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Abstract: Roadside bombs, coordinated blast attacks, and improvised explosive devices (IEDs) pose a 

constant and changing threat to military ground convoys operating in hostile and asymmetric warfare 

environments. Convoy protection strategies are still mostly reactive, with little capacity for early threat 

anticipation and proactive risk mitigation, despite advancements in blast mitigation technologies and 

armored vehicle design. A paradigm shift toward predictive and intelligent threat detection frameworks 

is required due to the growing sophistication of adversarial tactics, operational limitations, and 

environmental complexity.  With an emphasis on artificial intelligence (AI), multi-sensor fusion, and 

cyber-physical system (CPS) architectures, this article provides an extensive review of predictive bomb 

blast threat detection systems for military convoy safety. The evolution of single-sensor-based detection 

methods, developments in multi-sensor fusion techniques, and the function of deep learning and machine 

learning in automated threat analysis are all methodically examined in this review. Predictive blast risk 

assessment models that combine heterogeneous sensor data with convoy dynamics—such as vehicle 

speed, formation, spacing, route topology, and terrain characteristics are given  special  

attention.Critical analysis is done on explainability requirements, false alarm mitigation, real time 

constraints, and operational performance metrics. Important research gaps concerning scalability, 

robustness, adversarial resilience, and similarly system/level integration is also identified in the paper 

through the review provided in the paper. There is a detailed discussion on emerging trends in the form 

of new areas of research in digital twin-based validation, explanation of AI methods, unmanned system 

integration studies, reinforcement learning methods. Researchers in the arena of designing next 

generation proactive and intelligent convoy systems will find this paper a Reference. 
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I. INTRODUCTION 

Military ground convoys, which enable the transportation of troops, weapons, fuel, medical supplies, and humanitarian 

aid through a range of often hostile environments, form the logistical cornerstone of modern defense operations [1], [2]. 

From large-scale conventional warfare to counterinsurgency and peacekeeping missions, convoys provide the mobility 

and operational flexibility required to sustain extended military engagements [3]. However, because of their consistent 

movement patterns, restricted maneuverability, and exposure to roadside environments, they are particularly vulnerable 

to asymmetric warfare tactics [4].Roadside bombs and improvised explosive devices (IEDs) have become the deadliest 

threats to military convoys over the last 20 years [5], [6]. IEDs have been shown to be responsible for a large 

percentage of convoy-related casualties and vehicle losses in conflicts in Iraq, Afghanistan, and other areas [7]. Because 

of their low cost, ease of deployment, ability to blend in with civilian infrastructure, and adaptability to various terrains, 
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these devices are especially effective [8]. In order to maximize blast impact and minimize detection probability, 

adversaries often take advantage of environmental features like road shoulders, culverts, bridges, and choke points [9]. 

Conventional convoy safety tactics have mostly concentrated on passive defense systems intended to lessen the impact 

of an explosion rather than stop it from happening [10]. These precautions include reinforced structural elements, blast-

resistant seating, V-shaped underbodies, and armored vehicle hulls [11]. Although crew survivability has greatly 

increased as a result of these innovations, early threat awareness remains a fundamental challenge [12]. Because they 

are intrinsically reactive, passive systems are unable to foresee threats, modify routes, or change convoy behavior 

before detonation [13]. Many sensing technologies have been used to identify explosive threats in order to improve 

early detection capabilities [14]. Through subsurface anomaly analysis, ground-penetrating radar (GPR) has been 

thoroughly investigated for the detection of buried explosives [15], [16]. Near convoy routes, thermal and infrared 

sensors are used to detect heat signatures linked to disturbed soil, hidden explosives, or human activity [17]. While 

acoustic and vibration sensors identify ground disturbances associated with explosive placement or triggering 

mechanisms [19], optical imaging systems offer visual surveillance for suspicious objects and behavioral anomalies 

[18]. Furthermore, contextual information like speed, location, acceleration, and convoy formation is provided by 

vehicle telemetry systems [20].When used separately, single-sensor systems have serious drawbacks despite their 

unique benefits [21]. Increased false alarm rates result from GPR performance's extreme sensitivity to soil 

heterogeneity, moisture content, and clutter [22]. Time of day, weather, and changes in ambient temperature all have an 

impact on thermal and infrared sensors. Consequences [23]. Acoustic sensors are vulnerable to environmental noise and 

vibrations caused by vehicles [25], whereas optical cameras are vulnerable to occlusion, camouflage, lighting 

variability, and dust or smoke interference [24]. In actual convoy situations, these factors significantly reduce the 

operational confidence and dependability of standalone detection systems [26]. 

Multi-sensor fusion techniques have become a viable strategy for improving situational awareness and detection 

robustness in order to get around these restrictions [27], [28]. Fusion systems decrease ambiguity and uncertainty by 

combining complementary data from diverse sensors, which improves detection accuracy and lowers false alarms [29]. 

Raw data fusion, feature-level fusion, and decision-level fusion are some of the levels at which fusion can be applied 

[30]. Combining GPR data with thermal or infrared imagery greatly outperforms single-sensor detection systems, as 

numerous studies have shown [31]. Artificial intelligence (AI) has revolutionized explosive threat detection in tandem 

with developments in sensing and fusion technologies [32]. Automated analysis of complex, high-dimensional sensor 

data is made possible by machine learning and deep learning algorithms, which enable systems to identify 

discriminative patterns linked to explosive threats [33]. In controlled and semi-operational settings, high detection 

accuracy has been attained by convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hybrid 

architectures [34], [35]. Nevertheless, a lot of current AI-based systems concentrate on the classification of isolated 

objects or ignals and fail to take into consideration dynamic convoy-level factors that affect the likelihood and impact 

of threats [36].Threat assessment must be done dynamically in real-world convoy operations as vehicles move through 

shifting environments [37]. The likelihood of an attack and the severity of its repercussions are significantly influenced 

by convoy speed, inter-vehicle spacing, formation geometry, route topology, terrain features, and environmental factors 

[38]. However, the majority of existing detection systems limit their applicability for real-time decision support by 

treating threats as static entities and failing to incorporate convoy dynamics into predictive analysis [39]. 

