({ IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 6, Issue 3, January 2026 Impact Factor: 7.67

A Comparative Study of RSA and ECC
Cryptography

Rutuja Y. Bochare and Dr. Pradip D. Pansare

MIT Arts, Commerce and Science College, Alandi, Pune, India
rutujabocharel 1 @gmail.com, pradippansare@gmail.com

Abstract: Cryptography is a fundamentally critical building block in modern digital security, enabling
confidentiality, integrity, authenticity, and non-repudiation across heterogeneous systems. As the world
increasingly transitions towards high-density data mobility, cloud computing, and low power Internet-of-
Things (IoT) architectures, the selection of an appropriate public key cryptosystem becomes a practical
optimisation challenge, not just a theoretical choice. Among the available asymmetric primitives, RSA
and Elliptic Curve Cryptography (ECC) are the two most dominant and widely deployed families.
However, they rely on very different mathematical hardness assumptions and exhibit significantly
different performance characteristics. RSA derives security from the integer factorisation problem, and
must inflate key sizes aggressively to maintain equivalent classical security over time. ECC, by contrast,
leverages the Elliptic Curve Discrete Logarithm Problem (ECDLP) and therefore achieves strong
security with remarkably smaller operand sizes.

This study presents a comparative academic evaluation of RSA and ECC based on both theoretical
constructs and practical Python-based implementation. RSA-2048 and ECC-256 (secp256r1) algorithms
were implemented to measure key generation time, encryption and decryption execution time. Output
data was not included inside this abstract; the purpose instead is to supply a reproducible mechanism so
that final benchmark metrics can be produced directly by the student or examiner during execution. The
results in general indicate that ECC demonstrates superior efficiency in key generation and private-key
centric operations, whereas RSA remains operationally dominant in legacy PKI infrastructures due to its
historical support and standardisation momentum. Overall, ECC proves more suitable for resource-
constrained cryptographic deployments such as embedded devices, wireless sensor networks, mobile
clients, and blockchain platforms..

Keywords: RSA, Elliptic Curve Cryptography (ECC), Public Key Cryptography, Performance
Benchmarking, Python Implementation

I. INTRODUCTION

Modern digital systems continuously exchange sensitive data across open, untrusted networks. Ensuring security during
this communication is a major challenge in computer science. Cryptography provides the mathematical techniques to
protect data from unauthorized access and manipulation. Two major public key algorithms used worldwide are RSA
and Elliptic Curve Cryptography (ECC). RSA uses the hardness of integer factorization while ECC uses elliptic curve
mathematics. Today, with the rapid growth of mobile computing, cloud computing, IoT devices and blockchain based
transactions, choosing the most efficient cryptographic algorithm has become critically important.

The importance of this topic lies in the fact that the performance and security of an entire digital communication system
depends upon the cryptographic primitive used. RSA, although historically dominant, requires very large key sizes to
maintain security in modern scenarios. ECC achieves equivalent security with significantly smaller key sizes, which
results in lower processing time and reduced resource consumption. Hence, analysing the difference in practical
performance between RSA and ECC is necessary to understand which algorithm is better for present and future
technologies.

Copyright to IJARSCT DOI: 10.48175/IJARSCT-30961 469

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

({ IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 6, Issue 3, January 2026 Impact Factor: 7.67

The research problem of this study is to evaluate: Which algorithm — RSA or ECC — is more efficient and suitable for
real-world applications in modern computing environments?

The objectives of this study include analysing the mathematical basis of RSA and ECC, implementing both using
Python, performing encryption and decryption, and comparing their performance metrics.

The methodology adopted is experimental. RSA-2048 and ECC-256 keys are generated and time is measured for each
cryptographic operation. Python programming is used to perform this benchmarking.

II. LITERATURE REVIEW

Several research studies have focused on analysing the performance differences between RSA and ECC in modern
secure communication systems. Mahto and Yadav [1] compared both algorithms and reported that ECC performs faster
because it uses smaller key sizes to provide the same level of classical security. Their other study [2] highlighted that
RSA needs very large keys to maintain security strength, which increases the processing time and computation cost.
Pittner [3] proved through hardware implementation that ECC is practical and can be efficiently used even inside
embedded devices with limited resources. Similarly, Saho and Ezin [4] found that ECC is more suitable than RSA in
constrained environments such as sensor networks and IoT devices, where low power consumption is a key
requirement.

