

Volume 2, Issue 4, May 2022

Survey on Object Based Image Classification and Analysis for Remote Sensing

Piyush Pachare¹, Aditya Patil², Gaurav Uke³, Aditya Thombare⁴, Mrs. R. T. Waghmode⁵ Students, Department of Computer Engineering^{1,2,3,4} Professor, Department of Computer Engineering⁵ Sinhgad Institute of Technology and Science, Pune, Maharashtra, India

Abstract: Remote sensing is the process of detecting and monitoring the physical characteristics of an area by measuring its reflected and emitted radiation at a distance. In this paper, we have shown object-based image analysis on ARD data obtained from Landsat satellite and applying NDVI, zonal statistics, classification, segmentation, change detection.

Keywords: Classification, Remote-sensing, change-detection

I. INTRODUCTION

Environmental monitoring requirements, conservation goals, spatial planning enforcement, or ecosystem-oriented natural resources management, to name just a few drivers, lend considerable urgency to the development of operational solutions that can extract tangible information from remote sensing data. The 'work horses' of satellite data generation, such as the Landsat and SPOT satellites or the ASTER and MODIS instruments, have become important in global and regional studies of biodiversity, nature conservation, food security, deforestation impact, desertification monitoring, and other application fields.[1]

U.S. Landsat Analysis Ready Data (ARD) are pre-packaged and pre-processed bundles of Landsat data products that make the Landsat archive more accessible and easier to analyze and reduce the amount of time users spend on data processing for time-series analysis.[2]

1. NDVI: The NDVI is a dimensionless index that describes the difference between visible and near-infrared reflectance of vegetation cover and can be used to estimate the density of green on an area of land. The NDVI is computed as the difference between near-infrared (NIR) and red (RED) reflectance divided by their sum.

NDVIi = ((NIR-RED))/(NIR+RED)

NDVIi represents smoothed NDVI (sNDVI) observed at time step i and their ratio yields a measure of photosynthetic activity within values between – 1 and 1. Low NDVI values indicate moisture-stressed vegetation and higher values indicate a higher density of green vegetation. It is also used for drought monitoring and famine early warning.[3]

2. Zonal Statistics: Populating various vector formats (points and polygons) from raster images for looking at fallow, growing and cropping cycles in agricultural/rice paddies in Vietnam, using radar imagery. Radar data is measured in backscatter where high values are associated with high structure (vegetation) and low values are associated with low structure (non_vegetated/water/bare).

3. Classification: Based on the idea that different feature types on the earth's surface have a different spectral reflectance and remittance properties, their recognition is carried out through the classification process. In a broad sense, image classification is defined as the process of categorizing all pixels in an image or raw remotely sensed satellite data to obtain a given set of labels or land cover themes.[4]

4. Segmentation: Segmentation means the grouping of neighbouring pixels into regions (or segments) based on similarity criteria (digital number, texture). Image objects in remotely sensed imagery are often homogenous and can be delineated by segmentation. Thus, the number of elements as a basis for a following image classification is enormously reduced. The quality of classification is directly affected by segmentation quality. Hence quality assessment of segmentation is in the focus of this evaluation of different presently available segmentation Software [5]

5. Change Detection: Remote sensing change detection is a process for determining and evaluating differences in a variety of surface phenomena over time. Detecting, describing, and understanding changes in the physical and biological processes that regulate the earth system is of considerable interest for ecologists and resource managers today. Detecting land use

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-3895

Volume 2, Issue 4, May 2022

change, range condition, desertification, changes in forest cover, regional evapotranspiration differences, soil moisture condition, and other physical and biological processes allows for the documentation of the spectral and temporal changes that are occurring within ecosystems. Change detection studies recognize that the biotic and abiotic components of the biosphere are linked and that human impacts on the earth now approach the global scale of biosphere processes (Hobbs, ed. 1990). Thus, change in any one of several components in the biosphere may potentially influence the other components.[6]