By closely combining physical sensing, computational intelligence, communication networks, and actuation 

mechanisms, cyber-physical systems (CPS) offer a potent framework for tackling these issues [40]. AI-driven cyber 

intelligence layers in CPS-based convoy protection architecture process sensor data from vehicles and roadside units in 

real time [41]. The resulting threat assessments are then utilized to produce alerts and suggest preventive measures like 

controlled halting, route diversion, speed adjustment, and spacing modification [42]. Closed-loop operation made 

possible by CPS architectures permits ongoing adaptation to changing environmental conditions and threats [43]. 

Predictive blast risk assessment is a significant development made possible by AI-driven sensor fusion and CPS 

integration [44]. Predictive systems estimate the likelihood and potential severity of a blast event prior to detonation, in 

contrast to traditional detection systems that only recognize threats after coming into contact with suspicious objects 

[45]. A blast risk score, usually classified into low, medium, or high risk levels, is calculated by predictive models using 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology 

                          International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 6, Issue 4, January 2026 

 Copyright to IJARSCT DOI: 10.48175/568   592 

   www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 
fused sensor data and convoy dynamics [46]. Convoy commanders can make proactive decisions and have valuable 

time to put preventive measures in place thanks to this risk-centric approach [47]. 

Framework for predictive bomb blast threat detection Combining CPS and multi-sensor fusion AI for proactive convoy 

security 

 
 

 
 

Contributions and This Review's Scope 

By taking a convoy-centric and predictive approach, this review overcomes the shortcomings of previous surveys. This 

work's principal contributions consist of: 

1. A thorough analysis of explosive detection technologies       with one or more sensors [14]–[31]. 

2. A thorough examination of deep learning and artificial intelligence techniques for automated threat detection [32]–

[36]. 

3.A thorough analysis of convoy safety cyber-physical system architectures [40]–[43]. 

4. A concentrated analysis of convoy dynamics-integrated predictive blast risk assessment models [44]–[47]. 

5. Determining future research directions and open research challenges for proactive convoy protection [48]–[51]. 

 

II. LITERATURE REVIEW 

PART A: TAXONOMY AND METHODS 

A. Examine the Methodological Framework and Goals 

With an emphasis on predictive, AI-enabled methods for military convoy safety, the main goal of this literature review 

is to methodically examine, synthesize, and critically assess the body of research on explosive threat detection systems 

[52]. This review focuses on early-warning and risk-prediction frameworks that enable proactive decision-making, in 

contrast to traditional surveys that prioritize individual sensors or post-detonation mitigation [53]. To guarantee 

thorough, objective, and repeatable coverage of pertinent studies, a systematic literature review (SLR) approach was 

used [54]. Database selection, keyword creation, screening, quality evaluation, and thematic categorization were all part 

of the review process. 

 

B. Data Sources and Search Strategy 

The scholarly articles obtained came from IEEE Xplore, Springer Link, Elsevier Science Direct, and Google Scholar 

that offer in-depth articles related to scientific articles about sensing, artificial intelligence, and defense-related topics 

[55].The search strategy included the use of keywords such as IED detection, bomb blast prediction, sensor fusion, AI-

based threat detection, military convoy safety, and cyber-physical systems, and Boolean logic to search for 

interdisciplinary research works [56]. 

 

C. Inclusion/Exclusion Criteria 

In Only peer-reviewed articles in journals, credible conference papers, and defense organization/Research Institution 

released Technical Reports were selected [57]. Laboratory-only experiments, whose discussion was limited to the lab 

instead of real-world deployment, were deprioritized [58]. Sources cited for the past two decades were preferred, 

covering the early work and the latest developments in the topic, too [59]. 
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III. SINGLE-SENSOR-BASED EXPLOS 

Single-sensor-based detection systems are the most primal forms of technologies that have been adopted over the years 

in the detection of explosive threats. These technologies employ a single mode of detection that can be used to identify 

both subsurface and surface-level explosive devices. However, the major drawbacks of single-sensor technologies lie in 

their applicability in a real-world military convoy scenario. 

A. Ground-Penetrating Radar 

One of the most explored technologies concerning the detection of hidden explosives and landmines is the ground-

penetrating radar, abbreviated as GPR. The GPR works by launching electromagnetic waves towards the ground, 

analyzing the reflections, and detecting anomalies for buried substances. The property of such explosives, being non-

metallic, makes them impossible for conventional metal detectors to detect. 

Although the system has many benefits, the performance of the GPR remains vulnerable to soil in homogeneities, the 

amount of soil moisture, the soil roughness, as well as clutter. Soil composition may vary, thereby producing signals 

close to IED signals, hence higher levels of false alarms. It would also need advanced signal processing or analysis by 

artificial intelligence to identify the threats among the objects. 

B. Thermal & Infrared Sensors 

Thermal, infrared, or IR sensors pick up the temperature differences that occur from disturbed ground, hidden 

explosives, and the presence of people along convoy routes. This is the most useful technology in revealing hidden 

explosives that have been recently buried, through the contrast between the disturbed ground and the undisturbed 

ground. 

