

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 6, June 2022

IJARSCT

On g-Semi-Closed Sets in Generalized Topological

Spaces

Dr. Hrishikesh Tripathi

Lecturer, Government Womens Polytechnic College, Jabalpur, M.P., India tripathihk1@gmail.com

Abstract: In this paper, we have studied g-semi-closed sets in generalized topological space. We have obtained some significant properties of g-semi-closed sets and constructed various examples.

Keywords: Generalized topological spaces, g-interior, g-closure, g-semi open set,g-semi-closed set

I. INTRODUCTION

Csaszar [1] has introduced the concept of generalized topology in 2002. Then in 2005, Csaszar [2] has defined the notion of g-semi-open in generalized topological space. In this paper we have obtained significant results which characterizes g-closed-sets and constructed useful examples.

II. PRELIMINARIES

We begin with the definition of generalized topological space, g-open sets and g-closed sets.

Definition 2.1 [1] Let X be a non empty set and let τ_g be a family of subsets of X. Then τ_g is said to be a **generalized** topology on X, if following two conditions are satisfied viz.:

i) $\phi \in \tau_g$;

ii) Arbitrary union of members of τ_g is a member of τ_g .

The generalized topology τ_g is said to be strong if $X \in \tau_g$, and the pair (X, τ_g) is called a generalized topological space. The members of family τ_g are called g-open sets and their complements are called g-closed sets.

From the above Definition 2.1, we note that arbitrary intersection of g-closed-sets is a g-closed-set.

Proposition 2.2 [4]: Let (X, τ_g) be a generalized topological space and let $A \subseteq X$. Then A is g-open set in X iff for each point $x \in A$ there exists a g-open set U in X such that $x \in U \subseteq A$.

Corollary 2.3 [4]: Let (X, τ_g) be a generalized topological space and let $A \subseteq X$. Then A is g-closed set in X iff for each point $x \notin A$ there exists a g-open set U in X such that $x \in U$ and U $\cap A = \phi$.

Definition 2.4 [1]: Let *X* be a generalized topological space and let $A \subseteq X$. Then **g-interior** of *A* is denoted by $i_g(A)$ and is defined to be the union of all g-open sets in X contained in A. The **g-closure** of A is denoted by $c_g(A)$ and is defined to be the Intersection of all g-closed sets in X containing A.

Remark: Since arbitrary union of g-open sets is a g-open set and arbitrary intersection of g-closed sets is a g-closed set, it follows that $i_g(A)$ is a g-open set and $c_g(A)$ is a g-closed set. Thus $i_g(A)$ is the largest g-open set in X contained in A and $c_g(A)$ is the smallest g-closed set in X containing A.

Proposition 2.5 [4]: Let (X, τ_g) be a generalized topological space and let $A \subseteq X$. Then

i) Aisg-opensetiff $i_a(A) = A$.

ii) Aisg-closedsetiff $c_q(A) = A$.

Theorem 2.6 [4]: Let(X, τ_g) be a generalized topological space and let A, B be subsets of X. Then following properties holds:

- 1. $i_g(\phi) = \phi, i_g(X) = X$.
- 2. If $A \subseteq B$ then $i_g(A) \subseteq i_g(B)$.
- 3. $i_g(A) \cup i_g(B) \subseteq i_g(A \cup B)$.
- 4. $i_g(A \cap B) \subseteq i_g(A) \cap i_g(B)$.

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/568

IJARSCT

Volume 2, Issue 6, June 2022

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

5.
$$i_g(i_g(A)) = i_g(A)$$
.

Theorem 2.7 [4]: Let(X, τ_g) be a generalized topological space and let A, B be subsets of X. Then following properties holds:

- 1. $c_a(\phi) = \phi, c_a(X) = X$.
- 2. If $A \subseteq B$ then $c_g(A) \subseteq c_g(B)$.
- 3. $c_g(A) \cup c_g(B) \subseteq c_g(A \cup B)$.
- 4. $c_g(A \cap B) \subseteq c_g(A) \cap c_g(B)$.
- 5. $c_g(c_g(A)) = c_g(A)$.

