

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, September 2022

Optimization and Validation of Efavirenz Related Substances in Formulation by RP-HPLC Method

A. Navitha¹ and E. Sheela²

Assistant Professor, Department of Pharmaceutical Chemistry¹ Assistant Professor, Department of Pharmacology² Talla Padmavati College of Pharmacy, Warangal, India¹ Browns College of Pharmacy, Khammam, India²

Abstract: A simple RP- HPLC method was developed and validated for Efavirenz and its related substances in bulk drug. The developed method was found to be reliable, precise, accurate, cost effective and reproducible. Efavirenz related impurities are spiked and quantified at 0.2% specification level of test concentration and these impurities are found to be within the acceptable levels in the bulk drug substance. Hence the developed method was found to be suitable for the detection as well as quantification of impurities of Efavirenz. Developed method was validated according to ICH guidelines. Specificity was established by spiking impurities at 0.2% specification level and it was observed there is no interference from blank as well as impurities. This method was found to be accurate over the range of 85 - 115% and linear up to 120% with an acceptable correlation coefficient i.e. 0.999. The sensitivity of the method was established by LOD & LOQ which was within the acceptable range. This method was found to be precise over the suitable range with a % RSD of less than 15. The method was found to be sufficiently robust and rugged with an acceptable system suitability factors and % RSD of below 15. Hence the developed and validated RP-HPLC method can be successfully employed for the detection and quantification of Efavirenz and its related impurities in bulk drug as well as in formulation.

Keywords: RP- HPLC, Efavirenz, Reliable, Precise, Accurate

I. INTRODUCTION

Pharmaceutical Analysis may be defined as the application of analytical procedures used to determine the purity, safety and quality of drugs and chemicals. Pharmaceutical Analysis includes both qualitative and quantitative analysis of drugs and pharmaceutical substances starts from bulk drugs to the finished dosage forms.[1]

Fig: 1 - Instrumentation of HPLC

Chromatography has been defined as a separation process that is achieved by distributing the components of a mixture between two phases, a stationary phase and a mobile phase. Those components held preferentially in the stationary phase are retained longer in the system than those that are distributed selectively in the mobile phase. As a consequence,

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, September 2022

solutes are eluted from the system as local concentrations in the mobile phase in the order of their increasing distribution coefficients with respect to the stationary phase. Chromatographic separation of two components depends on the fact that they have different partition or distribution coefficients between the stationary and mobile phases. [2-3]

Efavirenz: Structure:-

 Table 1: Drug profile of Efavirenz

Name	Efavirenz				
IUPAC name	(4S)-6-chloro-4-(2-cyclopropylethynyl)-4-				
	(trifluoromethyl)-2,4-dihydro-1H-3,1-benzoxazin-2- one				
Molecular formula	C ₁₄ H ₉ ClF ₃ NO ₂				
Molecular weight	315.675				
рКа	P^{Ka} (strongest acidic) – 12.52				
_	P^{Ka} (strongest basic) – (-1.5).				
Melting point	139-141 °C				
Category	Anti-HIV Agents				
	Non nucleoside Reverse Transcriptase				
	Inhibitors				
Appearance	White to slight pink powder.				
Solubility	Freely soluble in methanol. Practically insoluble in water.				
Brand formulations	Stocrin, Sustiva, Efavir.				

Impurity Profile:

Table 2: Impurity profile

S.NO	Name of the impurity	pharmacopoeia	Category of related substances	Impurity specification level
1	IMP-1	International pharmacopoeia & USP	Degradation by hydrolysis	0.2%
2	IMP-2	International pharmacopoeia & USP	Process related and degradation by hydrolysis	0.2%

Structure of IMP-1:-

DOI: 10.48175/568

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, September 2022

IUPAC name: - 6-chloro-2-cyclopropyl-4-(trifluoro methyl) quinoline. **Structure of IMP-2:**

IUPAC name: - (s)-2-(2-amino-5-chlorophenyl)-4-cyclopropyl-1,1,1-tri fluoro-but-3-yn-2-ol.