However, thermal signatures are affected by the environment, including ambient temperature, solar irradiation, and 

weather and daily variations. The thermal contrast will degrade with time, and thermal sensors are therefore not 

adequate on their own to provide protection for the convoys. 

C. Optical Imaging Systems 

In this Optical imaging systems, such as visible spectrum cameras, are used in providing visual context of the situation 

awareness of detection of the suspicious object, roadside anomalies, as well as threat placement through the behavioral 

indicators. These systems are widely deployed since they are cheaper. 

However, optical sensors remain vulnerable to conditions such as occlusion, camouflage, illumination, dust, smoke, and 

weather. Often, enemy forces make use of such conditions in concealment operations. 

D. Acoustic and Vibration Sensors 

Acoustic and vibration sensors detect ground disturbances or sound patterns indicative of explosive placement, 

triggering mechanisms, or suspicious activity. These sensors can provide early warning of tampering or movement near 

convoy routes.However, acoustic signals are highly susceptible to environmental noise, vehicle-induced vibrations, and 

non-hostile activities, leading to frequent false alarms. Isolating the threat-related signals in noisy conditions remains a 

great challenge. 

E. Single-Sensor Approach Limitations 

While valuable baseline capabilities are provided by single-sensor systems, their limitations include: 

• High false alarm rates 

• Environmental variability sensitivity 

• Limited contextual awareness 

• Poor terrain scalability 

Consequentially, single-sensor systems are unsuitable for independent deployment in real-world military convoy 

operations and must be complemented by fusion and AI-based approaches. 
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F. Summary of Single-Sensor Detection Systems

Mon sensor detection technologies are the basis for 

enough to ensure a safe convoy. Inevitable limitations in such systems have therefore driven innovation in multi

fusion techniques as well as predictive methodologies using AI.

 

Multi-sensor fusion techniques have recently been identified as a major technology enabler in the area of reliable 

detection of explosive threats in a complex military convoy environment. In essence, the main idea that drives the need 

for sensor fusion is that different types of sensors have unique, yet often complementary, benefits that, taken 

individually, have limitations that need to be overcome.

A. Rationale for Sensor Fusion in Convoy Operations

Military convoy missions entail highly dynamic environmental factors such as changing terrains, environmental 

conditions, traffic, and enemy maneuvers. A sensor cannot perform well under all the environmental circumstances. For 

example, while GPR works well in the detection of buried explosi

Thermal sensors are affected by environmental changes, while optical sensors are prone to environmental issues like 

camouflaging. This can be overcome by a sensor fusion of different sources to build a comp

operational environment. 

In the context of convoy missions, sensor fusion also provides the functionality of redundancy and fault tolerance. Even 

when one sensor becomes degrade or fails, the fused systems will still be able to funct

sources. In combat situations, sensors could get damaged, jammed, or spoofed.  Furthermore, sensor fusion enables the 

integration of newly created sensors to supersede the current sensor architecture. For example, the next senso

generation could 

B. Levels of Sensor Fusion 

Strategies of sensor fusion can be classified into three levels depending on the stage involved in the fusion process.

1) Data-Level Fusion & Data level fusion 

Data-level fusion refers to the fusion of the orig

maximum amount of information is maintained, and the interactions between the sensors can be analyzed. Nevertheless, 

it needs to be highly accurate, have high bandwidth, and ample computa

quite challenging to implement the above. 

2) Feature-Level Fusion 

Feature-level fusion involves combining the features derived independently from each sensor to form a unified feature 

space. Feature-level fusion provides a trade

extensively adopted in AI-based detection solutions, wherein deep models are trained to jointly represent the features 

from various modalities such as GPR, IR, and

3. Decision-Level Fusion 

Decision-level fusion: This technique combines probabilistic outputs or decisions from individual classifiers. This will 

provide modularity and flexibility to independently model sensors. Decision

failure, but it may lose fine-grained information available at lower levels of fusion.Levels of multi

convoy threat detection 

Overview of single

detection systems and their limitations
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integration of newly created sensors to supersede the current sensor architecture. For example, the next senso

Strategies of sensor fusion can be classified into three levels depending on the stage involved in the fusion process.

 

level fusion refers to the fusion of the original sensor data before the extraction of features. This ensures the 

maximum amount of information is maintained, and the interactions between the sensors can be analyzed. Nevertheless, 

it needs to be highly accurate, have high bandwidth, and ample computational capability. In the case of a convoy, it is 
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C. Classical Fusion Methods 

The early research on sensor fusion focused on classical probabilistic and evidential models.

1) Bayesian Inference 

Bayes fusion models are able to update the prior probability of possible threats based on the new sensor data. Bayes 

fusion models are transparent mathematically but are not suitable in an adversarial environment where the prior 

distribution and the conditional probability are known precisely.

2) Dempster-Sh 

Dempster–Shafer theory allows for evidence fusion among different sources without havin

information regarding the probabilities. DS evidence fusion is useful in dealing with uncertainty and evidence conflict 

but tends to increase in complexity with the increase in hypotheses.

3) Rule-Based Fusion 

In rule-based fusion systems, a set of predetermined thresholds and logical rules is applied to fuse the output of the 

sensors. Though rule-based fusion is simple and easy to interpret, it lacks the flexibility and scalability to perform 

effectively in dynamic conditions of a convoy environment.

 

D. Learning-Based Sensor Fusion 

However, with recent advances in AI technology, learning

optimal fusion methods automatically from examples.

