

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 6, May 2022

Covid-19 Analysis and Future Forecasting

Aditi Vadhavkar¹, Pratiksha Thombare², Utkarsha Auti³, Priyanka Bhalerao⁴, Prof. Sagar Dhanake⁵

Students, Computer Engineering^{1, 2, 3,4} Assistant Professor, Computer Engineering⁵ D Y Patil Institute of Engineering and Technology, Ambi, Pune, Maharashtra, India

Abstract: Forecasting Mechanisms such as Machine Learning (ML) models have been demonstrating their value in predicting perioperative outcomes in the domain of future course of action decision making. Many application domains have seen the usage of machine learning models for identification and prediction. A threat's unfavourable factors are prioritised COVID-19 has proven to be a serious hazard to humans. A worldwide pandemic has been declared by mankind. Many assets around the world have had problems. This sickness has a high infectivity and contagiousness. Take a look at the diagram of undermining elements. We used four Machine Learning Models in COVID-19: Linear Regression (LR), Support vector machine (SVM) and Bayesian Ridge. The results show that of the four models used in this work, the LR performs the best, followed by the Bayesian and SVM, which both perform well in forecasting newly confirmed cases, death rates, and recovery rates.

Keywords: COVID-19, Supervised Machine Learning, Forecasting, Machine Learning

I. INTRODUCTION

Machine Learning has consistently demonstrated its importance as a subject of research over the last decade by tackling a wide range of complex and sophisticated real-world challenges. Healthcare, autonomous vehicles (AV), business applications, natural language processing (NLP), intelligent robotics, gaming, climate, modelling, voice, and image processing are some of the real-world sectors where machine learning is used. Unlike traditional algorithms, which follow programming instructions, machine learning algorithms function on a trial-and-error basis. Forecasting is one of the most important fields of machine learning, and many standard algorithms have been used to direct future actions in areas such as weather forecasting, disease prognosis, and other forecasting domains. This research focuses on the realtime prediction of COVID-19 confirmed cases and outbreaks, as well as early reaction. These forecasts can aid decision-making in dealing with current conditions and advise early efforts to effectively limit the pandemic's spread.

II. DESCRIPTION OF THE PROBLEM

Problem Definition

To investigate future COVID-19 epidemic forecasts, with a focus on the number of newly infected cases, deaths, and recoveries.

Motivation

Millions of individuals throughout the world have been affected by the increasing spread of new corona virus, popularly known as SARS-CoV-2 and formally termed COVID-19 by the World Health Organization. It has influenced people's lifestyles, work cultures, education, and so on. Studying the outbreak and early response based on the number of new positive cases, deaths, and recoveries can aid us in developing better methods to combat the global pandemic.

II. SYSTEM DESIGN AND FLOW

2.1 Dataset

The number of positive cases, the number of deaths, and the number of COVID-19 recoveries are the subject of this study. The dataset used in this study is available on covidtracking.com, which is the main COVID-19 statistics website in the United States.

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 6, May 2022

2.2 Models of Supervised Machine Learning

Supervised Machine Learning is a kind of machine learning that uses labelled datasets to train algorithms that reliably classify data or predict outcomes. The models used are:

- Linear Regression (LR)
- Support Vector Machine (SVM)
- Bayesian Ridge

A. Linear Regression

Linear Regression is a machine learning approach based on supervised learning that conducts a regression job using independent variables supporting the target prediction value. It's most likely utilised for determining the relationship between variables and forecasting.

 $y = \beta 0 + \beta 1x + \varepsilon$ $E(y) = \beta 0 + \beta 1x$

Where, ε is the linear regression error term, and (x, y) represents the input training dataset and sophistication labels within the input dataset, respectively.

B. Support Vector Machine (SVM)

SVM is a basic machine learning method that can be applied to classification and regression problems in the domain. The most function maps to the pliability to tell apart between two classes. It's a model that can generalise between two separate classes if the set of labelled data is provided within the training set to the algorithm. It is the ability to solve linear and nonlinear issues and perform well in a variety of situations.

C. Bayesian Ridge

By modelling linear regression using probability distributors rather than point estimates, Bayesian regression permits a natural mechanism to survive limited or poorly distributed data. Instead of being estimated as a single value, the output or response 'y' is supposed to be chosen from a probability distribution.