The proposed HPLC methods are found to have complicated procedure and longer run time so a study was proposed to develop a simple method with lesser run time. The developed method was validated according to ICH guidelines The different objectives that are to be achieved during development of new analytical and validated method for related substances of Efavirenz are:

- To develop new analytical method
- To validate the developed analytical method according to ICH guidelines
- To achieve reproducibility and minimize the error
- To achieve quantification of impurities at their specification level.[4-9]

II. MATERIALS AND METHODS

Table 3: Standards and samples

S.NO.	Material name	Potency
1	Efavirenz drug substance	NA
2	IMP-1	99.8%
3	IMP-2	99.5%

Table 4: Instrument

S.NO.	Instrument	Make and model
1	HPLC	Water's HPLC
2	Analytical balance	Metler Toledo
3	$\mathbb{P}^{\mathbb{H}}$ meter	Metler Toledo
4	Sonicator	Spectrochem
5	U.V. detector	Waters model
6	P.D.A detector	Waters model

Table	5:	Reagents	and	chemicals:
-------	----	----------	-----	------------

S.NO	Name of the material	Grade	Make
1	Potassium di hydrogen orthophosphate	HPLC grade	Merck
2	Ortho phosphoric acid	AR	Merck
3	Acetonitrile	HPLC	Merck
4	Methanol	HPLC	Merck
5	Water	Milli Q	Merck

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, September 2022

2.1 Method Development Parameters

Selection of the following parameters is very important in method development.

- Mode of Chromatography
- Column
- Mobile phase composition and buffer p^H
- Wavelength
- Flow rate
- Injection volume
- Column temperature
- Solvent delivery system

Mode of Chromatography

Selection of mode of chromatography is an important step in the method development. The basis for the selection of mode of chromatography is the nature of the molecule as well as its polarity. In this experiment reverse phase chromatographic mode was selected.

Selection of the Column

Column plays an important role in the chromatographic separation. The following parameters should be considered while selecting a column.

- Length and diameter of the column
- Packing material
- Pore size, surface area and end capping
- Percentage of carbon loading

In this experiment Inertsil ODS 3V (250 X 4.6mm X 5 μ m) column was selected. It's a validated column and is having low surface silanol activity which is helpful in obtaining a good peak shape. This column is end capped and also shows high inertness to both acidic as well as basic components. It is having high durability over the P^H range of 2 to 9. It is also stable at high temperatures.

Selection of buffer \boldsymbol{p}^{H} and mobile phase composition

Buffer and its strength play a major role in deciding the peak symmetry and separation. The strength of the buffer can be altered if necessary to achieve the required separation.

 P^{H} of the buffer also plays an important role in achieving the chromatographic separation as it controls the elution properties by controlling the ionization characteristics. Buffer p^{H} is selected based on the P^{Ka} of the analyte molecule. In this method initial trials were conducted by using phosphate buffer of p^{H}

Acidic p^{H} was used because Efavirenz has P^{Ka} of -1.5 which indicates that it is strongly acidic in nature & hence to maintain the analyte in unionized state acidic $p^{H}(2.5)$ was selected. Acetonitrile is selected as an organic solvent because of its favorable UV transmittance, low viscosity and low back pressure. The peak shape and resolution was good with phosphate buffer of p^{H} 3: Acetonitrile but the run time was not satisfactory. Hence 0.1%Orthophoshoric acid in water : 0.1%Orthophoshoric acid in Acetonitrile which is having a p^{H} around 2.5 was employed as mobile phase with which good peak shape, peak symmetry, and reasonable run time was achieved.

Selection of Wavelength

A solution containing 0.25mg/ml of Efavirenz working standard and IMP-1 and IMP-2 at their specification level was prepared, injected and scanned by using PDA detector from 200-400 nm.

In this method PDA detector has been used in full scan mode in order to scan all relevant wavelengths of sample. Then determine the lambda max of the sample's spectra using the software. Once the analysis is completed review the spectral data to determine which prominent peak wavelengths have the maximum signal to noise (S/N) ratio. These "peaks" can be used as the individual wavelengths for integration and purity determination. Edit the method to use the discreet wavelengths found in the spectra of sample as shown in the **Fig.no.3**. Using full scan mode will enable to know about

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, September 2022

any other components which absorb at wavelength far away from or near the analyte peak. These compounds can add or subtract signal from the main peak making it appear to be more or less concentrated (or more or less pure) than it actually is. In this experiment the maximum absorbance selected for Efavirenz and its related substances was 245nm.[10-15]

III. RESULTS AND DISCUSSION

Chromatograms of initial trials

Criteria for trial 1:

The main basis of the separation in trial 1 is p^{H} of the mobile phase. It is generally recommended to maintain the P^{H} of the mobile phase 2 units above or below the P^{Ka} of the drug molecule. P^{Ka} will depend on the structure of the molecule. The literature survey revealed that the Efavirenz is very strong acid (p^{Ka} of -1.50). Hence to maintain the P^{H} in acidic range the initial trails are conducted by using phosphate buffer of P^{H} 3.The mobile phase employed in trial -1 is Phosphate Buffer: Acetonitrile in the ratio of 50:50. Chromatogram for trial 1 is shown in Fig no: 4. Results of trial 1 are tabulated in table no:13.

