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Abstract: A transcompiler, also known as source-to-source translator, is a system that converts source code 

from a high-level programming language (such as C++ or Python) to another. Transcompilers are primarily 

used for interoperability, and to port codebases written in an obsolete or deprecated language (e.g. COBOL, 

Python 2) to a modern one. They typically rely on handcrafted rewrite rules, applied to the source code 

abstract syntax tree. Unfortunately, the resulting translations often lack readability, fail to respect the target 

language conventions, and require manual modifications in order to work properly. The overall translation 

process is time consuming and requires expertise in both the source and target languages, making code-

translation projects expensive. Although neural models significantly outperform their rule-based 

counterparts in the context of natural language translation, their applications to transcompilation have been 

limited due to the scarcity of parallel data in this domain. In this paper, we propose to leverage recent 

approaches in unsupervised machine translation to train a fully unsupervised neural transcompiler. We train 

our model on source code from open source GitHub projects, and show that it can translate functions between 

C++, Java, and Python with high accuracy. Our method relies exclusively on monolingual source code, 

requires no expertise in the source or target languages, and can easily be generalized to other programming 

languages. We also build and release a test set composed of 852 parallel functions, along with unit tests to 

check the correctness of translations. We show that our model outperforms rule-based commercial baselines 

by a significant margin. 

 

Keywords: Transcompiler  

 

I. INTRODUCTION 

Transcompiler, transpiler, or source-to-source compiler, is a translator which converts between programming languages 

that operate at a similar level of abstraction. Transcompilers differ from traditional compilers that translate source code 

from a high-level to a lower-level programming language (e.g. assembly language) to create an executable. Initially, 

transcompilers were developed to port source code between different platforms (e.g. convert source code designed for 

the Intel 8080 processor to make it compatible with the Intel 8086). More recently, new languages have been developed 

(e.g. CoffeeScript, TypeScript, Dart, Haxe) along with dedicated transcompilers that convert them into a popular or 

omnipresent language (e.g. JavaScript). These new languages address some shortcomings of the target language by 

providing new features such as list comprehension (CoffeeScript), object-oriented programming and type checking 

(TypeScript), while detecting errors and providing optimizations. Unlike traditional programming languages, these new 

languages are designed to be translated with a perfect accuracy (i.e. the compiled language does not require manual 

adjustments to work properly). In this paper, we are more interested in the traditional type of 

transcompilers, where typical use cases are to translate an existing codebase written in an obsolete or deprecated language 

(e.g. COBOL, Python 2) to a recent one, or to integrate code written in a different language to an existing codebase. 

Translating source code from one Turing-complete language to another is always possible in theory. Unfortunately, 

building a translator is difficult in practice: different languages can have a different syntax and rely on different platform 

APIs and standard-library functions. Currently, the majority of transcompilation tools are rule-based; they essentially 

tokenize the input source code and convert it into an Abstract Syntax Tree (AST) on which they apply handcrafted rewrite 

rules. Creating them requires a lot of time, and advanced knowledge in both the source and target languages. Moreover, 
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translating from a dynamically-typed language (e.g. Python) to a statically-typed language (e.g. Java) requires to infer 

the variable types which is difficult (and not always possible) in itself. 

The applications of neural machine translation (NMT) to programming languages have been limitedso far, mainly 

because of the lack of parallel resources available in this domain. In this paper, we propose to apply recent approaches in 

unsupervised machine translation, by leveraging large amount of monolingual source code from GitHub to train a model, 

TransCoder, to translate between three popular languages: C++, Java and Python. To evaluate our model, we create a test 

set of 852 parallel functions, along with associated unit tests. Although never provided with parallel data, the model 

manages to translate functions with a high accuracy, and to properly align functions from the standard library across the 

three languages, outperforming rule-based and commercial baselines by a significant margin. Our approach is simple, 

does not require any expertise in the source or target languages, and can easily be extended to most programming 

languages. Although not perfect, the model could help to reduce the amount of work and the level of expertise required 

to successfully translate a codebase. The main contributions of the paper are the following: 

 We introduce a new approach to translate functions from a programming language to another, that is purely 

based on monolingual source code. 

