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Abstract: The present manuscript deals with the heat transfer and thermal stress analysis of thick circular
plate under steady temperature conditions. A circular plate is subjected to impulse heat flux applied on the
upper surface. Heat dissipates by convection from the lower boundary surface into the surrounding. The
thick curved surface of circular plate is thermally insulated. The integral transform methods are used for
heat transfer analysis to determine temperature changes. The theory of linearized thermoelasticity based on
solution of Navier's equation in terms of Goodier's thermoelastic displacement potential, Michell's function,
and the Boussinesq's function for cylindrical co-ordinate system have been used to discussion and analysis
of thermal stress. The results for temperature change, displacement and stresses have been computed

numerically and illustrated graphically for different isotropic solid material.
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I. INTRODUCTION

Thermoelasticity is based on temperature changes induced by expansion and compression of the test part. Although this
coupling between mechanical deformation and thermal energy has been known for over a century. After world war
second, there was very rapid development of thermoelasticity, stimulated by various engineering sciences.
Thermoelasticity contains the generalized theory of heat conductions, the generalized theory of the thermal stresses. A
considerable progress in the field of air-craft and machine structures, mainly with gas and steam turbines and the
emergence of new topics in chemical engineering have given rise to numerous problems in which thermal stresses play
an important role and frequently even a primary role.

Sipailov et al. [7] studied the effect of heat transfer in the impulse method of measurement on the value of the
maximum temperature and on the time for achieving its half-value. Taking this heat transfer effect into account
increases the accuracy of measuring the thermophysical properties. Lohle et al [3], analyze inverse heat conduction
problems by the analysis of the system impulse response by the application of the non-integer system identification
(NISI) method. Stakhanova et al [8] carried out heat transfer on model fragments of fuel rod claddings during impulse
supply of power. The time taken for reaching steady state for different parameters of impulse and the values of heat-
transfer coefficient are determined. Lee C.W. [2] obtained three dimensional series solution for elastic thick plate
subjected to general temperature distribution. T. Hata [9] concerned with a method for calculating the thermal-stress
distribution in a nonhomogeneous thick elastic plate under steady distribution of the surface temperature whose shear
modulus and coefficient of thermal expansion are assumed to be functions of z. Kulkarni et al [1] determined the
temperature changes and thermal stresses due to conduction of heat in the thick circular plate under transient
temperature conditions and analyzed his analytical results for heat treatment given in the annular region which is
described by Dirac-delta function.

II. HEAT TRANSFAR ANALYSIS
2.1 Formulation of the Problem

Consider a thick circular plate of thickness 24 occupying space D defined by 0 <r <a, —h <z <h. An impulse

heating is applied on the upper surface of the plate (Z = h). Heat dissipates by conveci
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surface (Z = —h) into the surrounding at the zero temperature. The circular edge (r = a) is thermally insulated.

Assume that the boundary of the circular plate is free from traction. Under these more realistic prescribed conditions,
the quasi-static steady state thermal stresses are required to be determined.
The steady state temperature of the plate satisfies the heat conduction equation,

o°T 10T o0°T _

+—— 0 2.1.1
or* ror oz’ @10
with the boundary conditions
oT
—=0 atr=a, —h<z<h (2.1.2)
or
oT
a—=TO[5(}’—7’1)+5(r—r2)+5(r—r3)+§(r—r4)} at z=h,0<r<a (2.1.3)
74
and
a—T—hSTzo at z=—h,0<r<a (2.1.4)
z
where

h, be the relative heat transfer coefficients on the lower surface of the thick circular plate

O is impulse function and

1 is strength of impulse heating.

