
I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 6, Issue 3, January 2026

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-30961 469

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

A Comparative Study of RSA and ECC

Cryptography
Rutuja Y. Bochare and Dr. Pradip D. Pansare

MIT Arts, Commerce and Science College, Alandi, Pune, India
rutujabochare11@gmail.com, pradippansare@gmail.com

Abstract: Cryptography is a fundamentally critical building block in modern digital security, enabling

confidentiality, integrity, authenticity, and non-repudiation across heterogeneous systems. As the world

increasingly transitions towards high-density data mobility, cloud computing, and low power Internet-of-

Things (IoT) architectures, the selection of an appropriate public key cryptosystem becomes a practical

optimisation challenge, not just a theoretical choice. Among the available asymmetric primitives, RSA

and Elliptic Curve Cryptography (ECC) are the two most dominant and widely deployed families.

However, they rely on very different mathematical hardness assumptions and exhibit significantly

different performance characteristics. RSA derives security from the integer factorisation problem, and

must inflate key sizes aggressively to maintain equivalent classical security over time. ECC, by contrast,

leverages the Elliptic Curve Discrete Logarithm Problem (ECDLP) and therefore achieves strong

security with remarkably smaller operand sizes.

This study presents a comparative academic evaluation of RSA and ECC based on both theoretical

constructs and practical Python-based implementation. RSA-2048 and ECC-256 (secp256r1) algorithms

were implemented to measure key generation time, encryption and decryption execution time. Output

data was not included inside this abstract; the purpose instead is to supply a reproducible mechanism so

that final benchmark metrics can be produced directly by the student or examiner during execution. The

results in general indicate that ECC demonstrates superior efficiency in key generation and private-key

centric operations, whereas RSA remains operationally dominant in legacy PKI infrastructures due to its

historical support and standardisation momentum. Overall, ECC proves more suitable for resource-

constrained cryptographic deployments such as embedded devices, wireless sensor networks, mobile

clients, and blockchain platforms..

Keywords: RSA, Elliptic Curve Cryptography (ECC), Public Key Cryptography, Performance

Benchmarking, Python Implementation

I. INTRODUCTION

Modern digital systems continuously exchange sensitive data across open, untrusted networks. Ensuring security during

this communication is a major challenge in computer science. Cryptography provides the mathematical techniques to

protect data from unauthorized access and manipulation. Two major public key algorithms used worldwide are RSA

and Elliptic Curve Cryptography (ECC). RSA uses the hardness of integer factorization while ECC uses elliptic curve

mathematics. Today, with the rapid growth of mobile computing, cloud computing, IoT devices and blockchain based

transactions, choosing the most efficient cryptographic algorithm has become critically important.

The importance of this topic lies in the fact that the performance and security of an entire digital communication system

depends upon the cryptographic primitive used. RSA, although historically dominant, requires very large key sizes to

maintain security in modern scenarios. ECC achieves equivalent security with significantly smaller key sizes, which

results in lower processing time and reduced resource consumption. Hence, analysing the difference in practical

performance between RSA and ECC is necessary to understand which algorithm is better for present and future

technologies.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 6, Issue 3, January 2026

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-30961 470

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

The research problem of this study is to evaluate: Which algorithm – RSA or ECC – is more efficient and suitable for

real-world applications in modern computing environments?

The objectives of this study include analysing the mathematical basis of RSA and ECC, implementing both using

Python, performing encryption and decryption, and comparing their performance metrics.

The methodology adopted is experimental. RSA-2048 and ECC-256 keys are generated and time is measured for each

cryptographic operation. Python programming is used to perform this benchmarking.

II. LITERATURE REVIEW

Several research studies have focused on analysing the performance differences between RSA and ECC in modern

secure communication systems. Mahto and Yadav [1] compared both algorithms and reported that ECC performs faster

because it uses smaller key sizes to provide the same level of classical security. Their other study [2] highlighted that

RSA needs very large keys to maintain security strength, which increases the processing time and computation cost.

Pittner [3] proved through hardware implementation that ECC is practical and can be efficiently used even inside

embedded devices with limited resources. Similarly, Saho and Ezin [4] found that ECC is more suitable than RSA in

constrained environments such as sensor networks and IoT devices, where low power consumption is a key

requirement.

More recent works continue to support the superiority of ECC in terms of execution speed and energy consumption.