 We show that TransCoder successfully manages to grasp complex patterns specific to each language, and to 

translate them to other languages. 

 We show that a fully unsupervised method can outperform commercial systems that leverage rule-based 

methods and advanced programming knowledge. 

 We build and release a validation and a test set composed of 852 parallel functions in 3 languages, along with 

unit tests to evaluate the correctness of generated translations. 

 We will make our code and pretrained models publicly available. 

 

II. RELATED WORK 

Source-to-source translation. Several studies have investigated the possibility to translate programming languages with 

machine translation. For instance, Nguyen et al. [36] trained a Phrase-Based Statistical Machine Translation (PBSMT) 

model, Moses [27], on a Java-C# parallel corpus. They created their dataset using the implementations of two open source 

projects, Lucene and db4o, developed in Java and ported to C#. Similarly, Karaivanov et al. [22] developed a tool to mine 

parallel datasets from ported open source projects. Aggarwal et al. [1] trained Moses on a Python 2 to Python 3 parallel 

corpus created with 2to3, a Python library 2 developed to port Python 2 code to Python 3. Chen et al. [12] used the Java-

C# dataset of Nguyen et al. [36] to translate code with tree-to-tree neural networks. They also use a transcompiler to 

create a parallel dataset CoffeeScript-Javascript. Unfortunately, all these approaches are supervised, and rely either on 

the existence of open source projects available in multiple languages, or on existing transcompilers, to create parallel 

data. Moreover, they essentially rely on BLEU score [38] to evaluate their translations [1, 10, 22, 36], which is not a 

reliable metric, as a generation can be a valid translation while being very different from the reference. 

Translating from source code. Other studies have investigated the use of machine translation from source code. For 

instance, Oda et al. [37] trained a PBSMT model to generate pseudo-code. To create a training set, they hired 

programmers to write the pseudo-code of existing Python functions. Barone and Sennrich [10] built a corpus of Python 

functions with their docstrings from open source GitHub repositories. They showed that a neural machine translation 

model could be used to map functions to their associated docstrings, and vice versa. Similarly, Hu et al. [21] proposed a 

neural approach, DeepCom, to automatically generate code comments for Java methods. 

Other applications. Another line of work studied the applications of neural networks to code suggestion [2, 11, 34], or 

error detection [13, 18, 47]. Recent approaches have also investigated the use of neural approaches for code decompilation 

[16, 24]. For instance, Katz et al. [23] propose a sequence-to-sequence model to predict the C code of binary programs. 

A common issue with standard seq2seq models, is that the generated functions are not guaranteed to compile, and even 

to be syntactically correct. To address this issue, several approaches proposed to use additional constraints on the decoder, 

to ensure that the generated functions respect the syntax of the target language [3, 4, 5, 40, 48]. Recently, Feng et al. [15] 

introduced Codebert, a transformer pretrained with a BERT-like objective [14] on open source GitHub repositories. They 

showed that pretraining improves the performance on several downstream tasks such as code documentation generation 

and code completion. 
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Unsupervised Machine Translation. The quality of NMT systems highly depends on the quality of the available parallel 

data. However, for the majority of languages, parallel resources are rare or nonexistent. Since creating parallel corpora 

for training is not realistic (creating a small parallel corpus for evaluation is already challenging [19]), some approaches 

have investigated the use of monolingual data to improve existing machine translation systems [17, 20, 41, 49]. More 

recently, several methods were proposed to train a machine translation system exclusively from monolingual corpora, 

using either neural models [30, 8] and statistical models [32, 7]. We describe now some of these methods and how they 

can be instantiated in the setting of unsupervised transcompilation. 