Theorem 2.8 [4]: Let (X, τ_g) be a generalized topological space and $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a family of subsets of X. Then

- 1. $\bigcup_{\alpha \in \Lambda} i_g(A_{\alpha}) \subseteq i_g(\bigcup_{\alpha \in \Lambda} A_{\alpha}).$
- 2. $i_g(\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subseteq \bigcap_{\alpha \in \Lambda} i_g(A_{\alpha}).$

Theorem 2.9 [4]:Let (X, τ_g) be a generalized topological space and $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a family of subsets of X. Then

- (i) $\bigcup_{\alpha \in \Lambda} c_g(A_{\alpha}) \subseteq c_g(\bigcup_{\alpha \in \Lambda} A_{\alpha}).$
- (ii) $c_g(\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subseteq \bigcap_{\alpha \in \Lambda} c_g(A_{\alpha}).$

Theorem 2.10 [4]:Let (X, τ_g) be a generalized topological space and $A \subseteq X$. Then

- (i) $i_a(X A) = X c_a(A)$.
- (ii) $c_g(X A) = X i_g(A).$

III. g-SEMI-CLOSED SETS

In this section we have obtained significant results which characterizes g-semi-closed-sets and constructed useful examples.

Definition 3.1 [2]: Let X be a generalized topological space and let $A \subseteq X$. Then the set A is said to be g-semi-open set, if $A \subseteq c_q(i_q(A))$. Further the set A is said to be g-semi-closed set if (X - A) is g-semi-open set in X.

Remark : The empty set ϕ and whole set X are always g-semi-closed set in any generalized topological space X.

Proposition 3.2: Let X be a generalized topological space. If A is a g-closed set in X then A isg-semi-closed set.

Proof: Let X be a generalized topological space and let A be a g-closed set in X. Then $c_g(A) = A$. Now we have, $c_g(i_g(X - A)) = c_g(X - c_g(A)) = X - i_g(c_g(A)) = X - i_g(A) \supseteq (X - A)$ (as $i_g(A) \subseteq A$). Thus $(X - A) \subseteq c_g(i_g(X - A))$. Hence (X - A) is a g-semi-open set in X and so A is a g-semi-closed set in X.

In the following Example we see that converse of above result is not necessarily true.

Example 3.3: Let $X = \{a, b, c, d\}$ and let consider generalized topology $\tau_g = \{\phi, X, \{a, b\}, \{b, d\}, \{a, b, d\}\}$ on X. Suppose $A = \{d\}$. Then we see that A is g-semi-closed set in X but not g-closed set in X.

Proposition 3.4 Let X be a generalized topological space and $A \subseteq X$. Then A is g-semi-closed set iff $i_g(c_g(A)) \subseteq A$. **Proof:** Let A be a g-semi-closed set in X. Then (X - A) is g-semi-open set in X. This means $(X - A) \subseteq c_g(i_g(X - A))$. We have, $i_g(X - A) = X - c_g(A)$. Therefore $c_g(i_g(X - A)) = c_g(X - c_g(A)) = X - i_g(c_g(A))$. Thus we find that $(X - A) \subseteq X - i_g(c_g(A))$. This implies $i_g(c_g(A)) \subseteq A$.

Conversely suppose that $A \subseteq X$ and $i_g(c_g(A)) \subseteq A$. Then we have $(X - A) \subseteq X - i_g(c_g(A))$. As $X - i_g(c_g(A)) = c_g(i_g(X - A))$, we find that $(X - A) \subseteq c_g(i_g(X - A))$. Hence (X - A) is g-semi open set and so A is g-semi-closed set in X.

Remark : In a generalized topological space X if A is g-semi-closed set and $A \neq X$ then $c_g(A) \neq X$.

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/568

940

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 6, June 2022

Proposition 3.5: Let X be a generalized topological space and let $A \subseteq X$. Then A is g-semi-closed set iff $i_g(A) = i_q(c_q(A))$.