2.2 The Solution for Temperature Change

To obtain the expression for temperature 1’ (F,Z ) introduce the finite Hankel transform over the variable r and its

inverse transform defined in [5] as

T(a,,z)= j 1, (e, )T (r, z)dr 2.2.1)
0
o 2J —
T(r,z)=Y # T(a,, z) (2.22)
n=1\ @ JO (ana)
where o, o ... are roots of the transcendental equation
J(aa)=0 (2.2.3)

Ju(x) is Bessel function of the first kind of order n.
This transform satisfies the relations

T 10T -
H—+—=-aT(a, 2.2.4
{6}”2 r@r} 1@, 2) (224)

and

o’T| _d’T
H o (2.2.5)
oz dz

On applying the finite Hankel transform defined in the equation (2.2.1) and its inverse defined in the equation (2.2.2)
to the equation (2.1.1) one obtain,

2_ —
(jlzzT ~a’T=0 (2.2.6)

where T is the Hankel transform of 7 .
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Also the Hankel transform of impulse function defined in equation (2.1.3) is given by

H{T,[8(r=r)+8(r=n)+8(r=r)+5(r-r) ||
(2.2.7)

= (71) -r)[Jo(anrl)+J0(anr2)+Jo(anr3)+J0(anr4)]
On solving equation (2.2.6) under the conditions given in equations (2.1.3), (2.1.4) and using equation (2.2.7), one

obtains
T(a,,z)=(T, - r)[Jo(a,n) + Jo(@,n)+ I, (a,n) + Ty (a,r)]
J (2.2.8)

a, cosh [an (z+ h)] + h, sinh [an (z+ h)]

{ a’ sinh(2a, h)+a, h, cosh(a, h)

On applying the inverse Hankel transform defined in equation (2.2.2), one obtain the expression for the temperature as

j[%(am)+Jo<a,,rz)+J0<anr3)+J0<anr4)]
] (2.2.9)

Z (2T-0 reJy(a,r)

az"]()2 (ana)
a, cosh|[a, (z+h)]|+h, sinh|[a,(z+h)]

( a’ sinh(2a, h) + a, h, cosh(2a, h)

n=l1

III. THERMAL STRESS ANALYSIS

3.1 Development of Thermoelastic Equations
Following Noda et al [4], The Naviers equations for axisymmetric thermoelastic problems can be expressed as

2(1+V) (3.1.1)

v, —”—;+( ! j%— (”—Vjﬁ+—Fr =0
r 1-2v jor 1-2v)or E
V2u2+( ! j%— a( Lty JQ+_2(1+1/)FZ =0 (3.12)
1-2v)oz 1-2v)oz E
where
2 2
v 10,0 (3.13)
or* ror oz’
e - dilatation
E - Young’s modulus
o - coefficient of linear thermal expansion
14 - Poisson ratio
The solution of Naviers equations (3.1.1) and (3.1.2) without body forces can be expressed by Goodiers thermoelastic
displacement potential ¢ and Boussinesq harmonic functions ¢ and ' under the axisymmetric conditions.
The Goodiers thermoelastic displacement potential ¢ must satisfy the governing equations

V¢=Kr
0’ 10¢ o
ie. —?+——¢+—?=Kr (3.1.4)
or- ror oz
where K is Restraient coefficient as
1+v
K = P = o
A+2u 1-v
7 1ssN
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where [ - thermoelastic constant
A & p - Lames elastic constants.

Boussinesq harmonic functions ¢ and ' must satisfy the governing equations

2
vip= 00,100 00

3.1.5
or* ror 82 1)

and

’w 10y 0w
Vip=—" b+ =0
v or* ror oz

when deformation in the cylindrical coordinate system are discussed, Michells function M instead of Boussinesq
harmonic functions @ and ' is often used.

(3.1.6)

Taking
M =—[(p+zy)dz (3.1.7)
The Michell’s function M must satisfy
VVM =0 (3.1.8)

The component of the displacement and stresses are represented by the thermoelastic displacement potential ¢ and
Michell’s function M as

o¢p o*M
u, =—"- (3.1.9)
or Ordz
2
a¢ +2(1-v)V*M - 0 1\2/1 (3.1.10)
0z
2 2
o, =2G %—KT%—Q 1/V2M—a Aj (.1.11)
or 0z or
Oy =2G l%—K1+g[ 4% M—lgﬂ) (3.1.12)
r or 0z r or
2 2
o.=2G 5_2_KT+Q 2-vV'M 0 A;I (3.1.13)
0z 0z oz
and
2 2
o, =2G ¢ .0 (l—v)VzM—a Az/[ (3.1.14)
oroz Or 0z
For traction free surface the stress functions
0,=0,_=0 atr=aandr=>
c,=0,.=0 atz=1h (3.1.15)

The set of equations (3.1.1) to (3.1.15) constitute mathematical formulation for displacement and thermal stresses
developed within solid due to temperature change.