 

III. MODEL 

For TransCoder, we consider a sequence-to-sequence (seq2seq) model with attention [44, 9], composed of an encoder 

and a decoder with a transformer architecture [45]. We use a single shared model for all programming languages. We 

train it using the three principles of unsupervised machine translation identified in Lample et al. [32], namely 

initialization, language modeling, and back-translation. In this section, we summarize these principles and detail how we 

instantiate them to translate programming languages. An illustration of our approach is given in Figure 1. 

Figure 1: Illustration of the three principles of unsupervised machine translation used approach. 

 

3.1 Cross Programming Language Model pretraining 

Pretraining is a key ingredient of unsupervised machine translation Lample et al. [32]. It ensures that sequences with a 

similar meaning are mapped to the same latent representation, regardless of their languages. Originally, pretraining was 

done by initializing the model with cross-lingual word representations [30, 8]. In the context of unsupervised English-

French translation, the embedding of the word “cat” will be close to the embedding of its French translation “chat”. Cross-

lingual word embeddings can be obtained by training monolingual word embeddings and aligning them in an 

unsupervised manner [31, 6]. Subsequent work showed that pretraining the entire model (and not only word 

representations) in a cross-lingual way could lead to significant improvements in unsupervised machine translation 

[29, 33, 43]. In particular, we follow the pretraining strategy of Lample and Conneau [29], where a Cross-lingual 

Language Model (XLM) is pretrained with a masked language modeling objective [14] on monolingual source code 

datasets. 
 

3.2 Denoising auto-encoding 

We initialize the encoder and decoder of the seq2seq model with the XLM model pretrained in Section 3.1. The 

initialization is straightforward for the encoder, as it has the same architecture as the XLM model. The transformer 
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decoder, however, has extra parameters related to the source attention mechanism [45]. Following Lample and Conneau 

[29], we initialize these parameters randomly. XLM pretraining allows the seq2seq model to generate high quality 

representations of input sequences. However, the decoder lacks the capacity to translate, as it has never been trained to 

decode a sequence based on a source representation. To address this issue, we train the model to encode and decode 

sequences with a Denoising Auto-Encoding (DAE) objective [46]. The DAE objective operates like a supervised machine 

translation algorithm, where the model is trained to predict a sequence of tokens given a corrupted version of that 

sequence. To corrupt a sequence, we use the same noise model as the one described in Lample et al. [30]. Namely, we 

randomly mask, remove and shuffle input tokens. 

 

3.3 Back-translation 

In practice, XLM pretraining and denoising auto-encoding alone are enough to generate translations. However, the quality 

of these translations tends to be low, as the model is never trained to do what it is expected to do at test time, i.e. to 

translate functions from one language to another. To address this issue, we use back-translation, which is one of the most 

effective methods to leverage monolingual data in a weakly-supervised scenario. Initially introduced to improve the 

performance of machine translation in the supervised setting [41], back-translation turned out to be an important 

componentof unsupervised machine translation [30, 32, 8]. In the unsupervised setting, a source-to-target model is 

coupled with a backward target-to-source model trained in parallel. The target-to-source model is used to translate target 

sequences into the source language, producing noisy source sequences corresponding to the ground truth target sequences. 

The source-to-target model is then trained in a weakly supervised manner to reconstruct the target sequences from the 

noisy source sequences generated by the target-to-source model, and vice versa. The two models are trained in parallel 

until convergence. An example of back-translation is illustrated in Figure 1. 

 

IV. EXPERIMENTS 

4.1 Training Details 

We use a transformer with 6 layers, 8 attention heads, and set the dimensionality of the model to 1024. We use a single 

encoder and a single decoder for all programming languages. During XLM pretraining, we alternate between batches of 

C++, Java, and Python, composed of 32 sequences of source code of 512 tokens. At training time, we alternate between 

the denoising auto-encoding and back-translation objectives, and use batches of around 6000 tokens. We optimize 

TransCoder with the Adam optimizer [25], a learning rate of 10�4, and use the same learning rate scheduler as Vaswani 

et al. [45]. We implement our models in PyTorch [39] and train them on 32 V100 GPUs. We use float16 operations to 

speed up training and to reduce the memory usage of our models. 

