	An energy	low	Improve network	Packet delivery	propose an agent
0	energy depth and	2017	efficient channel	bandwidth	connectivity	ratio energy	based secured
	channel aware		aware depth	large	reliability	consumption and	routing to
	routing for		hased scalable	nronagation	rendonity.	latency	increase
	underwater		multingth agent	dolov bigh		latency	roliability and
	unuer water		hagad routing	abannal arrar			privoou
	acoustic selisor		based fourning				privacy.
	networks. Agent		protocol,	rates,			
	based enumeral		Autonomous				
	based approach.		Underwater				
	M.K.		venicles.				
	Bharamagoudra et						
0	al.			4 10 01			T 1 0 1
9	Adaptive	2020	Underwater	A-KNN 1S	They proposed	The performance	They further
	modulation and		acoustic	more complex	ML approaches	metric of training	Present the
	coding in		communication	•	have superior	dataset is of	DRDC-A-KNN
	underwater		(UAC),		performance over	prediction	classifiers for
	acoustic		A KNN methods		traditional model-	accuracy of about	the easier
	communications: a		are included.		based methods	90.4%.	implementation
	machine learning						of the AMC'S
	perspective.						which increases
	Huang et al						the complexity.
10	DTMAC: A Delay	2015	Delay tolerant	Data packet	Give the	Better	They will
	Tolerant MAC		MAC protocol	loss,	throughput	performance .	implement
	Protocol for		applying for	Deployment	optimal.	high network	DTMAC in real
	Underwater		short-packet	costs are high.		bandwidth and	modems and
	Wireless Sensor		traffic, to			pay less attention	plan to conduct
	Networks		overcome			on the single data	a series of field
			problems			packet	testes to
			brought by long			transmition.	evaluate and
			propagation				fine-tune the
			delay and swarm				design, shooting
			mobility in				for a functioning
			sparse network.				MAC protocol
							in the real
							world.
11	Localization	2020	localization	It does not	Propelled	3D-MASL, UDB,	
	schemes for		schemes for	provide the	Underwater	and TSL achieve	
	Underwater		development of	self-correction	Device is	100% localization	
	Acoustic Sensor		UWASNs .The	scheme in	introduced .	success	
	Networks - A		Fundamental-s	case of the			
	Review		of	fault			

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

			communication	occurrence.			
			medium for				
			UWASNs are				
			presented.				
12	A Stratification-	2018	Multi-hop	void	Reduce network	Good	Decrease the
	Based Data		Forwarding	phenomena	consumption,	Performance,	collection delay,
	Collection Scheme		Algorithm,	and	improve network	collection delay	AUVs for
	in Underwater		Vector Based	backtrackin-g	lifetime.	decreases, data	collaborative
	Acoustic Sensor		Forwarding	problems.		rate is 20kbps.	data collection
	Networks.		(VBF)	*			
	Xie et al.						
13	A Node Location	2019	MPL (movement	location	Improves the	MPL algorithm	
	Algorithm based		prediction	coverage rate	network location	has higher	
	on Node		location)	is not high.	coverage and	localization	
	Movement		algorithm,	C	node location	performance.	
	Prediction in				accuracy, low	*	
	Underwater				location error.		
	Acoustic Sensor						
	Networks						
	Cheng et al.						
14	A load-adaptive	2021	underwater	Conflict of	Reduces the	End-to-end delay	
	fair access protocol		adaptive	Data on the	collision rate of	decreased,	
	for MAC in		contention	channel.	data frames, and	-	
	underwater		window(UACW		increases network		
	acoustic sensor)		throughput, better		
	networks				performance.		
	W. Zhang et al				-		
15	Survey on High	2019	Underwater	Complex,	High reliability,	Build a network	
	Reliability		acoustic	High delay,	a low bit error	among ocean	
	Wireless		communicati-on,	Low speed	rate, low power		
	Communication for		optical		consumption.		
	Underwater Sensor		communicati-on,				
	Networks		media access				
	Jornet et al.		control				
			(MAC) protocol				
16	An Adaptive	2019	cyclic difference	It cannot	They formulate to	EACDS-based	
	Asynchronous		set (CDS)-based	handle more	obtain the optimal	and MACDS-	
	Wake-Up Scheme		coordination	complicated	policies of	based wake-up	
	for Underwater		asynchronous	cases.	underwater sensor	scheme	
	Acoustic Sensor		wake-up scheme		nodes.		
	Networks Using		with LSTM in				
	Deep		deep				
	Reinforcement		reinforcement				
	Learning		learning				
17	Time-Frequency	2022	Bi-LSTM(Bi-	More complex	Improves signal	Preserved-Signal	
	Mask Aware Bi-		directional Long		separation	Ratio, Signal-to-	
	directional LSTM:		Short Term		performance.	Interference Ratio,	
	A Deep Learning		Memory)			similarity	
	Approach for					coefficient	