ISSN °,
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3.2 The Solution for Displacement and Thermal Stresses

Assuming the displacement function ¢(r, Z) in the form
$(r,2)= 3. D, {J,(e,r) (z+ k) (h, cosh [, (z+ 1))+, sinh [, =+ )]} G2.1)
n=1

and using ¢ in (3.1.4), one obtains
_K (T, - r)[Jo(a,n) + Ty (a,n) + T (a,n) + Ty ()]
a,a’J, (a,a)] a; sinh(2a,h) + a,h, cosh(2a,h) |

Thus equation (25) becomes

d(r,z)= i 1,-r [J (a,n)+J,(a,nn)+,(a,n)+J,(, r4)]

aa’l’(aa) o, sinh(2a h)+ o, h, cosh(2a, h)

( Jy(a,r) H(Hh){h cosh[e, (z+h)]+ansinh[an(z+h)]>}(322)

Now suitable form of M satisfying (3.1.8) is given by

u _(K)i 2J, (a0, )Ty - r)[ o (@) + Jo(a,r) + Ty (a,n) + To(a,n)]
. a’J, (a,a)

n=1

{B, (h, cosh[a,(z+h)]+a,sinh[e,(z+h)])

+Ca,(z+ h)<h“, sinh[a, (z+h)]+a, cosh[a, (z + h)]>} (3.2.3)

where B, and C, are arbitrary functions.
Now using equations (2.2.9), (3.2.2), (3.2.3) and (26) in (3.1.9) to (3.1.14), one obtains the expressions for
displacements and stresses, respectively as

(k) 2Tl + (e + (e + ()
= azJoz(ana)

n=1

(Jl(anr))x [

—(z+h)(h, cosh[a,(z+h)]+a,sinh[a,(z + h)])
2[055 sinh(2a, h)+ a, h, cosh(2anh)]

+B,a; (h, sinh[a,(z+h)]+a, cosh[a, (z+ h)])

+C,a <(hs sinh[a,(z+h)]+a, cosh[a, (z + h)])

+ &, (z+h)(h cosh[a,(z+ )] +a,sinh[a,+A)]))} 24

(T, - r) [Ty, )+ Ty () + Ty (a,n) + T, (@, m]}

) ;( a’J) (a,a)

Copyright to IJARSCT DOI: 10.48175/IJARSCT-6233 e 61
www.ijarsct.co.in R 5

YQ&O "/%%‘
ISSN




(/ IJARSCT ISSN (Online) 2581-9429

Xx International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal
Impact Factor: 4.819 Volume 8, Issue 1, August 2019

J <hs cosh[a,(z+h)]|+a, sinh[an(z+h)]>
(Joen) 2a, | a; sinh(2a,h)+ a,h, cosh(2a,h) |

(z+h)(h,sinh[a,(z+h)]+a, cosh[a,(z +h)])
J’_
2| @} sinh(2a,h) +at,h, cosh(2a, ) |

-Ba’ <hs cosh[a, (z+h)]+a,sinh[a,(z+ h)]>

+C,; (2(1-2v) (h, cosh[a, (z +h)] + @, sinh [, (z + )]

~a, (z+h)(h,sinh[a,(z+h)]+a, cosh[a, (z + h)])>} (3.2.5)

_ (2GK)2(2(TO -r)[Jo<anr1)+an§?(r;) :)J()(ana)uo(am)]]

7

ACIIN ~(z+h)(h,cosh[a,(z+h)]+a,sinh[a,(z+h)])
{[ o (anr)j 2 [anz sinh(2a, h) + a, h, cosh(2anh)]

-t

a, cosh [an (z+ h)] + h sinh [an (z+ h)]
a’ sinh(Qa, h) + a h, cosh(2a, )

J(a,r)

+Bnozn2 (
,

2va, (J, (anr))<hs sinh[,(z+h)]+a, cosh[a, (z + h)]>

G| ( han nr)j <(hs sinh[, (z +h)]+a, cosh[a, (z + h)]) >

—anJO(anr))<hs sinh[a, (z+h)]+a, cosh[a, (z+1)])

r +a, (z+h)(h,, cosh[a,(z+h)]+a,sinh[a,(z+h))])