II. RELATED WORK

In this section we will focus on the related work that has been done previously by several researchers who have developed various applications based on OBIA in remote sensing. In an article by M.V.K Sivkumar and Donald e Hinsman, Agricultural planning and use of agricultural technologies need applications of agricultural meteorology. Satellite remote sensing technology is increasingly gaining recognition as an important source of agrometeorological data as it can complement well the traditional methods agrometeorological data collection. Agrometeorologists all over the world are now able to take advantage of a wealth of observational data, product and services flowing from specially equipped and highly sophisticated environmental observation satellites. In addition, Geographic Information Systems (GIS) technology is becoming an essential tool for combining various map and satellite information sources in models that simulate the interactions of complex natural systems. The Commission for Agricultural Meteorology of WMO has been active in remote sensing and GIS applications in agrometeorology along with a description of the WMO Satellite Activities Programme. The promotion of new specialised software should make the applications of the various devices easier, bearing in mind the possible combination of several types of inputs such as data coming from standard networks, radar and satellites, meteorological and climatological models, digital cartography, and crop models based on the scientific acquisition of the last twenty years [7].

Another paper by Aishwarya Gupta*, Ayush Shroff*, Aman Saxena* on Monitoring Mangrove Forest Cover Changes Using Remote Sensing and GIS Data with Machine Learning Techniques studied that change in green cover of mangrove in parts of Sundarbans region using machine learning techniques with the help of remote sensing and GIS. It compares the result of various algorithms to detect change in forest cover such as rule-based techniques and learning based techniques. Monitoring of mangrove forest decline has become an urgent need for our country. As lack of mangroves will result into depletion of the plant population which will result into increasing the carbon dioxide level in the environment which will lead to ozone depletion, pollution etc. and the ecosystem will collapse. In this paper image classification technique has shown drastic changes than earlier used decision learning and support vector machine algorithms. [8]

Major study by Andreas Bernhard Brink*, Hugh Douglas Eva monitored 25 years of land cover change dynamics in Africa their study examines the changes in sub-Saharan's natural land cover resources for a 25-year period. We assess these changes in four broad land cover classes – forests, natural non-forest vegetation, agriculture, and barren – by using high spatial resolution Earth observing satellites. Two sets of sample images, one 'historical' targeted in 1975 and a second 'recent' targeted at the year 2000, have been selected through a stratified random sampling technique over the study area, targeting a sampling rate of 1% in each of the strata. The results, presented at eco-region level and aggregated at sub-Saharan level, show a 57% increase in agriculture area at the expense of natural vegetation which has itself decreased by 21% over the period, with nearly 5 million hectares forest and non-forest natural vegetation lost per year. The impacts of these changes on the environment on one site and on the socio-economy on the other site are discussed and possible pressures on human wellbeing are highlighted. [9]

Sr. No	Title	Author	Methodology Advantages	Result/Conclusion Limitations	Year of publication
1	"An Introduction to Remote Sensing"	Dr. Robert Sanders on	This paper deals with the introduction of remote sensing, digitizing of images, image classification,	Remote sensing technology has developed from balloon photography to aerial photography to multi-spectral satellite imaging.	2017