Figure no: 2 - Chromatogram of trial 1

Table 6:	Trial 1	results:-
----------	---------	-----------

Peak name	RT	Area	USP	USP Plate count	USP Tailing
			Resolution		
IMP-2	24.822	747853		8861.63	1.00
Efavirenz	30.576	4929891	4.85	8928.01	1.00

Observation

Peak was eluted with good symmetry and resolution but run time was more.

Criteria for trial 2:- The basic criterion selected in trial 2 is effect of polarity on separation. A molecule's structure, activity, and physicochemical characteristics are determined by the arrangement of its constituent atoms and the bonds between them. Within a molecule, a specific arrangement of certain atoms that is responsible for special properties and predictable chemical reactions is called a functional group. This structure often determines whether the molecule is polar or non-polar. Organic molecules are sorted into classes according to the principal functional groups each contains. Using a separation mode based on polarity, the relative chromatographic retention of different kinds of molecules is largely determined by the nature and location of these functional groups.³⁵ Hence in the trial 2 development was done mainly by focusing on the polarity.

Order of polarity:-

IMP-2 > Efavirenz > IMP-1

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/568

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, September 2022

In the trial one the elution time was more. Hence the organic phase concentration has been increased in mobile phase so as to decrease the run time and to elute the IMP-1 which is relatively non polar when compared to IMP-2 and Efavirenz and also the effect of flow rate and temperature on the separation was observed. Chromatogram for trial 2 is shown in Fig no: 5 & results of trail 2 are shown in table no: 14.

-

Table 7: 1 Hal 2 results						
Peak name	RT	Area	USP	USP Plate count	USP Tailing	
			Resolution			
IMP-2	5.326	573101		5336.07	1.03	
Efavirenz	6.233	5093251	2.93	5728.85	1.02	
IMP-1	22.448	3111578	24.96	8548.36	0.97	

Figure no: 3 – chromatogram for trial 2

Observation:-

- Run time was decreased.
- Peak was eluted with good symmetry and resolution.

Criteria for trial 3:

In trial 2 the organic phase concentration was very high in the mobile phase. It is generally recommended not to use the higher organic concentrations when we use salt buffers as it causes precipitation of buffer. Hence trial 3 was conducted by changing the mobile phase. The mobile phase used in trial 3 was 0.1% OPA in water: 0.1% OPA in acetonitrile in the ratio of 20:80. When this mobile phase was employed run time was decreased to 13.32 min from 22 min in the trial 2. By changing the temperature and flow rate the run time was still decreased to 9.42 min from 13.32 min. In trial 2 when higher concentration (0.5mg/ml) was used peak was distorted and peak purity is failed. Hence trial 3 was observed by decreasing the concentration to 0.25mg/ml. in optimized method injection volume is decreased to 10μ l instead of 20μ l because peak distortion was observed due to increased injection volume. Chromatogram for trial 3 is shown in Fig no: 6 & 7. And results are tabulated in table no: 15 & 16.

IJARSCT Impact Factor: 6.252

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

IJARSCT

Figure no: 4 - chromatogram for trial 3 Table no:8 - Trial 3 results

Peak name	RT	Area	USP	USP Plate count	USP Tailing
			Resolution		
IMP-2	3.402	378851		5641.92	1.04
Efavirenz	3.941	3369949	2.74	6069.80	1.04
IMP-1	13.321	2050136	25.30	10148.59	1.01

Observation:-

Peak was eluted with a sufficient resolution and within a reasonable run time.