1) Shallow Learning-Based Fusion 

SVMs and RF classifiers have been used on the fused feature vectors obtained from a variety of sensors. These systems 

are an improvement on the detection systems developed on individual sensors, but they are all feature

codes designed by humans. 

2. Deep Learning-Based Fusion 

Deep learning models, especially CNNs, allow for end

modalities. Multi stream CNN architectures process each sensor modality separately before fusing the intermedi

representations. Attention-based fusion mechanisms further enhance performance by weighting sensor contributions 

according to contextual relevance. 

3. Temporal Fusion 

Temporal fusion models incorporate time-series data, capturing the evolution of threa

way through an environment. Various conventional architectures in use for this purpose include RNNs, LSTMs, and 

temporal convolutional networks. 

 

E. Issues related to Multi-Sensor Fusion for Convoys

Despite the considerable advantages that fusion systems offer, there are several challenges:

Calibrating and synchronizing sensors. 

•Heterogeneous data formats and sampling rates

• Communication latency and bandwidth constraints
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• Scalability across large convoys 

• Vulnerability to adversarial manipulation 

Overcoming these challenges will be key to real-world deployment of fusion-based convoy protection systems. 

F. Review of Multi-Sensor Fusion Approaches 

Multi sensor fusion has much better performance in terms of the reliability and robustness of single-sensor-based 

detection; it, however, is effective provided careful considerations are taken into account in terms of computational 

constraints, real-time performance, and operational convoy requirements. 

 

V. APPROACHES OF ARTIFICIAL INTELLIGENCE AND DEEP LEARNING (PART A) 

Artificial Intelligence has emerged as one of the key technologies in the development of new systems for detecting an 

explosive threat. AI-based methods ensure automated interpretation of sensor data of growing complexity, reducing 

reliance on manual analysis and fixed thresholds. The section will review classical machine learning approaches and 

introduce deep learning paradigms used in explosive threat detection. 

 

A. Classical Machine Learning Algorithms 

1) Supaweired Learning Models 

Initial AI detection methods used supervised learning with these algorithms: 

• Support Vector Machines (SVM 

• Random Forests (RF 

• k-Nearest Ne 

• Logistic Regression 

These models rely on example data for classification, and if the features are discriminative, these models function 

effectively with representative example data. 

2) Feature Engineering 

In classical ML methods, feature derivation plays an essential part. It includes statistical features, features from the 

frequency domain, texture features, and features based on shapes. The quality of features impacts the performance of 

detection. 

3) Limit 

Classical machine learning models have less scalability as well as adaptable qualities when dealing with dynamic 

environments in convoys. The accuracy level of classical machine learning models decreases when they are exposed to 

new terrains or enemy strategies. 

B. Transition toward Deep Learning 

The limitations of traditional ML techniques motivated the application of deep learning algorithms capable of 

automatically learning representations of features in a hierarchical manner from raw sensor data. Deep learning reduces 

dependence on explicit feature engineering and improves robustness to noise and variability. 

C. Convolutional Neural Networks for Explosive Detection 

These networks are widely used for processing spatial sensor data such as GPR radar grams, thermal images, and 

optical imagery. CNN-based models have demonstrated superior performance in detecting subsurface anomalies and 

suspicious roadside objects. 

In multi-channel CNN architectures, fused sensor data are processed. It enables knowledge reuse across terrains by 

using transfer learning. Even with such high accuracy, CNNs require large labeled datasets and significant 

computational resources. 

D. Summary of AI Methods (Part B) 

AI detection systems are greatly effective than the past approaches in a complex setting. There are some challenges in 

data, generalization, interpretability, and real-time interpretability, which are addressed in the latter parts of the 

chapters. 
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VI. ARTIFICIAL INTELLIGENCE AND DEEP LEARNING TECHNIQUES 

Recent advancements in the field of artificial intelligence have tremendously improved the sensing capabilities of 

explosive threat detection systems. Even though classical deep learning architectures perform efficiently in explosive 

threat detection, certain modern AI paradigms are needed to handle practical challenges in the convoy environment. 

 

A. Recurrent Neural Networks, Long-Short Term Memory Networks, 

Military convoy operations are dynamic by their nature: they require threat detectors to analyze temporal patterns from 

vehicle sensors as they move through varying environments. Temporal deep learning models understand temporal 

dependencies related to threats. 

1) Recurrent Neural Networks (RNN 

RNNs address the sequential nature of the input data by employing the memory state of the networks. RNNs have been 

employed to detect the GPR signature and the acoustic pattern in the literature. Traditional RNNs face the challenge of 

the disappearing gradients in the networks. 

2) Long Short-Term Memory (LSTM) 

LSTMs were incorporated in RNNs to mitigate the shortcomings in their memory cell structure. LSTMs are popular for 

modeling the patterns of motion in convoys, signal processing in sensors, and the persistence of anomalies. LSTMs 

enhance early detection and mitigate fp rates in intrusion detection. 

3) Temporal Convolutional Networks  

TCNs provide a different approach compared with recurrent networks, using causal convolutions for time series tasks. 

The advantages of using TCNs lie in parallel computation and stable gradients, which make convolutions suitable for 

real-time convoys. 

B. Attention Mechanisms and Transformer Models 

Attention mechanisms allow machine learning algorithms to pay more attention to those parts of sensor readings that 

provide more information. Attention-based models for sensor fusion can, for example, weigh sensor inputs depending 

on terrain or convoy speed. 