(3.2.6)
N (2(72) 'r)[‘]o(anrl)"'Jo(anrz)+J0(anr3)+‘]o(anr4)]]

O :(2GK)Z azJOZ(Ol a)

n=1

r

{[ —J, (a"r)j (z+h)(h, cosh[a,(z+h)]+a,sinh[a,(z+h)])
2| &} sinh(2a,h) + &, h, cosh(2a,h) |

S&e ‘f%%’
7 ISSN ¢
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(J a, cosh[a,(z+h)|+h sinh[e, (z+h)]
(Jo@,) o sinh(2a h) + . cosh(2a k)

+B,a, (‘] (@, )j<hs sinh[a,(z+h)]+a, cosh[a, (z+ h)])

wa, (J,(a,){h sinh[a,(z+h)]+a, cosh[a, (z +h)])

+C,a? [ J (@ r)j <(hs sinh[ar, (z + )] + @, cosh[a, (z+1)]) > (32.7)
NEAGH

r +a, (z+h)(h, cosh[a,(z+h)]+a,sinh[a,(z+h)])

n=

- (26K i (T, - )[Jo@m) + Jy(@,5) + Jy (@) + Jy(@,1,)]
_ a’J;’ (a,q)

jwa,,n)

(Jo(anr))x{[a” (z+ hWi ‘fOSh[an(H h)|+a, sinh|[a, (z + h)]>]
2[05,, sinh(2a, h)+ a h, cosh(2anh)]

-B,a, (h sinh[a,(z+h)]+a, cosh[a, (z +h)])

3 <(1—2v)(hs sinh[a, (z + )]+, cosh[a, (z + h)]) >}

+C o (3.2.8)
—a, (z+h)(h, cosh[a,(z+)]+a,sinh[a,(z+h)])
and
_(26K) i( (T, 7)[Jo(e, r1)+J2(a B+ () +J,(a, m]j
n=1 JO (ana)
(@) —<hs cozsh'[an(er h)]+a, sinh[a, (z+ h)]>
2 [an sinh(2a, h)+ a h, cosh(2anh)]
a,(z+h)(h,sinh[a,(z+h)]+a, cosh[a, (z+ h)])
2[ ] sinh(2at, ) + a, h, cosh(2at,h) |
+B,a, (h, cosh[a,(z+h)]+a, sinh[a, (z+ h)])
2V(h cosh[a (Z+h)]+a s1nh[a (Z+h)])
Ca (3.2.9)
+a, (Z+h)(hS sinh[a, (z+h)]+a, cosh[an(z+h)]) L
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In order to satisfy the boundary conditions given in the equation (3.1.15) use equations (3.2.6), (3.2.8) and (3.2.9) for

B and C, one obtains,

(1-2v)
B, =——F— (3.2.10)
2a; | a; sinh(2a,h) + &, h, cosh(2a, ) |

and

1
C =
" 20| e sinh(2a,h) +a,h, cosh(2a,h) |

(3.2.11)

Using these values of B, and C, in equations (3.2.4) to (3.2.9) one obtains the expressions for displacements and

stresses as

(2T ) o)+ Iy (a,n) +Jy(a,n)+J(a,n))J(a,r)
ur:K(l—V)Z[ ( )[ a’a Joz(a a) ] ]

n=l1

X[hs sinh[a, (z+h)]+a, COSh[an(“h)]} (3.2.12)

a; sinh(2a, h) + o, h, cosh(2a, )

(2T ) Jo(a,n) + o (a,n) +Jy(a,n)+ Jy(a,n) | (a,r)
uz:K(l_V)Z[ ( )[ 2o Joz(a a) ] J

n=1

{hs cosh[a, (z+h)]+e, sinh[e, (z + h)]} (3.2.13)

o’ sinh(2a, h) +a h, cosh(2a, h)
2 (2(T,-r)|J J J J J
arrz_ch@_V)z( (T -7)[o(e,n)+ oc(zftrns)J+2(;(0;,;r3)+ o(@,n)] l(anr)]
n* 0 n

n=1

x[hs sinh[a, (z+ )] +a, COSh[“n(ZJrh)]} (3.2.14)

a’ sinh(2a, h) +a, h, cosh(a, h)