 

4.2 Training Data 

We download the GitHub public dataset available on Google BigQuery4. It contains more than 2.8 million open source 

GitHub repositories. We filter projects whose license explicitly permits the re-distribution of parts of the project, and 

select the C++, Java, and Python files within those projects. Ideally, a transcompiler should be able to translate whole 

projects. In this work, we decide to translate at function level. Unlike files or classes, functions are short enough to fit 

into a single batch, and working at function level allows for a simpler evaluation of the model with unit tests (c.f. Section 

4.4). We pretrain TransCoder on all source code available, and train the denoising auto-encoding and back-translation 

objectives on functions only. Please refer to Section A.3 and Table 3 in the appendix for more details on how the functions 

are extracted, and for statistics about our training set. We carry out an ablation study to determine whether it is better to 

keep or remove comments from source code. Keeping comments in the source code increases the number of anchor points 

across languages, which results in a better overall performance (c.f. Table 6 in the appendix). Therefore, we keep them 

in our final datasets and experiments. 

 

4.3 Preprocessing 

Recent approaches in multilingual natural language processing tend to use a common tokenizer [28], and a shared 

vocabulary for all languages. This reduces the overall vocabulary size, and maximizes the token overlap between 

languages, improving the cross-linguality of the model [14, 29]. In our case, a universal tokenizer would be suboptimal, 
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as different languages use different patterns and keywords. The logical operators && and || exist in C++ where they 

should be tokenized as a single token, but not in Python. The indentations are critical in Python as they define the code 

structure, but have no meaning in languages like C++ or Java. We use the javalang5 tokenizer for Java, the tokenizer of 

the standard library for Python6, and the clang7 tokenizer for C++. These tokenizers ensure that meaningless 

modifications in the code (e.g. adding extra new lines or spaces) do not have any impact on the tokenized sequence. An 

example of tokenized code is given in Figure 3 in the appendix. We learn BPE codes [42] on extracted tokens, and split 

tokens into subword units. The BPE codes are learned with fastBPE8 on the concatenation of tokenized C++, Java, and 

Python files. 

 

4.4 Evaluation 

GeeksforGeeks is an online platform9 with computer science and programming articles. It gathers many coding problems 

and presents solutions in several programming languages. From these solutions, we extract a set of parallel functions in 

C++, Java, and Python, to create our validation and test sets. These functions not only return the same output, but also 

compute the result with similar algorithm. In Figure 4 in the appendix, we show an example of C++-Java-Python parallel 

function that determines whether an integer represented by a string is divisible by 13. 

The majority of studies in source code translation use the BLEU score to evaluate the quality of generated functions [1, 

10, 22, 36], or other metrics based on the relative overlap between the tokens in the translation and in the reference. A 

simple metric is to compute the reference match, i.e. the percentage of translations that perfectly match the ground truth 

reference [12]. A limitation of these metrics is that they do not take into account the syntactic correctness of the 

generations. Two programs with small syntactic discrepancies will have a high BLEU score while they could lead to very 

different compilation and computation outputs. Conversely, semantically equivalent programs with different 

implementations will have low BLEU scores. Instead, we introduce a new metric, the computational accuracy, that 

evaluates whether the hypothesis function generates the same outputs as the reference when given the same inputs. We 

consider that the hypothesis is correct if it gives the same output as the reference for every input. Section B and Table 4 

in the appendix present more details on how we create these unit tests, and give statistics about our validation and test 

sets. At inference, TransCoder can generate multiple translations using beam search decoding [26]. In machine 

translation, the considered hypotheses are typically the ones with the highest log-probabilities in the beam. In our case, 

we have access to unit tests to verify the correctness of the generated hypotheses, so we report two sets of results for our 

computational accuracy metric: Beam N, the percentage of functions with at least one correct translation in the beam, 

and Beam N - Top 1 the percentage of functions where the hypothesis in the beam with the highest log-probability is a 

correct translation. We select our best model using greedy decoding (Beam 1) for speed efficiency. 