The Transformer models, which were originally used in natural language processing tasks, have also been applied to 

multi-modal sensor fusion in recent years. This is due to the fact that transformers can handle long-range dependencies 

and interactions among different modalities. This makes them good candidates for blast risk predictions. However, their 

computational complexities prevent their application in convoys with restricted resources. 

C. Reinforcement Learning for Proactive Convoy Protection 

Reinforcement learning: A major conceptual shift from passive detection to active decision-making occurs with the 

emergence of reinforcement learning. In convoy systems using reinforcement learning, the optimal actions regarding 

speed adjustment, spacing, or route deviation, depending on threat assessments, are learnt. 

RL has been successfully applied for: 

• Convoy formation control for adaptive convoy 

• Dynamic Route Planning Under Threat Uncertainty 

• Resource allocation for sensor activation 

Although the potential exists, the actual deployment of RL in realistic convoys is constrained by issues of safety, 

reduced reward, and the need for large amounts of data. 

D. Explainable Artificial Intelligence (XAI) 

Trust between operator and machine does represent a key requirement for military decision-support systems. While 

black box AI machine models are accurate, they have generally failed to be useful as a tool in operations because they 

are not transparent. Explainable AI can now solve this problem. 

In explosive detection, the XAI approaches being used include: 

• Saliency maps for image-based models 

• Feature importance analysis 

• Rule extraction from neural networks 

Explain ability increases situational awareness and facilitates accountability within mission-critical domains. 
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E. Adversarial Robustness and Security Issues 

AI detection systems are susceptible to attack in several ways, including spoofing, poisoning, and evading, and it may 

be necessary to spoof the environment in order to attack the system. Research in adversarial robust AI will focus on 

protection through training, anomaly, and secure deployment. 

F. Summary of AI & Deep Learning Methods 

Expert AI methodologies have been shown to facilitate predictive, adaptive, and interpretable detection of explosive 

threats. Nevertheless, the trade-off between accuracy, interpretability, robustness, and real-time capabilities remains an 

issue. 

VII. CYBER-PHYSICAL SYSTEMS FOR MILITARY 

Cyber-physical systems (CPS) form a comprehensive framework for effectively combining sensing, computation, 

communication, and action in military convoy missions. Cyber-physical system architectures allow for continuous 

interaction and integration between the physical world and the cyber intelligence domain for threat assessment and 

response. 

A. Architectural Design for Convoy Protection System Cony 

A general system for convoy protection using CPS will have four levels: 

1. Layer 1: Physical Layer: Sensors such as GPR, thermal cameras, optical cameras, acoustic sensors, and vehicle 

telemetry units. 

2. Communication Layer: The communication layer is comprised of secure wired and wireless communication 

networks allowing for communication among vehicles and command units. 

3. Cyber Intelligence Layer: AI-enabled fusion/prediction modules analyzing sensor data. 

4. CONTROL and ACTUATION LAYER 

Decision Support Systems warning and advising preventive measures.AI and deep Learning networks used in 

Predictive Explosive threat detection 

 
 

B. Real-Time Data Processing and Communication 

Real-time processing is essential for convoy safety. CPS system designs need to support high data rates, have low 

latency, and be reliable even in harsh environments. Edge computing is becoming popular for processing data on 

vehicles, thus less reliance on infrastructure. 

C. Closed-Loop Decision Support 

CPS-based systems function in a closed-loop system where data from sensors drives AI models, and predictions made 

by the models guide decisions, which in turn affect future observations. 

D. Integration with Command and Control Systems 

The convoy protection systems based on CPS must be able to seamlessly integrate with the existing command, control, 

communications, computers, intelligence, surveillance, and reconnaissance (C4ISR) infrastructure. 

E. Safety, Reliability, and Fault Tolerance 

Military CPS needs to work properly even in adverse environments. Redundancy, fault detection, and graceful 

degradation techniques are essential for ensuring that the system remains operational even in the event of a sensor 

failure or a cyber-attack. 

F. Summary of CPS for Convoy Safety 

The CPS architectures provide the capability for intelligent, adaptive, and proactive convoy protection. The 

combination of CPS architectures with AI-driven predictive models is a major step forward from the traditional reactive 

systems. 
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VIII. PREDICTIVE BLAST RISK AS ASSEMENT MODELS 

Predictive blast risk assessment is a paradigm shift from traditional reactive explosive detection to proactive and 

preventive convoy protection. While traditional explosive detection systems are primarily focused on the identification 

of the presence of explosive devices, predictive blast risk assessment uses predictive models to predict the likelihood 

and potential severity of a blast event prior to its occurrence. 

A. Motivation for Predictive Risk Modeling 

Conventional detection systems produce binary decision outputs to indicate the presence or absence of a threat. 

Although useful for alerting personnel, binary decision outputs are not very helpful in making decisions in complex 

convoy environments. Predictive risk assessment models, on the other hand, provide a measure of threat likelihood and 

potential impact, allowing commanders to weigh mission requirements against security concerns. 

Predictive models are very useful in convoy operations, where a short advance warning can enable changes in speed, 

spacing, routing, or formation that can mitigate blast effects and casualties. 