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, November 2022

	Underwater						
	Acoustic Signal						
	Acoustic Signal						
1.0	Separation			<u> </u>			
18	Hybrid Space-	2022	spatial division	Complex	More feasible and	Spatial and	
	Frequency Access		multiple access		potential	Frequency	
	for Underwater		achievable in			division multiple	
	Acoustic Networks		Multiple-Input			access are	
			Multiple-Output			calculated.	
			(MIMO)systems				
19	On Securing	2018	Q-learning-	limited	Avoid	Improve detection	
	Underwater		based anti	communica-	transmissions	accuracy and the	
	Acoustic		jamming method	tion capacity	during a jamming	utility of UWANs	
	Networks: A		is proposed	· · · · · · · · · · · · · · · · · · ·	period		
	Survey		is proposed		p•mou.		
20	A cooperative	2021	They proposed	Large packet	Improves network	Improve the	
	protocol for		the COPPER, a	error rate and	performance	UWSN goodput	
	pervasive		Cooperative	low		by 17% and	
	underwater		Protocol for	throughput.		decrease the	
	acoustic networks		Pervasive	0 1		packet error rate	
			Underwater			by 65%	
			Acoustic			consuming less	
			Networks			than 1% more	
			THE WOIKS.			anaray	
						energy	

III. RESULTS AND DISCUSSION

The performance of the proposed schemes like DL-HDBT algorithm is compared with some other algorithms like QL-EEBDG, A-KNN, AHH-VBF, QUORUM SYSTEM. Among which the QUORUM SYSTEM ALGORITHM will efficiently sends the data to the destination in underwater acoustic sensor networks and allocate the different time slot for each and every node and removes the data congestion in the network. It is working efficiently by passing a vector a message with the data packets by which it increases the throughput.

The DL-HDBT reduced energy consumption by 34%, 45%, 53% when compared to SUN, VBF and DF schemes. Figure 13 shows the energy consumption of various techniques with the number of nodes. Each node has some capability to transmit the data through the relay node. Energy consumption of node to transmit the packet to the destination is very low in compared proposed scheme. In QUORUM SYSTEM algorithm they evaluated the energy consumption of four MAC protocols. Similarly, compared the changes in energy consumption under different number of data packets, and under different time slot size.

			- r	
Algorithm/ Metrics	Throughput	End-to- end delay	packet size	Energy
DL-HDBT	low	Low(42)	large(160B)	reduced
QL-EEBDG	High	Low	Small	Increased
A-KNN	High	High	Small	increased
AHH-VBF	High	High	High	Reduced
QUORUM SYSTEM	high	low	Small(160bit)	reduced

Table 2:	Comparison	of Performance	Metrics
----------	------------	----------------	---------

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, November 2022

Q-learning based energy-efficient and balanced data gathering (QL-EEBDG) routing protocol is show high energy dissipation when network radii and consumes less energy. Adaptive hop-by-hop vector -based forwarding(AHH-VBF) routing protocol is not no more effective on adverse underwater environments because of the low bandwidth results in the increase of collision probability at receivers, a node cannot even know the currentchannel condition of a remote one-hop neighbor because of the long propagation delay etc..

Fig: Comparison of Performance

IV. CONCLUSION

Underwater acoustic channels, data packet transmission rates, and other factors make underwater wireless sensor networks (UWSNs) generally reliant on acoustic communication. The underwater acoustic data transmission collision has a high transmission latency and space-time uncertainty features. In order to avoid data transmission collisions and improve network performance in this paper, the collision-free scheduling protocol based on quorum system which allocates different time slots for pair of nodes in the same collision area, and realizes space reuse fornodes in different collision areas. As compared to the other Algorithms like DL-HDBT, AHH-VBF, QL-EEBDG it will work more effectively on underwater acoustic networks. The review on this paper has observed that the quorum system algorithm can effectively avoid packet transmission collisions, reduce data transmission delay, and improve system energy efficiency in different network topologies and communication conditions among all other different algorithms.