 

4.5 Results 

We report the results on our test set in Table 1, using greedy decoding (beam size 1), for the three metrics presented in 

Section 4.4. In Table 2, we report our results with beam search decoding, and compare TransCoder to existing baselines. 

We give an example of unsupervised translation from Python to C++ in Figure 2. 

Evaluation metric differences. In Table 1, we observe that a very large fraction of translations differ from the reference, 

and are considered as invalid by the reference match metric although they successfully pass the unit tests. For instance, 

when translating from C++ to Java, only 3.1% of the generations are strictly identical to the ground truth reference, 

although 60.9% of them return the expected outputs. Moreover, the performance in terms of BLEU is relatively flat and 

does not correlate well with the computational accuracy. These results highlight the issues with the traditional reference 

match and BLEU metrics commonly used in the field.  

 
Table 1: Results of TransCoder on our test set with greedy decoding. 
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Beam search decoding. In Table 2, we study the impact of beam search, either by considering all hypotheses in the beam 

that pass the unit tests (Beam N) or by only considering the ones with the highest log-probabilities (Beam N - Top 1). 

Compared to greedy decoding (Beam 1), beam search significantly improves the computational accuracy, by up to 33.7% 

in Java ! Python with Beam. When the model only returns the hypothesis with the highest log-probability, the 

performance drops, indicating that TransCoder often finds a valid translation, although it sometimes gives a higher log-

probability to incorrect hypotheses. More generally, beam search allows minor variations of the translations which can 

make the unit tests succeed, such as changing the return or variable types in Java and C++, or fixing small errors such as 

the use of / instead of the // operator in Python. More examples of errors corrected by beam search are presented in Figure 

9 in the appendix. In a real use-case, checking whether the generated functions are syntactically correct and compile, or 

creating unit tests from the input function would be better approaches than comparing log-probabilities in order to select 

an hypothesis from the beam. Table 5 in the appendix shows that many failures. 

 
Table 2: Computational accuracy with beam search decoding and comparison to baselines. 

Comparison to existing baselines. We compare TransCoder with two existing approaches: j2py10, a framework that 

translates from Java to Python, and a commercial solution from Tangible Software Solutions11, that translates from C++ 

to Java. Both systems rely on rewrite rules manually built using expert knowledge. The latter handles the conversion of 

many elements, including core types, arrays, some collections (Vectors and Maps), and lambdas. In Table 2, we observe 

that TransCoder significantly outperforms both baselines in terms of computational accuracy, with 74.8% and 68.7% in 

the C++ ! Java and Java ! Python directions, compared to 61% and 38.3% for the baselines. TransCoder particularly 

shines when translating functions from the standard library. In rule-based transcompilers, rewrite rules need to be 

manually encoded for each standard library function, while TransCoder learns them in an unsupervised way. In Figure 

10 of the appendix, we present several examples where TransCoder succeeds, while the baselines fail to generate correct 

translations. 

 

V. CONCLUSION 

In this paper, we show that approaches of unsupervised machine translation can be applied to source code to create a 

transcompiler in a fully unsupervised way. TransCoder can easily be generalized to any programming language, does not 

require any expert knowledge, and outperforms commercial solutions by a large margin. Our results suggest that a lot of 

mistakes made by the model could easily be fixed by adding simple constraints to the decoder to ensure that the generated 

functions are syntactically correct, or by using dedicated architectures [12]. Leveraging the compiler output or other 

approaches such as iterative error correction [16] could also boost the performance. 
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