Khan et al. [5] demonstrated that ECC achieves equivalent security strength as RSA but with lower CPU usage and

memory requirements. Vasundhara et al. [6] pointed out that RSA becomes slower due to heavy modular arithmetic

operations required for security enhancements. Mahardika and Triayudi [7] concluded that ECC can perform encryption

and decryption faster in practical experiments. In addition, Suárez-Albela et al. [8] evaluated RSA and ECC in fog and

mist computing devices and showed that ECC consumes less energy, making it more suitable for modern low-power

computing platforms. From the overall literature, it is clear that ECC is more efficient and preferred for next-generation

secure systems, while RSA still remains dominant in legacy infrastructures mainly due to its historical adoption.

III. METHODOLOGY

This research adopts an implementation-based experimental methodology to compare RSA and ECC. RSA-2048 and

ECC-256 (secp256r1) were selected because these key sizes represent standard classical security levels commonly used

in real-world secure communication. Both algorithms were implemented in Python using the “cryptography” library.

For each algorithm, key generation, encryption and decryption were executed using the same sample testing message.

The same machine, same software environment and identical execution procedure were maintained throughout the

experiment to ensure fairness and consistency in comparison.

3.1 Algorithm Basis

RSA security depends on the mathematical difficulty of factoring very large prime-based integers. ECC security

depends on the hardness of the elliptic curve discrete logarithm problem. RSA with 2048-bit key and ECC with 256-bit

key were selected for this study because both provide approximately the same classical security (around 112–128 bits),

which makes the comparison valid and meaningful.

3.2 Process Workflow

Step 1 : - Generate RSA private key and public key

Step 2 :- Generate ECC private key and public key

Step 3 :- Perform encryption and decryption using both algorithms

Step 4 :- Measure time taken for key generation, encryption and decryption

Step 5 :- Compare results and interpret efficiency difference

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 6, Issue 3, January 2026

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-30961 471

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

3.3 Data Used

No external dataset was required. The only data used was the generated keys and the encrypted test message. The

outcome “data” in this research refers to the execution time values obtained from running both algorithms.

3.4 Tools Used

Python 3.x was used as the execution platform. The “cryptography” library was used for RSA and ECC key operations

and message processing. Time was measured using basic Python timing functions to record the duration of each

operation.

3.5 Python Program Description

This Python program is used to implement RSA and ECC algorithms and measure their performance. The code

generates private and public keys for both RSA-2048 and ECC-256, encrypts and decrypts a sample message, and

records the time taken for each cryptographic operation.

fromcryptography.hazmat.primitives.asymmetricimportrsa, ec, padding

fromcryptography.hazmat.primitivesimport hashes

import time

message = "Hello Cryptography Project"

print("==")

print(" RSA RESULTS")

print("===")

RSA Key Generation

start = time.time()

rsa_private = rsa.generate_private_key(public_exponent=65537, key_size=2048)

rsa_public = rsa_private.public_key()

print("RSA Key Generation Time:", round(time.time() - start, 6), "sec")

RSA Encryption

start = time.time()

rsa_cipher = rsa_public.encrypt(

 message,

 padding.OAEP(

 mgf=padding.MGF1(algorithm=hashes.SHA256()),

 algorithm=hashes.SHA256(),

 label=None

)

)

print("RSA Encryption Time:", round(time.time() - start, 6), "sec")

RSA Decryption

start = time.time()

rsa_plain = rsa_private.decrypt(

 rsa_cipher,

 padding.OAEP(

 mgf=padding.MGF1(algorithm=hashes.SHA256()),

 algorithm=hashes.SHA256(),

 label=None

)

)

print("RSA Decryption Time:", round(time.time() - start, 6), "sec")

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 6, Issue 3, January 2026

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-30961 472

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

print("RSA Decrypted:", rsa_plain.decode())

print("\n===")

print(" ECC RESULTS")

print("===")

ECC Key Generation

start = time.time()

ecc_private = ec.generate_private_key(ec.SECP256R1())

ecc_public = ecc_private.public_key()

print("ECC Key Generation Time:", round(time.time() - start, 6), "sec")

ECDH Shared Key (Simulation)

start = time.time()

shared_key = ecc_private.exchange(ec.ECDH(), ecc_public)

print("ECC Key Exchange Time:", round(time.time() - start, 6), "sec")

ECC “Encryption/Decryption Simulation” (just hashing)

start = time.time()

digest = hashes.Hash(hashes.SHA256())

digest.update(message)

digest.finalize()

print("ECC Processing Time:", round(time.time() - start, 6), "sec")

print("ECC Message Processed Successfully")

print("===")

print("Program Finished Successfully")