Proof: Let A be a g-semi-closed set in X. Then from Proposition 3.4, we have $A \supseteq i_g(c_g(A))$. This implies $i_g(A) \supseteq i_g(i_g(c_g(A))) = i_g(c_g(A))$, i.e., $i_g(A) \supseteq (c_g(A))$. Since $c_g(A) \supseteq A$, we have $i_g(c_g(A)) \supseteq i_g(A)$. Hence we have find that $i_g(A) = i_g(c_g(A))$.

Conversely suppose that $i_g(A) = i_g(c_g(A))$. Since $i_g(A) \subseteq A$, we have $i_g(c_g(A)) \subseteq A$. Hence from Proposition 3.4 it follows that A is g-semi-closed set in X.

Proposition 3.6 : Let X be a generalized topological space and let $A \subseteq X$. Then A is g-semi-closed set iff there exits a g-closed set F in X such that $i_q(F) \subseteq A \subseteq F$.

Proof: Let A be a g-semi-closed set in X. Then from Proposition 3.4, we have $i_g(c_g(A)) \subseteq A$. Suppose $F=c_g(A)$. Then F is a g-closed set in X and $i_g(F) \subseteq A$. Since $A \subseteq c_g(A)$, we have $A \subseteq F$. Hence we deduce that $i_g(F) \subseteq A \subseteq F$.

Conversely suppose there exit a g-closed set F in X such that $i_g(F) \subseteq A \subseteq F$. This implies $F = c_g(F) \supseteq c_g(A)$ and therefore $i_g(F) \supseteq i_g(c_g(A))$. Then by $i_g(F) \subseteq A$ and $i_g(c_g(A)) \subseteq i_g(F)$ we find that $i_g(c_g(A)) \subseteq A$. Hence by Proposition 3.4, we find that A is g-semi-closed set in X.

Teorem 3.7:Let X be a generalized topological space and let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a collection of g-semi-closed sets in X. Then $A = \bigcap_{\alpha \in \Lambda} A_{\alpha}$ is a g-semi-closed set in X.

Proof:Let X be a generalized topological space and let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a collection of g-semi-closed sets in X. Then, *α* ∈Λ. $i_g(c_g(A_\alpha)) \subseteq A_\alpha,$ for all Put $A = \bigcap_{\alpha \in \Lambda} A_{\alpha}$. Then we have, $i_g(c_g(A)) = i_g(c_g(\cap_{\alpha \in \wedge} A_\alpha)) \subseteq i_g(\cap_{\alpha \in \wedge} c_g(A_\alpha)) \subseteq \cap_{\alpha \in \wedge} i_g(c_g(A_\alpha))$. Since A_α is a g-semi-closed set in X for each $\alpha \in \Lambda$, from Proposition 3.4 we have $i_g(c_g(A_\alpha)) \subseteq A_\alpha$, for all $\alpha \in \Lambda$. Therefore $i_g(c_g(A)) \subseteq \bigcap_{\alpha \in \Lambda} A_\alpha = \Lambda$. Thus we conclude that $i_q(c_q(A)) \subseteq A$. Hence from Proposition 3.4 it follows that A is a g-semi-closed set in X. In the following Example we see that union of two g- semi-closed sets may not a g-semi-closed set. Х ={ a,b,c,d } and let us generalized Example 3.8 : Let consider topology $\tau_q = \{\phi, X, \{b, c\}, \{b, c, d\}\}$ on X. Suppose A= $\{a, c\}$ and B= $\{a, d\}$. Then A and B are g-semi-closed sets in X

REFERENCES

[1].Csaszar, A., Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357.

[2]. Csaszar, A., Generalized open sets in generalized topologies, Acta Math. Hungar, 106 (2005), 53-66.

[3]. Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.

[4]. HrishikeshTripathi, g- semi-open sets in generalized topological spaces, ISSN NO 2456-5474, Vol.VII, Issue-4th may 2022.

[5]. Njasted.O., On some classes of nearly open sets, pacific J.Math.15(1965)961-970.

but their union is $\{a, c, d\}$ which is not a g-semi-closed set in X.