 $p(y|X,w,\alpha)=N(y|Xw,\alpha)$

2.3 Evaluation Parameters

We'll use assessment measures like R squared score, Adjusted R-square, MAE, MSE, and root mean square error to assess each learning model's performance. These measurements show us how accurate our forecasts are and how much they differ from the actual numbers in our data.

A. R-Squared Score

In simple terms, the R-squared score corresponds to the percentage of variance in the dependent variables that can be explained by the freelance variables. As a result, if it's 100 percent, the two variables are completely connected with no variance.

B. Adjusted R-square

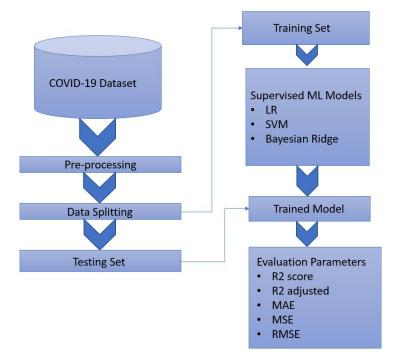
This has been adjusted for the number of predictors in the model because it is a modified form of R-square. It increases (rises) when a predictor improves the model by less than predicted and drops (decreases) when the new term witnesses the model more than would be expected by chance.

C. Mean Absolute Error

In statistics, mean absolute error can be a development and can be used to put up a model analysis metric for regression models. With regard to a look at set, the mean of all the values of the individual prediction errors on a look at set is relevant. It calculates the average magnitude of errors among a set of projections without taking into account their direction.

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)


Volume 2, Issue 6, May 2022

D. Root Mean Square Error

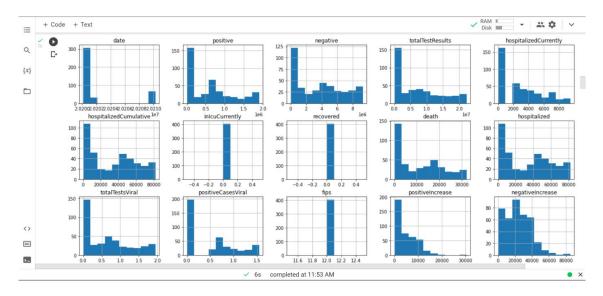
The base of the mean of the square of all errors gives a good live of accuracy, but it's only used to look at prediction errors of different models. In general, a lower RMSD number is preferred over the preceding one.

III. PROJECT IMPLEMENTATION

COVID-19 predictions, also known as new corona virus, are the goal of this investigation. With tens of thousands of deaths per day and death rates rising dramatically over the world, it has shown to be a potential threat to humanity. This study tries to forecast the amount of newly infected patients, death rates, daily number of cases, and recovery each day in order to help with the pandemic.

+ 0	Code +	Text			Connect 👻 🚢 🏟	~
C	data	a.info()				
		iss 'pandas.core.frame.DataF				- 1
		eIndex: 20780 entries, 0 to				
		columns (total 56 columns)				
	#	Column	Non-Null Count	51		
	0	date	20780 non-null			
	1	state	20780 non-null			
	2	positive	20592 non-null			
	3	probableCases	9271 non-null			
	4	negative	13290 non-null 2138 non-null			
	5	pending totalTestResultsSource	2138 non-null 20780 non-null			
	7	totalTestResults	20780 non-null 20614 non-null			
	8	hospitalizedCurrently	17339 non-null			
	8 9	hospitalizedCumulative	12382 non-null			
	10	inIcuCurrently	11636 non-null			
	11	inIcuCumulative	3789 non-null			
	12	onVentilatorCurrently	9126 non-null	float64		
	13	onVentilatorCumulative		float64		
	14	recovered	1290 non-null			
	14	lastUpdateEt	20164 non-null			
	16		20164 non-null	object		
	17	checkTimeEt	20164 non-null			
	18	death	19930 non-null			
	19	hospitalized	12382 non-null			
	20	hospitalizedDischarged	3070 non-null			
		dateChecked	20164 non-null			

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)