B. Components of Predictive Blast Risk Models 

A predictive blast risk assessment model will normally incorporate the following elements: 

1. Threat Probability Estimation: Likelihood of explosive presence based on sensor evidence. 

2. Blast Impact Estimation: Expected severity of blast effects given explosive type, placement, and proximity. 

3. Convoy Dynamics Modeling: Vehicle speed, inter-vehicle distance, formation geometry, and movement patterns. 

4. Environmental Context: Terrain type, road conditions, urban or rural areas, and infrastructure characteristics.  

5. Uncertainty Quantification: Confidence measures accounting for sensor noise and model uncertainty 

Workflow of predictive blast risk assessment for proactive convoy management 

 
C. Probabilistic Risk Assessment Approaches 

1) Bayesian Risk Models 

Bayesian networks calculate the posterior probabilities of blast occurrences by integrating prior knowledge with real-

time sensor data. Bayesian networks are able to model uncertainty and are useful for risk-informed decision-making. 

Nevertheless, Bayesian networks require reliable prior distributions and conditional probability models, which are hard 

to establish in an adversarial environment. 

2) Markov and Hidden Markov Models 

Markov models are used to represent the transition of threat states over time as convoys move through an environment. 

Hidden Markov models (HMMs) are used to infer the underlying threat state from the sensor data. These models are not 

suited for high-dimensional data. 

D. Machine Learning-Based Risk Prediction 

Machine learning methods allow for risk estimation based on data without necessarily using explicit probabilistic 

modeling. 

1) Regression-Based Risk Scoring 

Supervised regression models are used to predict continuous risk scores on the basis of fused features. The risk scores 

are usually mapped to discrete risk levels (low, medium, high) for practical applications. 

2) Classification-Based Risk Assessment Multi-class classifiers are used to classify threat levels based on past data. 

Although easier to code, classification models could potentially oversimplify the representation of risk. 

E. Deep Learning-Based Predictive Models 

Deep learning models are very effective at modeling complex nonlinear relationships between the sensor data, the 

dynamics of the convoy, and the environment.                  
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1) Spatiotemporal Deep 

The CNN-LSTM hybrid models integrate spatial feature extraction with temporal modeling to predict dynamic blast 

risk along the routes of the convoys. 

2) Graph-Based Models 

Graph neural networks (GNNs) represent convoy vehicles and road graphs as a set of interconnected nodes, allowing 

for relational reasoning about inter-vehicle interactions. 

F. Risk Visualization and Decision Support 

Risk communication is a critical factor in the deployment of operations. Risk levels are usually represented in a 

predictive system through visual means such as maps or dashboards. Visualization helps in quick understanding. 

G. Summary of Predictive Blast Risk Assessment 

Predictive models for blast risk assessment make it possible to protect convoys in advance by combining sensing, AI, 

and context. Nevertheless, issues persist with respect to validation, explain ability, and integration. 

 

IX. ALGORITHMS AND WORKFLOW MODE 

Algorithms and workflow models describe how sensor data, AI processing, and decision support functions interact in a 

convoy protection system. A good workflow design guarantees the timely assessment of threats and the proper 

functioning of the system despite real-world constraints. 

A. End-to-End System Workflow 

A general process flow for predictive convoy protection includes the following steps: 

1. Data Acquisition: Ongoing collection of data from sensors on board and on the roadside. 

2. Preprocessing: Noise reduction, normalization, synchronization, and alignment of sensor data. 

3. Feature Extraction: Extraction of relevant spatial, temporal, and contextual features. 

4. Sensor Fusion: Fusion of multi-modal features or decisions. 

5. AI-Based Analysis: Detection, classification, and risk prediction. 

6. Decision Support: Alerts and actions. 

7. Feedback Loop: Updating models based on outcomes and operator feedback.                                                                                                                                      

 
B. Algorithmic Design Considerations 

1) Real-Time Constraints The algorithms have to run under very tight latency constraints to issue warnings in a timely 

manner. Efficiency and parallel processing are important design considerations. 

2) Scalability 

Convoy protection systems need to be scalable for multiple vehicles and sensors. Distributed and hierarchical 

algorithms are commonly used to handle scalability. 

3) Robustness and Fault Tolerance 

The algorithms should be able to deal with the failure of sensors, loss of communication, and adversarial interference 

without catastrophic degradation. 
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C. Centralized vs. Distributed Processing 

1) Centralized Architectures 

In centralized systems, data is processed at a command node. Although these systems provide global situational 

awareness, they are prone to latency and single-point failures. 

2) Distributed and Edge-Based Architectures 

Edge computing allows for processing to be done on vehicles, and hybrid models are used to combine edge computing 

with centralized computing. 

D. Adaptive and Learning Workflows 

Adaptive workflows are able to dynamically change processing pipelines according to the operational context. For 

instance, sensors can be selectively turned on in high-risk regions to save resources. Online learning allows models to 

adapt to new environments and adversarial strategies. 

 
E. Validation and Testing Workflows 

The validation of predictive convoy protection systems needs multi-stage testing, such as simulation, field testing, and 

real-world deployment. Digital twins and scenario-based testing tools are being increasingly used for the evaluation of 

system performance. 

 

X. PERFORMANCE EVALUATION METRICS 

Performance evaluation is an essential part of designing, validating, and implementing explosive threat detection and 

predictive convoy protection systems. Unlike traditional detection problems, convoy-based predictive systems require 

performance evaluation on more than one parameter, such as accuracy, timeliness, robustness, and usability. This 

section will discuss the relevance of performance evaluation parameters to real-world military convoy scenarios. 

A. Detection Accuracy Metrics 

1) Probability of Detection (Pd) 

Probability of detection is the measure of the likelihood of a system being able to correctly identify an explosive threat 

when it is present. A high probability of detection is critical in order to avoid the consequences of a missed threat, 

which can be catastrophic in a convoy environment. 

2) Probability of False Alarm (Pfa) 

False alarms are those in which non-threatening objects or environmental characteristics are mistakenly identified as 

threats. A high rate of false alarms can undermine the confidence of the operator and even affect the convoy operations. 