III. LITERATURE REVIEW

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-3895

Volume 2, Issue 4, May 2022

			Current application of		
			remote sensing.		
2	"Principles of Remote sensing"	Shefali Aggarw al	This paper deals with the topics like what is remote sensing, what are its principles, Stages in remote sensing, Historic overview and how remote sensing works.	Radiation interaction characteristics of earth and atmosphere in different regions of electromagnetic spectrum are very useful for identifying and characterizing earth and atmospheric features.	2018
3	Analyzing Land Use/Land Cover Changes Using Remote Sensing and GIS in Rize, North-East Turkey	Selçuk Reis	This paper aims investigating land use/land cover changes occurred in Rize between 1976 and 2000 using remote sensing and GIS. The LULC changes were analyzed according to both slope and altitude.	There were also some problems that had stemmed from using different sensor technologies (spatial resolution and spectral resolution) in comparing Landsat MSS and ETM data, and in determination of land cover. These problems were tried to be eliminated by independently applying supervised classification change detection technique to both images.	2008
4	Monitoring Mangrove Forest Cover Changes Using Remote Sensing and GIS Data with Machine Learning Techniques	Aishwar ya Gupta Ayush Shroff Aman Saxena	This paper uses following methodologies Data Acquisition Data Pre-Processing Image Mosaicking Image Stacking Image Classification	As soon as the techniques have been applied the changes shown in both rule based and random forest were far better than the earlier used algorithm and techniques.	2020
5	Mapping Land Cover Using Remote Sensing Data and GIS Techniques: A Case Study of Prahova Subcarpathian s	Marina- Ramona Rujoiu- Mare Bogdan -Andrei Mihai	The paper proposes an alternative methodology for obtaining a highly accurate land cover model for a complex landscape, by integrating satellite images with ancillary data derived from currently available land cover models.	This method provide an example of semi-automatic generation of land cover data for an area where land cover classes have, in the same time, high variances and spectral similarities. The land cover dataset resulted could be used in other GIS analysis for the entire region or for some local scale approaches.	2016
6	Monitoring 25 years of land cover change dynamics in Africa: A sample based remote sensing approach	Andreas Bernhar d Brink Hugh Douglas Eva	The study examines the changes in sub-Saharan's natural land cover resources for a 25 year period. We assess these changes in four broad land cover classes – forests, natural non-forest vegetation, agriculture and	Over the last 25 years unprecedented land cover and land use changes have occurred in sub- Saharan Africa. The main drivers of these changes were both human and natural. A high rate of population increase, economic development and globalization on one side and of	2009

Copyright to IJARSCT www.ijarsct.co.in

Volume 2, Issue 4, May 2022

			barren – by using high	natural hazards such as floods,	
			spatial resolution Earth	landslides, drought and climate	
			observing satellites. Two	change on the other side have	
			sets of sample images, one	continuously and are still eroding	
			'historical' targeted at 1975.	Africa's natural ecosystems and	
				resources	
7	Using Remote	Kass	This paper reviews the	The following preliminary	2019
	Sensing to	Green,	EOCAP project to date by	technical conclusions have been	
	Detect and		presenting the findings and	developed: Assessing land-cover	
	Monitor Land-	Dick	methods of several	change in forested areas is fairly	
	Cover and	Kempka	completed pilot projects	straightforward and easily	
	Land-Use	,		implementable with image	
	change			subtraction. The immediate	
		Lisa		adoption of these techniques by	
		Lacke.		several Pacific Meridian clients	
				supports its commercial value.	
				Assessment of land-cover change in	
				non-forested areas is more difficult	
				because of both the rapid	
				occurrence of change and the less	
				definable relationships between	
				spectral change and land-cover	
				change	
8	An	Moham	This research evaluates	The comparison of the pixel and	2018
	investigation	med	pixel-based and object based	object-based approaches has shown	
	of pixel based	Chacha	image classification	that the object-based approach,	
	and object	n	techniques for extracting	when combined with 10,000 objects	
	based image	Younis	three land use categories	using SLIC segmentation, was	
	classification		(buildings, roads, and	superior to the pixel-based	
	in remote	Edward	vegetation areas) from six	approach, has a much higher degree	
	sensing	Keedwe	satellite images. The	of accuracy.	
		11	performance of eight		
			supervised machine learning		
		Dragan	classifiers with 5-fold cross		
		Savic	validation are also compared		
9	Rule-based	Hela	The presented work aims to	. The proposed approach provides	2019
	classification	Elmann	benefit from the nonlinear	reliable results compared to the	
	framework for	ai	source separation process to	SVM and enhances classes'	
	remote sensing		enhance land cover	separation. The proposed approach	
	data	Amina	identification. The source	could be enhanced by including	
		Salhi	separation technique aims to	contextual information.	
		·	provide underlying images	Nevertheless, the major weakness	
		Monia	and to compensate the	of our method is the formal concept	
10		Hamdı	mixing process	of the source space.	2012
10	The Remote	Peter	The goal of study of this	The library has been used in a	2013
	Sensing and	Bunting	paper is to know about the	number of publications and	
	GIS Software	Daniel	remote sensing land GIS	continues to be actively developed	
		Clewley	software kibrary.	supporting ongoing research across	
	(RSGISLib)				