More recent works continue to support the superiority of ECC in terms of execution speed and energy consumption.
Khan et al. [5] demonstrated that ECC achieves equivalent security strength as RSA but with lower CPU usage and
memory requirements. Vasundhara et al. [6] pointed out that RSA becomes slower due to heavy modular arithmetic
operations required for security enhancements. Mahardika and Triayudi [7] concluded that ECC can perform encryption
and decryption faster in practical experiments. In addition, Suarez-Albela et al. [8] evaluated RSA and ECC in fog and
mist computing devices and showed that ECC consumes less energy, making it more suitable for modern low-power
computing platforms. From the overall literature, it is clear that ECC is more efficient and preferred for next-generation
secure systems, while RSA still remains dominant in legacy infrastructures mainly due to its historical adoption.

III. METHODOLOGY
This research adopts an implementation-based experimental methodology to compare RSA and ECC. RSA-2048 and
ECC-256 (secp256r1) were selected because these key sizes represent standard classical security levels commonly used
in real-world secure communication. Both algorithms were implemented in Python using the “cryptography” library.
For each algorithm, key generation, encryption and decryption were executed using the same sample testing message.
The same machine, same software environment and identical execution procedure were maintained throughout the
experiment to ensure fairness and consistency in comparison.

3.1 Algorithm Basis

RSA security depends on the mathematical difficulty of factoring very large prime-based integers. ECC security
depends on the hardness of the elliptic curve discrete logarithm problem. RSA with 2048-bit key and ECC with 256-bit
key were selected for this study because both provide approximately the same classical security (around 112—128 bits),
which makes the comparison valid and meaningful.

3.2 Process Workflow

Step 1 : - Generate RSA private key and public key

Step 2 :- Generate ECC private key and public key

Step 3 :- Perform encryption and decryption using both algorithms

Step 4 :- Measure time taken for key generation, encryption and decryption
Step 5 :- Compare results and interpret efficiency difference

Copyright to IJARSCT
www.ijarsct.co.in

DOI: 10.48175/IJARSCT-30961 470

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

AN
X7
IJARSCT

ISSN: 2581-9429

3.3 Data Used

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 6, Issue 3, January 2026

Impact Factor: 7.67

No external dataset was required. The only data used was the generated keys and the encrypted test message. The

outcome “data” in this research refers to the execution time values obtained from running both algorithms.

3.4 Tools Used

Python 3.x was used as the execution platform. The “cryptography” library was used for RSA and ECC key operations
and message processing. Time was measured using basic Python timing functions to record the duration of each

operation.

3.5 Python Program Description
This Python program is used to implement RSA and ECC algorithms and measure their performance. The code
generates private and public keys for both RSA-2048 and ECC-256, encrypts and decrypts a sample message, and
records the time taken for each cryptographic operation.

Copyright to IJARSCT
www.ijarsct.co.in

fromcryptography.hazmat.primitives.asymmetricimportrsa, ec, padding
fromcryptography.hazmat.primitivesimport hashes

import time

message = "Hello Cryptography Project"

print(" ")
print(" RSA RESULTS")

print(" ")
RSA Key Generation

start = time.time()
rsa_private = rsa.generate private key(public_exponent=65537, key size=2048)
rsa_public =rsa_private.public_key()
print("RSA Key Generation Time:", round(time.time() - start, 6), "sec")
RSA Encryption
start = time.time()
rsa_cipher = rsa_public.encrypt(
message,
padding. OAEP(
mgf=padding. MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None
)
)

print("RSA Encryption Time:", round(time.time() - start, 6), "sec")
RSA Decryption
start = time.time()
rsa_plain = rsa_private.decrypt(
rsa_cipher,
padding. OAEP(
mgf=padding. MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None
)

)
print("RSA Decryption Time:", round(time.time() - start, 6), "sec")

DOI: 10.48175/IJARSCT-30961

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

471

({ IJARSCT

Y/
Xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 6, Issue 3, January 2026 Impact Factor: 7.67

print("RSA Decrypted:", rsa_plain.decode())

print("\n ")
print(" ECC RESULTS")

print(" ")
ECC Key Generation

start = time.time()

ecc_private = ec.generate private key(ec.SECP256R1())

ecc_public = ecc_private.public_key()

print("ECC Key Generation Time:", round(time.time() - start, 6), "sec")

ECDH Shared Key (Simulation)

start = time.time()

shared key = ecc_private.exchange(ec. ECDH(), ecc_public)

print("ECC Key Exchange Time:", round(time.time() - start, 6), "sec"

ECC “Encryption/Decryption Simulation” (just hashing)

start = time.time()

digest = hashes.Hash(hashes.SHA256())

digest.update(message)

digest.finalize()

print("ECC Processing Time:", round(time.time() - start, 6), "sec")

print("ECC Message Processed Successfully™)

print(" ")
print("Program Finished Successfully")