REFERENCES

- [1]. Huang, L., Zhang, Q., Tan, W., Wang, Y., Zhang, L., He, C., & Tian, Z. (2020). Adaptive modulation and coding in underwater acoustic communications: a machine learning perspective. EURASIP Journal on Wireless Communications and Networking, *2020*(1), 1-25.
- [2]. Goutham, V., & Harigovindan, V. P. (2021). Full-duplex cooperative relaying with NOMA for the performance enhancement of underwater acoustic sensor networks. Engineering Science and Technology, an International Journal, 24(6), 1396-1407.
- [3]. Hemavathy, N., & Indumathi, P. (2021). Deep learning-based hybrid dynamic biased track (DL-HDBT) routing for under water acoustic sensor networks, Journal of Ambient Intelligence and Humanized Computing, *12*(1), 1211-1225.
- [4]. Sun, N., Wang, X., Han, G., Peng, Y., & Jiang, J. (2021). Collision-free and low delay MAC protocol based on multi-level quorum system in underwater wireless sensor networks. Computer Communications, 173, 56-69.

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

- [5]. Mishachandar, B., & Vairamuthu, S. (2021). An underwater cognitive acoustic network strategy for efficient spectrum utilization. *Applied Acoustics*, 175, 107861.
- [6]. Khan, Z. A., Karim, O. A., Abbas, S., Javaid, N., Zikria, Y. B., & Tariq, U. (2021). Q-learning based energyefficient and void avoidance routing protocol for underwater acoustic sensor networks. *Computer Networks*, 197, 108309.
- [7]. Roy, A., & Sarma, N. (2021). A synchronous duty-cycled reservation based MAC protocol for underwater wirelesssensor networks. *Digital Communications and Networks*, 7(3), 385-398.
- [8]. Toky, A., Singh, R. P., & Das, S. (2020). Localization schemes for underwater acoustic sensor networks-a review. *Computer Science Review*, *37*, 100241.
- [9]. Li, C., Xu, Y., Xu, C., An, Z., Diao, B., & Li, X. (2015). DTMAC: A delay tolerant MAC protocol for underwater wirelesssensor networks. *IEEE Sensors Journal*, *16*(11), 4137-4146.
- [10]. Chen, Y., Tang, Y., Liu, J., Zhang, X., & Xu, X. (2021). Optimizing the number of relays for energy efficient multi-hop covert underwater acoustic cooperative networks. Applied Acoustics, 177, 107911.
- [11]. Bharamagoudra, M. R., Manvi, S. S., & Gonen, B. (2017). Event driven energy depth and channel aware routing for underwater acoustic sensor networks: Agent oriented clustering based approach. *Computers & Electrical Engineering*, 58, 1-19.
- [12]. Han, G., Shen, S., Song, H., Yang, T., & Zhang, W. (2018). A stratification-based data collection scheme in underwater acoustic sensor networks. *IEEE Transactions on Vehicular Technology*, 67(11), 10671-10682.
- [13]. Zhang, W., Han, G., Wang, X., Guizani, M., Fan, K., & Shu, L. (2020). A node location algorithm based on node movement prediction in underwater acoustic sensor networks. *IEEE Transactions on Vehicular Technology*, 69(3), 3166-3178.
- [14]. Zhang, W., Wang, X., Han, G., Peng, Y., Guizani, M., & Sun, J. (2021). A load-adaptive fair access protocol for MAC in underwater acoustic sensor networks. *Journal of Network and Computer Applications*, 173, 102867
- [15]. Li, S., Qu, W., Liu, C., Qiu, T., & Zhao, Z. (2019). Survey on high reliability wireless communication for underwatersensor networks. *Journal of Network and Computer Applications*, 148, 102446.
- [16]. Su, R., Gong, Z., Zhang, D., Li, C., Chen, Y., & Venkatesan, R. (2021). An adaptive asynchronous wake-up scheme for underwater acoustic sensor networks using deep reinforcement learning. *IEEE Transactions on Vehicular Technology*, 70(2), 1851-1865.
- [17]. Jie Chen, Chang Liu, Jiawu Xie, Jie An, Nan Huang, "Time-Frequency Mask Aware Bi-directional LSTM: A Deep Learning Approach for Underwater Acoustic Signal Separation", University of Electronic Science and Technology of China, 2022.
- [18]. Petroni et al., "Hybrid Space-Frequency Access for Underwater Acoustic Networks," in IEEE Access, vol. 10, pp. 23885-23901, 2022.
- [19]. Jiang, S. (2018). On securing underwater acoustic networks: A survey. *IEEE Communications Surveys & Tutorials*, 21(1), 729-752.
- [20]. Cerqueira, L. S., Vieira, A. B., Vieira, L. F., Vieira, M. A., & Nacif, J. A. (2021). A cooperative protocol for pervasiveunderwater acoustic networks. *Wireless Networks*, 27(3), 1941-1963.