Copyright to IJARSCT www.ijarsct.co.in

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 4, May 2022

		Richard		a wide range of topics including	
		M.		vegetation science	
		Lucas			
		Sam			
		Gillingh			
		am			
11	Random forest	M. PAL	.The objective of this study is	The results reported in this study	2013
	classifier for		to present results obtained	suggest that the random forest	
	remote sensing		with the random forest	classifier can achieve a	
	classification		classifier and to compare its	classification accuracy which is	
			performance with the	comparable to that achieved by	
			support vector machines	SVMs.	
			(SVMs) in terms of		
			classification accuracy,		
			training time and user		
			defined parameters		
12	Very High	Stefano	— In this paper, the recently	The results demonstrate that	2017
	Resolution	S	developed extreme gradient	optimized Xgboost with a Bayesian	
	Object-Based	Georga	boosting (Xgboost) classifier	model consistently outperforms RF	
	Land Use-	nos	is implemented in a very	and SVM in different VHR data	
	Land Cover	Tais	high resolution (VHR)	sets and classification schemes but	
	Urban	Grippa	object-based urban land use-	at the cost of increased	
	Classification		land cover application. In	computational time. The	
	Using Extreme	Sabine	detail, researcher	improvement of Xgboost offers	
	Gradient	Vanhuy	investigated the sensitivity	expands as the amount of training	
	Boosting"	sse	of Xgboost to various	data increase	
		Moritz	sample sizes, as well as to		
		Lennert	feature selection (FS) by		
		Michal	applying a standard		
		Shimoni	technique, correlation-based		
			FS.		

IV. CONCLUSION

Geo-spatial data and machine learning together create vast suite of opportunities for analysis of different kinds of terrains without physically collecting data. Assessing land-cover change in forested areas is straightforward and easily implementable with image subtraction. Among (Gaussian Maximum Likelihood, Support Vector Machines, Random Forests, Extra Tress, Gradient Boosted Trees, Neural Network, K Nearest Neighbour) K Nearest Neighbour provided results with the highest accuracy.

V. REFERENCES

- T. Blaschke (2010). Object based image analysis for remote sensing. , 65(1), 2–16. doi:10.1016/j.isprsjprs.2009.06.004
- [2]. https://www.usgs.gov/faqs/what-are-us-landsat-analysis-ready-data-ard
- [3]. Schinasi, Leah H.; Benmarhnia, Tarik; De Roos, Anneclaire J. (2018). Modification of the association between high ambient temperature and health by urban microclimate indicators: A sYSTEMATIC REVIEW AND METAanalysis. Environmental Research, 161(), 168–180. doi:10.1016/j.envres.2017.11.004
- [4]. Image Classification in Remote Sensing Jwan Al-doski*, Shattri B. Mansor1 and Helmi Zulhaidi Mohd Shafri
- [5]. A Comparison of Segmentation Programs for High Resolution Remote Sensing Data G. Meinel, M. Neubert

Copyright to IJARSCT www.ijarsct.co.in

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 4, May 2022

- [6]. Mouat, David A.; Mahin, Glenda G.; Lancaster, Judith (1993). Remote sensing techniques in the analysis of change detection. Geocarto International, 8(2), 39–50. doi:10.1080/10106049309354407
- [7]. M.V.K. Sivakumar and Donald E. Hinsman Agricultural Meteorology Division and Satellite Activities Office World Meteorological Organization (WMO), 7bis Avenue de la Paix, 1211 Geneva 2, Switzerland
- [8]. Monitoring Mangrove Forest Cover Changes Using Remote Sensing and GIS Data with Machine Learning Techniques Aishwarya Gupta*, Ayush Shroff*, Aman Saxena
- [9]. Monitoring 25 years of land cover change dynamics in Africa: A sample based remote sensing approach Andreas Bernhard Brink*, Hugh Douglas Eva