Figure no: 5 - chromatogram for optimized method. **Table 9:** Results of optimized method

Peak name	RT	Area	USP	USP Plate count	USP Tailing
			Resolution		
IMP-2	2.783	361876		5290.95	1.03
Efavirenz	3.216	3439364	2.71	6140.87	1.03
IMP-1	9.344	2087688	23.64	11601.56	1.02

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, September 2022

SPECIFICITY:

Blank Interference:-

Blank solution was prepared and injected. It was observed that no blank peaks were eluting at the retention time of Efavirenz peak and other impurities peaks.

Impurity Interferences:- All impurities were spiked at their specification level and spiked and unspiked sample solution and standard solution was analysed. Peak purity of the Efavirenz in the spiked standard and spiked sample solution was found to be within the acceptable limit.

IV. CONCLUSION

Developed method was validated according to ICH guidelines. Specificity was established by spiking impurities at 0.2% specification level and it was observed there is no interference from blank as well as impurities. This method was found to be accurate over the range of 85 - 115% and linear up to 120% with an acceptable correlation coefficient i.e. 0.999. The sensitivity of the method was established by LOD & LOQ which was within the acceptable range. This method was found to be precise over the suitable range with a % RSD of less than 15. The method was found to be sufficiently robust and rugged with an acceptable system suitability factors and % RSD of below 15. Hence the developed and validated RP-HPLC method can be successfully employed for the detection and quantification of Efavirenz and its related impurities in bulk drug as well as in formulation.

REFERENCES

- [1]. Ahuja Satinder; Scypinski Stephen. *Handbook of Modern Pharmaceutical Analysis*; Academic press, London, **2001**. pp. 1-3.
- [2]. BK. Sharma. Instrumental Methods of Chemical Analysis Introduction to Analytical Chemistry; Goel Publishing House, Meerut, 2004. pp. C-287-C-310.
- [3]. R. Nageswara Rao. An Overview of the Recent Trends in Development of HPLC Methods for Determination of Impurities in Drugs. *Journal of Pharmaceutical and Biomedical Analysis* 2003, pp. 335-377.
- [4]. A. Ayre. Impurity Profiling of Pharmaceuticals. *Advance Research in Pharmaceuticals and Biologicals* 2011, *Vol 1(2)*, ISSN 2250 0744, pp. 76-90.
- [5]. V.S. Tegeli. Significance of Impurity Profiling: A Review. *International Journal of Drug Formulation and Research* 2011, *Vol. 2*, ISSN 2229-5054, pp. 174-195.
- [6]. International Conference on Harmonisation, *Guidance for Industry Q3A Impurities in New Drug Substances;* 2008, Revision 2, pp. 1-13.
- [7]. International Conference on Harmonisation, *Guidance for Industry Q3B (R2) Impurities in New Drug products;* 2006, Revision 2, pp. 1-7.
- [8]. LR. Snyder; J. Joseph; Kirkland Joseph; L. Glaich. *Practical HPLC Method Development*, Wiley-Interscience, New York, pp. 1-17, 21-41.
- [9]. Md.T.Zzaman. HPLC Method Development and Validation for Pharmaceutical Analysis- A Review. *Internationale Pharmaceutica Sciencia* 2012, *Vol. 2*, ISSN 2231-5896, pp. 13- 21.
- [10]. L. Huber. Validation of Analytical Methods; Informa Healthcare, New York, USA, 2007. pp. 13-26.
- [11]. International Conference on Harmonisation, ICH Q2B Guideline on Validation of Analytical Procedures Methodology; pp. 71-76.
- [12]. International Conference on Harmonisation, Q2 (R1) Validation of Analytical Procedures: Texts and Methodology; 2005, pp. 1-13.
- [13]. B. Anindita. Development and Validation of a RP LC Method for Dissolution Test of Efavirenz tablets and its Application to Drug Quality Control Studies. *Asian Journal of Pharmaceutical and Clinical Research* 2013, *Vol. 6*, ISSN 0974-2441, pp. 180-185.
- [14]. A. Anton Smith. Development of Analytical Method for Efavirenz by UV Spectrophotometry Using Sodium Hydroxide as Solvent. *Der Chemica Sinica* 2013, *Vol.* 4(3), ISSN 0976-8505, pp. 144-149.
- [15]. R. Brajendra Singh. Method Development and Validation of RP-HPLC Method in the Detection of Efavirenz in Bulk Drug and Tablet Formulation. *International Research Journal of Pharmacy* 2012, Vol. 3 (7), ISSN 2230-8407, pp. 297-300.