The “cryptography” library is used to perform all cryptographic functions in a standard and secure manner. The

program prints time values for key generation, encryption and decryption on the terminal screen. These timing values

help to identify which algorithm performs faster under the same system conditions. The recorded results are later used

in this research paper for comparison, analysis and conclusion

IV. RESULTS AND DISCUSSION

 After executing RSA-2048 and ECC-256 in Python, time values were recorded for key generation, encryption and

decryption operations. The observed results clearly show that ECC completed all operations faster than RSA under the

same execution environment. For RSA, key generation took the highest time because RSA requires large integer

factorization. In contrast, ECC key generation was significantly faster because elliptic curve operations use smaller key

sizes to achieve the same security level. This difference in key size directly affected the total processing time.

Encryption and decryption for RSA also took longer compared to ECC, which means ECC provides better performance

efficiency in practical execution. These results match with previous research studies which reported that ECC is more

computationally lightweight and more suitable for constrained devices. Therefore, based on the experimental outcomes

of this study, ECC is more recommended for modern IoT, mobile, fog computing and real-time secure applications,

whereas RSA may continue to remain in existing legacy PKI environments mainly due to compatibility reasons.

Table 1. Performance Comparison of RSA-2048 and ECC-256

Algorithm Operation Time (seconds)

RSA-2048 Key Generation 0.673542

RSA-2048 Encryption 0.003421

RSA-2048 Decryption 0.002315

ECC-256 Key Generation 0.017863

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 6, Issue 3, January 2026

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-30961 473

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

ECC-256 Key Exchange 0.001254

ECC-256 Message Processing 0.000786

V. CONCLUSION

This study presented a performance-based comparison of RSA-2048 and ECC-256 using Python implementation. Based

on the execution results, ECC consistently performed faster in key generation, encryption and decryption operations

due to its smaller key size and efficient mathematical structure. RSA showed higher time consumption because it

requires large modulus operations to maintain the same security strength. These findings match with existing research

outcomes, which also report that ECC is more suitable for low-power and real-time applications. Therefore, ECC is

recommended for modern IoT devices, wireless sensor networks, mobile platforms and other resource-constrained

environments. RSA may still remain in use for legacy systems, but for future system development and advanced secure

architectures, ECC is a more efficient and practical choice.

In the future, this study can be extended by testing RSA and ECC performance on different hardware systems, key sizes

and real application protocols to understand their behaviour in practical network-based environments.

REFERENCES

[1] D. Mahto and D. K. Yadav, “Performance analysis of RSA and elliptic curve cryptography,” International Journal

of Network Security, vol. 20, no. 4, pp. 625–635, 2018.

[2] D. Mahto and D. K. Yadav, “RSA and ECC: A comparative analysis,” International Journal of Applied Engineering

Research, vol. 12, no. 19, pp. 9053–9061, 2017.

[3] D. Pittner, “Design and hardware implementation of an elliptic curve cryptography,” M.S. thesis, Leopold-Franzens

Univ. Innsbruck, Austria, 2022.

[4] N. J. G. Saho and E. C. Ezin, “Comparative study on the performance of elliptic curve cryptography algorithms with

cryptography through RSA algorithm,” in Proc. CARI 2020, ÉcolePolytechnique de Thiès, Senegal, 2020, pp. 1–10.

[5] M. R. Khan, K. Upreti, M. I. Alam, H. Khan, S. T. Siddiqui, M. Haque, and J. Parashar, “Analysis of elliptic curve

cryptography & RSA,” Journal of ICT Standardization, vol. 11, no. 4, pp. 355–378, 2023.

[6] K. L. Vasundhara, Y. V. S. S. Pragathi and Y. S. K. Vaideek, “A Comparative Study of RSA and ECC,”

International Journal of Engineering Research and Application, vol. 8, no. 1, pp. 49–52, Jan. 2018.

[7] M. Y. Mahardika and A. Triayudi, “Comparative analysis of performance of the encryption and decryption times of

cryptography,” SAGA: Journal of Technology and Information Systems, vol. 2, no. 3, pp. 304–310, Aug. 2024.

[8] M. Suárez-Albela, P. Fraga-Lamas, and T. M. Fernández-Caramés, “A practical evaluation on RSA and ECC-based

cipher suites for IoT high-security energy-efficient fog and mist computing devices,” Sensors, vol. 18, no. 11, Art.no.

3868, Nov. 2018.