Volume 2, Issue 6, May 2022

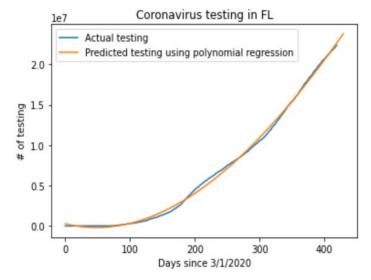
IJARSCT

	-									<u>↑</u> ↓	⇔■‡』∎:			
0	dat				ovidtracking.co ronavirs.csv')	m/api/v1/st	tates/dai	ly.csv')						
C→		date	state	positive	probableCases	negative	pending	totalTestResultsSource	totalTestResults	hospitalizedCurrently	hospitalizedCumulati			
	0	20210307	AK	56886.0	NaN	NaN	NaN	totalTestsViral	1731628.0	33.0	129			
	1	20210307	AL	499819.0	107742.0	1931711.0	NaN	totalTestsPeopleViral	2323788.0	494.0	4597			
	2	20210307	AR	324818.0	69092.0	2480716.0	NaN	totalTestsViral	2736442.0	335.0	1492			
	3	20210307	AS	0.0	NaN	2140.0	NaN	totalTestsViral	2140.0	NaN	N			
	4	20210307	AZ	826454.0	565 <mark>1</mark> 9.0	3073010.0	NaN	totalTestsViral	7908105.0	963.0	5790			
	5 rows × 56 columns													
	4													
[]	dat	a.shape												
	(26	780, 56)												
[]]		a.info()												

These above images are of the dataset that we took from covidtracking.com only for the United States. We handle all the null values from the dataset to get a more accurate model. All the data is arranged chronologically. For more precision we drop out the columns who has more than 50% null values.

Below bar chart is of the state Florida which depicts the cases with all different parameters like positive cases, negative cases, total test results, total number of patients hospitalised currently, number of recovered people, total number of deaths, total number of hospitalised cases, etc. This gives us an idea of how the data is contained within the dataset. But there are some features which have few or no variations which we'll drop.

IJARSCT

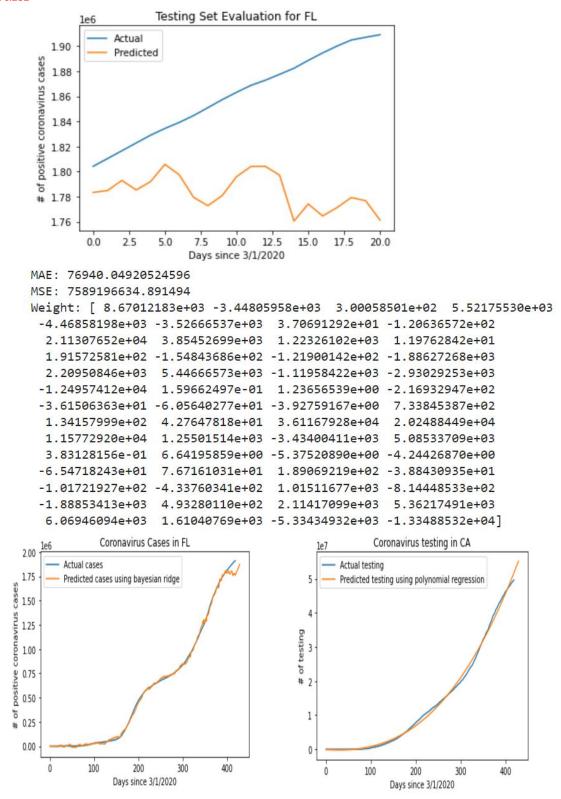

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

```
Volume 2, Issue 6, May 2022
```

()		<pre># this data frame is going to provide static variables additional_data = pd.read_csv('COVID19_state.csv') additional_dsta.nead()</pre>															
{x} [-		State	Tested	Infected	Deaths	Population	Pop Density	Gini	ICU Beds	Income	GDP		Hospitals	Health Spending	Pollution	Med- Large Airports	Temperature
	0	Alaska	620170	17057	84	734002	1.2863	0.4081	119	59687	73205		21	11064	6.4	1.0	26.6
	1	Alabama	1356420	194892	2973	4908621			1533	42334	45219		101	7281	8.1	1.0	62.8
	2	Arkansas	1363429 1792602	113641 248139	1985 5982	3038999 7378494	58.4030 64.9550		732 1559	42566 43650	42454 48055		88	7408 6452	7.1 9.7	0.0	60.4 60.3
	4	California		930628	17672	39937489	256.3727		7338	62586			359	7549	12.8	9.0	59.4
use one						tion den at Cali	2					n d	ensit	4			