A desirable trade-off between Pd and Pfa is essential. 

3) Receiver Operating Characteristic (ROC) Curves 

The ROC curves show the relationship between Pd and Pfa for different decision thresholds. The area under the ROC 

curve is a widely used measure of performance. 
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B. Predictive Risk Assessment Metrics 

1) Risk Prediction Accuracy 

For predictive models, the accuracy of the model is determined by the level of predicted risk scores and actual 

outcomes. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are used for continuous risk scores 

2) Early Warning Time 

Early warning time refers to the time difference between the generation of risk alerts and the occurrence of threats. The 

longer the early warning time, the more time available for preventive measures. 

3) Risk Calibration 

Calibration is the process of checking whether the probabilities of predicted risks match the observed data. A well-

calibrated model is necessary for making informed decisions. 

C. Temporal and Real-Time Performance Metrics 

1) Latency 

Latency is the time taken between data acquisition and alert generation. Real-time convoy protection systems have low 

latency requirements. 

2) Throughput 

Throughput is the amount of data that is processed in a unit time. High-throughput systems are required for the 

processing of multi-sensor data streams. 

D. Robustness and Reliability Metrics 

1) Environmental Robustness 

The robustness metrics assess the performance on varied terrains, weather, and lighting conditions. 

2) Fault Tolerance 

Fault tolerance is the measure of a system’s ability to withstand sensor failures, communication breakdowns, or system 

damage. 

E. Examinability and Human Factors Metrics 

Examinability metrics: These metrics measure the quality of explanations that are offered to human operators. Human-

in-the-loop studies: These studies measure the effectiveness of human operators. 

F. Summary of Performance Metrics 

A thorough assessment of convoy protection systems needs to be done using multi-dimensional metrics that account for 

detection accuracy, predictive power, timeliness, robustness, and human factors. 

 

XI. COMPARATIVE ANALYSIS OF EXISTING SYSTEM 

A comparative study of the existing systems for explosive detection and convoy protection helps in understanding the 

trends and limitations of the technologies. This section synthesizes the results from the literature to compare the 

systems based on the sensing modality, fusion approach, AI method, and readiness level. 

A. Comparison of Single-Sensor Systems 

Single sensor systems, like standalone GPR or thermal imaging systems, have shown moderate detection capability in a 

controlled setup. But their performance degrades rapidly in a cluttered or heterogeneous environment. High false alarm 

rates and environmental variability make them less useful. 

Comparative analysis of existing explosive detection and convoy protection system. 

B. Comparison of Multi-Sensor Fusion Systems 

Multi-sensor fusion systems always perform better than single-sensor systems because they use complementary 

information. Feature-level and decision-level fusion methods provide better robustness and false alarm reduction. But 

most fusion systems use fixed rules or thresholds. 

C. AI-Based Detection Systems 

AI systems, especially deep learning models, have shown strong detection accuracy and robustness. CNN models 

perform well in image-based detection, and temporal models enhance early warning systems. However, challenges in 

data availability, interpretability, and adversarial robustness are still important. 
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D. CPS-Based Convoy Protection Systems 

CPS-based systems combine sensing, AI, and decision support in a closed-loop system. The system allows real-time 

adaptation and proactive risk management. Nevertheless, most current CPS implementations are detection-oriented 

rather than predictive risk assessment. 

E. Predictive vs. Reactive Systems 

A Reactive system only issue warnings after spotting dubious objects, leaving little room for preventive measures. 

Predictive systems, on the other hand, forecast the risk level in advance, allowing for proactive convoy control. 

Although very beneficial, predictive systems are still in the early stages of development. 

F. Technology Readiness and Deployment IssuesTechnology readiness and 

Many of the advanced detection and prediction systems are still at low to medium technology readiness levels. 

Scalability, interoperability, cost, and validation issues are some of the challenges. 

G. Summary of Comparative Analysis 

The comparative analysis points out a distinct trend towards single-sensor reactive systems and, finally, towards AI-

based multi-sensor predictive CPS designs. Nevertheless, the complete predictive convoy protection system remains a 

research challenge. 

 

XII. CHALLENGES AND OPEN RESEARCH ISSUES 

Despite the major advancements in sensing technologies, artificial intelligence, and integration of cyber-physical 

systems, there are a number of unresolved issues that have been hindering the operational deployment of predictive 

bomb blast threat detection systems for military convoy safety. These issues range from technical to operational and 

human factors. 

A. Data Scarcity and Labeling Constraints 

In One of the most challenging aspects of AI-based explosive threat detection is the lack of quality data. Real-life 

explosive events are a rarity and are also classified, making it difficult to obtain training data. Additionally, safety and 

moral issues make it difficult to collect data using live explosives. Data simulation and generation tools partially solve 

this problem, but simulated data do not always reflect the complexity of real-world data. The problem of domain shift 

between simulated and real-world data is a significant limitation for generalization. 

B. Generalization across Terrains and Operational Contexts 

Convoy missions involve various types of terrain, such as deserts, city roads, mountainous areas, and forests. The 

sensor response and threat patterns are quite different in these regions. Most AI models trained on data from a particular 

region or soil type perform poorly when used in other regions. The development of terrain-agnostic and context-

adaptive models is still an open issue. Domain adaptation and transfer learning methods appear promising but need to 

be tested in more realistic convoy scenarios. 