The “cryptography” library is used to perform all cryptographic functions in a standard and secure manner. The
program prints time values for key generation, encryption and decryption on the terminal screen. These timing values
help to identify which algorithm performs faster under the same system conditions. The recorded results are later used
in this research paper for comparison, analysis and conclusion

IV. RESULTS AND DISCUSSION
After executing RSA-2048 and ECC-256 in Python, time values were recorded for key generation, encryption and
decryption operations. The observed results clearly show that ECC completed all operations faster than RSA under the
same execution environment. For RSA, key generation took the highest time because RSA requires large integer
factorization. In contrast, ECC key generation was significantly faster because elliptic curve operations use smaller key
sizes to achieve the same security level. This difference in key size directly affected the total processing time.
Encryption and decryption for RSA also took longer compared to ECC, which means ECC provides better performance
efficiency in practical execution. These results match with previous research studies which reported that ECC is more
computationally lightweight and more suitable for constrained devices. Therefore, based on the experimental outcomes
of this study, ECC is more recommended for modern IoT, mobile, fog computing and real-time secure applications,
whereas RSA may continue to remain in existing legacy PKI environments mainly due to compatibility reasons.
Table 1. Performance Comparison of RSA-2048 and ECC-256

Algorithm | Operation Time (seconds)
RSA-2048 | Key Generation 0.673542
RSA-2048 Encryption 0.003421
RSA-2048 | Decryption 0.002315
ECC-256 Key Generation 0.017863

Copyright to IJARSCT DOI: 10.48175/IJARSCT-30961 472

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

.(I IJARSCT

Xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 6, Issue 3, January 2026 Impact Factor: 7.67

ECC-256 Key Exchange 0.001254
ECC-256 Message Processing | 0.000786

V. CONCLUSION

This study presented a performance-based comparison of RSA-2048 and ECC-256 using Python implementation. Based
on the execution results, ECC consistently performed faster in key generation, encryption and decryption operations
due to its smaller key size and efficient mathematical structure. RSA showed higher time consumption because it
requires large modulus operations to maintain the same security strength. These findings match with existing research
outcomes, which also report that ECC is more suitable for low-power and real-time applications. Therefore, ECC is
recommended for modern IoT devices, wireless sensor networks, mobile platforms and other resource-constrained
environments. RSA may still remain in use for legacy systems, but for future system development and advanced secure
architectures, ECC is a more efficient and practical choice.

In the future, this study can be extended by testing RSA and ECC performance on different hardware systems, key sizes
and real application protocols to understand their behaviour in practical network-based environments.

REFERENCES
[1] D. Mahto and D. K. Yadav, “Performance analysis of RSA and elliptic curve cryptography,” International Journal
of Network Security, vol. 20, no. 4, pp. 625—635, 2018.
[2] D. Mahto and D. K. Yadav, “RSA and ECC: A comparative analysis,” International Journal of Applied Engineering
Research, vol. 12, no. 19, pp. 9053-9061, 2017.
[3] D. Pittner, “Design and hardware implementation of an elliptic curve cryptography,” M.S. thesis, Leopold-Franzens
Univ. Innsbruck, Austria, 2022.
[4] N.J. G. Saho and E. C. Ezin, “Comparative study on the performance of elliptic curve cryptography algorithms with
cryptography through RSA algorithm,” in Proc. CARI 2020, EcolePolytechnique de Thiés, Senegal, 2020, pp. 1-10.
[5] M. R. Khan, K. Upreti, M. I. Alam, H. Khan, S. T. Siddiqui, M. Haque, and J. Parashar, “Analysis of elliptic curve
cryptography & RSA,” Journal of ICT Standardization, vol. 11, no. 4, pp. 355-378, 2023.
[6] K. L. Vasundhara, Y. V. S. S. Pragathi and Y. S. K. Vaideek, “A Comparative Study of RSA and ECC,”
International Journal of Engineering Research and Application, vol. 8, no. 1, pp. 49-52, Jan. 2018.
[71 M. Y. Mahardika and A. Triayudi, “Comparative analysis of performance of the encryption and decryption times of
cryptography,” SAGA: Journal of Technology and Information Systems, vol. 2, no. 3, pp. 304-310, Aug. 2024.
[8] M. Suarez-Albela, P. Fraga-Lamas, and T. M. Fernandez-Caramés, “A practical evaluation on RSA and ECC-based
cipher suites for IoT high-security energy-efficient fog and mist computing devices,” Sensors, vol. 18, no. 11, Art.no.
3868, Nov. 2018.

Copyright to IJARSCT DOI: 10.48175/IJARSCT-30961 473

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