6.0 = 2GK (1_V)§[2(T° -r)[Jo<a,,r1)+aJ§§a;(r2 ;Jo<a,,r3>+Jo<a,,r4)]]

n=l1

H:(M_J (@ r)ﬂ {hs sinh[a,(z+h)]+a, cosh[a,(z+ h)]}} 5215)

ra a’ sinh(2a, h)+ a, h, cosh(2a, h)

n

o,=0 (3.2.16)
and
c.=0 (3217)
IV. NUMERICAL CALCULATIONS [7 1ssn )
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4.1 Dimensions

Radius of plate a = 1m,
Thickness (Height) of plate 1 = 2m .

4.2 Thermoelastic Constants
Poisson ratiov = (0.35,
Lamé constant ££ = 26.67.

Young’s modulus E = 130 &FPa,

0
Strength of Impulse heating Tq 0= 100°C

>

Relative heat transfer coefficients hs1 =10.

4.3 Roots
Let

of transcendental equation

o; =3.8317, a, =7.0156, a; =10.1735, a, =13.3237, a5 =16.470,

o =19.6159, o, =22.7601, g =25.9037, ag = 29.0468, o, = 32.18

are the roots of transcendental equation J| (aa)=0.

4.4 Material Properties

Property Aluminum Pure Copper Pure Iron Pure
Thermal diffusivity & (m’s™") 84.18x10°° 112.34x10°° 20.34x10°°
Thermal conductivity k (W / mk) 204.2 386 72.7

Density p (kg Im? ) 2707 8954 7897

Specific heat ¢, (J/kgK) 896 383 452
Coefficient of linear thermal expansion a, 23.1x 10—6 16.5x10°° 11.8x 10—6
(1/K)

For convenience setting A = K(I—V), B= 2GK(1 —V). in the expressions (3.2.12) to (3.2.15). The numerical

expressions for temperature, displacement and stress components are obtained by equations (2.2.9) and (3.2.12) to

(3.2.17).
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Figurel: The radial displacement function u/A in radial direction.
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Figure 4 : The axial displacement function u, /A in axial direction.
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Figure 6 : The radial stress function c/B in axial direction.
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V. CONCLUDING REMARKS
In this paper a thick circular plate is considered under steady temperature field and determined the expressions for
temperature, displacement and thermal stress functions due to impulse heating on the upper surface. Heat dissipates by
convection from the lower boundary surface into the surrounding where as the exchange of heat stopped by insulating
outer circular surface. The Dirac-delta function has been used to describe impulse heating. As a special case
mathematical model is constructed for different metals viz Copper (Pure), Aluminium (Pure) and Iron (Pure) thick
circular plate with the material properties specified as above.
From figure 1 and 2, radial displacement function u, shows sinusoidal fluctuations from centre to outer circular surface
in radial direction where as in axial direction it is decreases from upper surface to lower surface.
From figure 3 and 4, axial displacement function u, is maximum at centre and decreases towards outer circular surface
where as in axial direction it increases from upper surface to lower surface.
From figure 5 and 6, the radial stress function o, develops tensile stresses in radial direction within circular region

0 <7 <1 and it decreases from upper surface to lower surface in axial direction. Also it can be observed that the radial

stress function oy satisfies the equilibrium conditions i.e. 0, = 0 at outer traction free surface 7 =1 .
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From figure 7 and 8, the angular stress function cee develops compressive stresses near centre in radial and axial

direction it develops tensile stresses on the upper surface where as it is almost zero at the lower surface.

Due to applying the impulse heat supply on the upper surface on the plate, the radial and axial displacements occurs
near the centre and plate expands towards the lower direction. The axial stress component and resultant stress
component are zero due to exchange of heat through lower boundary into surrounding medium. It means we may find
out that displacement and stress components occurs near heat source. The numerical values of the displacements and

stresses

for the plates of metals iron, aluminum and copper are in the proportion and follows relation

Iron £ Alumin ium < Copper . It means these values are directly proportional to their thermal diffusivity. The

results presented here will be more useful in engineering problem particularly in the impulse heat sealer.
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