C. False Alarm Reduction and Operator Trust 

High false alarm rates are still a challenge, especially in cluttered environments with benign anomalies such as rocks, 

debris, and roadside features. Frequent false alarms result in high cognitive workload, alert fatigue, and a lack of trust in 

automated systems. 

While multi-sensor fusion and explainable AI (XAI) methods help alleviate this problem, it is still a challenge to 

maintain low false alarm rates without compromising detection sensitivity. 

D. Real-Time Processing and Computational Constraints 

Predictive convoy protection systems have to work in real-time with strict latency requirements. Nevertheless, complex 

deep learning models and multi-sensor fusion chains are computationally expensive and may go beyond the processing 

capacity of onboard vehicle platforms.Achieving a balance between the complexity, accuracy, and computational cost 

of the model is an important design consideration. Research is needed in edge AI optimization, model compression, and 

hardware acceleration. 

E. Communication Reliability and Latency 

Cyber-physical convoy systems require secure and low-latency communication between vehicles, sensors, and 

command units. In hostile environments, communication links can be disrupted by terrain, jamming, or cyber-attacks. 
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The design of robust CPS architectures that can function in conditions of intermittent connectivity and poor 

communication conditions is still an open research problem. 

F. Cyber security and Adversarial Threats 

Convoy protection systems based on AI technology are susceptible to adversarial attacks. These attacks can target 

sensors, data, and AI models. Spoofing, jamming, and adversarial attacks can affect the system’s behavior and produce 

deceptive threat analyses. 

Adversarial robustness and secure CPS design are critical for the reliability of CPS but have not been adequately 

investigated in the current literature. 

G. Validation, Verification, and Certification 

The military systems need to be thoroughly validated and certified before they are deployed. But the validation of AI-

based predictive systems is difficult because these systems are probabilistic in nature and rely on data-driven learning. 

One of the biggest challenges that remain unresolved is the establishment of standardized evaluation frameworks, 

testing procedures, and certification processes for AI-enabled convoy protection systems. 

 

XIII. FUTURE RESEARCHED 

To overcome the existing limitations and move the state-of-the-art forward, future research should focus on 

interdisciplinary, system- 

level, and operationally relevant approaches. The key research directions are summarized below.End-to-end workflow 

of a predictive convoy protection system 

 
A. Reinforcement Learning for Adaptive Convoy Protection 

Reinforcement learning (RL) is a promising paradigm for adaptive convoy protection, which enables learning optimal 

actions like speed control, spacing control, and route planning by interacting with the environment. RL-based methods 

can also optimize long-term safety and mission goals. Future research should concentrate on safe RL, multi-agent RL 

for cooperative convoying, and hybrid frameworks of RL and human monitoring. 

B. Integration with Unmanned Systems 

Unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) can greatly improve the situational 

awareness of a convoy by offering forward-looking sensing and early threat detection. The integration of unmanned 

systems into CPS architectures allows for extended perception beyond the immediate surroundings of the convoy.There 

is a need for research on cooperative sensing, data fusion, and command and control integration between manned and 

unmanned platforms. 

C. Explainable and Trustworthy AI 

Explainable AI will be a key player in the operational adoption process by enhancing transparency, trust, and 

accountability. Future research should include: 

• Context-aware explanations 

• Multi-modal explanation fusion 

• Uncertainty-aware decision support 

Studies on human-AI collaboration need to assess the impact of explanations on operator behavior and decision quality. 

D. Hybrid AI-Physics-Based Models 

Purely data-driven AI models might have difficulty generalizing to unseen scenarios. Hybrid models that combine AI 

models with physics-based models of blast propagation and vehicle dynamics could potentially provide better 

robustness and explainability. 

Such hybrid models may be able to include physical constraints and safety margins in predictive risk assessment. 
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E. Large-Scale Field Trials and Benchmarking 

There is a pressing need for large-scale field trials to test the accuracy of predictive convoy protection systems. 

Benchmarks and a common set of data would go a long way in advancing the field. 

F. Secure and Resilient CPS Architectures 

Future CPS designs for convoy protection need to be robust against cyber-attacks and communication disruptions. 

Research on secure CPS design, fault-tolerant architectures, and adversarial robust AI is necessary for such mission-

critical applications. 

 
 

XIV. CONCLUSION 

Convoys that are engaged in military operations in hostile areas are constantly threatened by the possibility of 

improvised explosive devices and blast attacks. Although conventional methods of protecting convoys are mainly 

focused on mitigation, they do not offer much scope for preventive measures. 

This review offered a thorough examination of predictive bomb blast threat detection systems for military convoy 

safety, focusing on the integration of artificial intelligence, multi-sensor fusion, and cyber-physical systems. Through 

the integration of research on sensing modalities, AI models, CPS architectures, and predictive risk assessment 

frameworks, the review demonstrated the shift from isolated and reactive threat detection towards convoy-centric, 

predictive, and explainable protection systems. 

The analysis shows that AI-based multi-sensor fusion improves detection accuracy and robustness, and the integration 

of CPS enables real-time adaptation and closed-loop decision support. Predictive blast risk assessment is identified as 

an important capability for early warning and proactive convoy management. 

Nevertheless, there are still many challenges that need to be overcome, such as the lack of data, reducing false alarms, 

real-time processing, cyber security, and validation. These challenges can be addressed through interdisciplinary 

research, field validation, and collaboration between researchers, defense sector professionals, and policymakers. In 

summary, predictive AI-based convoy protection systems are a revolutionary leap towards achieving intelligent, 

proactive, and resilient military logistics and operational safety. Further research and development in this area will be 

imperative in improving mission success and protecting personnel in today’s asymmetric warfare environment. 
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