Name: Pop Density, dtype: float64

For example, we check the population density of California. It is always better to normalise the data between 0 and 1 for better processing. The mobility dataset is used for having the current update to our dataset in terms of everyday changing values. After cleaning, handling the nulls and arranging them in order according to the date, we then proceed to the future forecasting part of it. In this study, we are predicting the next 10 days of COVID-19 variation in the States. The data is divided into 80%-20% as training and testing set. The models are trained by using supervised Machine Learning Algorithms Viz. Linear Regression, Bayesian Ridge and Support Vector Machine. We use the evaluation parameters as Mean Absolute error and Mean Squared Error. We plot the Actual Testing and Predicted Testing using Bayesian and Linear Regression.


Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/568

IJARSCT Impact Factor: 6.252

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 6, May 2022

IJARSCT

Copyright to IJARSCTDOI: 10.48175/568272www.ijarsct.co.in272

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 6, May 2022

VII. CONCLUSION& FUTURE WORK

The COVID-19 pandemic's randomness has the potential to produce a catastrophic worldwide calamity. Some studies throughout the world have discovered that a pandemic might harm a huge section of humanity. In this paper, a prediction system based on machine learning techniques is provided for historical and prospective COVID-19 pandemic predictions. Using machine learning algorithms, the system analyses a dataset containing historical data and predicts future events. The results show that LR outperforms Bayesian Ridge and SVM in prediction in the current forecasting domain. Overall, we believe that the model prediction is accurate based on the dataset values, which may serve as a guiding light for better decision making throughout.

ACKNOWLEDGEMENTS

The completion of our project brings with it a sense of satisfaction, but it is never complete without those people who made it possible and whose constant support has crowned our efforts with success. One cannot even imagine our completion of the project without guidance and neither can we succeed without acknowledging it. It is a great pleasure that we acknowledge the enormous assistance and excellent co-operation to us by the respected personalities.

REFERENCES

- G. Bontempi, S. B. Taieb, and Y.-A. Le Borgne, "Machine learning strategies for time series forecasting," in Proc. Eur. Bus. Intell. Summer School. Berlin, Germany: Springer, 2012, pp. 62–77.
- [2]. F. E. Harrell Jr, K. L. Lee, D. B. Matchar, and T. A. Reichert, "Regression models for prognostic prediction: Advantages, problems, and suggested solutions," Cancer Treat. Rep., vol. 69, no. 10, pp. 1071–1077, 1985
- [3]. P. Lapuerta, S. P. Azen, and L. Labree, "Use of neural networks in predicting the risk of coronary artery disease," Comput. Biomed. Res., vol. 28, no. 1, pp. 38–52, Feb. 1995.
- [4]. K. M. Anderson, P. M. Odell, P. W. Wilson, and W. B. Kannel, "cardiovascular disease risk profiles," Amer. heart J., vol. 121, no. 1, pp. 293–298, 1991.
- [5]. F. Petropoulos and S. Makridakis, "Forecasting the novel coronavirus COVID 19," PLoS ONE, vol. 15, no. 3, Mar. 2020, Art. no. e0231236.
- [6]. G. Grasselli, A. Pesenti, and M. Cecconi, "Critical care utilization for the COVID-19 outbreak in lombardy, italy: Early experience and forecast during an emergency response," JAMA, vol. 323, no. 16, p. 1545, Apr. 2020.
- [7]. WHO. Naming the Corona virus Disease (Covid-19) and the Virus That Causes it. Accessed: Apr. 1, 2020. [Online]. Available: https:// www.who.int/emergencies/diseases/novel coronavirus-2019/technic% alguidance/ naming-the-coronavirus-disease-(covid-2019)- and-the-virusthat-cau%ses-it
- [8]. C. P. E. R. E. Novel, "The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (Covid-19) in China," Zhonghua Liu Xing Bing XueZaZhi= Zhong hua Liuxingb in gxueZazhi, vol. 41, no. 2, p. 145, 2020.
- [9]. M. R. M. Talabis, R. McPherson, I. Miyamoto, J. L. Martin, and D. Kaye, "Analytics defined," in Information Security Analytics, M. R. M. Talabis, R. McPherson, I. Miyamoto, J. L. Martin, and D. Kaye, Eds. Boston, MA, USA: Syngress, 2015, pp. 1–12. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ B9780128002070000010.