

Automated Canopy System

Rohini Walke¹, Samarth Mole¹, Rohan More¹, Sonali Salunkhe¹, Rahul Jadhav¹, Suhas B Khadake²

¹EE Students, SVERI's College of Engineering, Pandharpur. India

²Assistant Professor, SVERI's College of Engineering, Pandharpur. India

suhaskhadake@gmail.com

Abstract: *Unpredictable and heavy rainfall poses a major challenge in open-field agriculture, leading to waterlogging, soil erosion, and crop yield loss. Existing crop protection methods are often costly, labor-intensive, and slow to respond during sudden rainfall events.*

This paper presents an automated crop protection system that uses rainfall and soil moisture sensors with a smart control unit to deploy a dual-side retractable waterproof canopy in real time. The structure is supported by height-adjustable poles, enabling adaptation to different crop heights and growth stages. The system making it modular, eco-friendly, and cost-effective.

Due to its flexible and scalable design, automated canopy system is suitable not only for agriculture but also for wide applications such as open storage areas, warehouses, nurseries, temporary shelters, and industrial yards. The results confirm that the proposed system effectively reduces crop damage, minimizes labor dependency, and enhances overall resilience against adverse weather conditions..

Keywords: automated crop protection, rainfall monitoring, retractable canopy system, climate-resilient farming

I. INTRODUCTION

Climate change has caused significant variations in rainfall patterns, resulting in frequent and unpredictable heavy rainfall events that adversely affect open-field agriculture [1]. Excessive rainfall leads to waterlogging, soil erosion, fungal diseases, and crop yield losses, making timely crop protection essential for sustainable farming practices [2]. The conventional methods of crop protection, such as manual covers, greenhouses, and shade nets, involve high expenses, manual labor, and low reactivity to unexpected rainfall [3]. Greenhouses are not applicable to open-field cultivation due to hard structures and increased installation price. Most available sensor-based technologies relate to irrigation, not direct crop protection [3].

Recent advancements in agriculture have enabled the integration of environmental sensors and automation to improve agricultural resilience [4]. However, most existing solutions lack real-time adaptive mechanisms capable of rapidly shielding crops from excessive rainfall [5]. Automated canopy systems used in industrial and stadium applications remain economically impractical for farming environments [6].

To address these challenges, this paper proposes an automated crop protection system for open-field agriculture. The system integrates rainfall and soil moisture sensors with a smart control unit to automatically deploy a dual-side retractable waterproof canopy when threshold conditions are exceeded. The structure is supported by height-adjustable poles, allowing adaptability to different crop heights and growth stages. The system ensuring reliable operation in rural and off-grid locations [1]-[7]. Design feasibility is validated through mechanical and energy calculations, including canopy load, motor torque. Experimental analysis demonstrates rapid canopy deployment upon rainfall detection, significantly reducing crop exposure. Owing to its modular and scalable design, the proposed system is suitable not only for agriculture but also for applications such as nurseries, open storage areas, warehouses, and temporary shelters [8].

II. PROBLEM STATEMENT

Farmers today are facing increasing uncertainty because rainfall has become more sudden and unpredictable. Heavy rain often comes without warning and causes serious damage to open-field crops. It leads to waterlogging, washes away

fertile soil, and creates conditions for crop diseases to spread. All of this directly affects crop health, reduces yield, and increases financial stress for farmers. Since open fields are fully exposed to nature, crops remain unprotected when timely action is not taken. The methods that farmers currently use for protection, such as greenhouses, shade nets, and manual covers, are not always practical. They are expensive to set up, need a lot of labour, and cannot be deployed quickly when rain starts suddenly. In large open fields, these methods become even more difficult to manage because of their rigid structure and limited flexibility [9-51]. As a result, farmers often fail to protect their crops at the right time and suffer avoidable losses. What is really needed is a simple, reliable, and automatic system that can protect crops as soon as rainfall begins. Such a system should work without human effort, respond instantly to weather changes, and be affordable for farmers. It should fit naturally into open-field farming without disturbing daily agricultural activities. The main problem addressed in this project is to create a solution that gives farmers timely protection, reduces their workload, and helps safeguard their crops from unexpected rainfall in a practical and farmer-friendly way.

III. LITERATURE SURVEY

Climate change has increased the frequency and intensity of extreme rainfall events [1]. These events severely affect open-field agriculture by causing waterlogging, soil erosion, and crop diseases. As a result, crop productivity decreases and farmers face higher economic losses. This situation highlights the need for effective crop protection systems [2]. Traditional crop protection methods such as greenhouses, shade nets, and manual covers offer limited protection. They involve high installation costs, depend heavily on labor, and respond slowly to sudden rainfall. In addition, these systems are not suitable for large open fields due to rigid structures and poor adaptability [3].

The proposed system is designed with height-adjustable side poles, allowing it to grow along with the crops. When the crops are young, the poles are kept at a lower height, and as the plants grow taller, the poles can be raised easily. This prevents the canopy from touching or damaging the crops while still giving full protection from rain. At the same time, enough sunlight and airflow are maintained. This simple adjustment makes the system flexible, easy to use, and truly farmer-friendly [1]-[7].

Advancements in agriculture have enabled the use of sensor-based monitoring systems for precision farming [4]. Rainfall, soil moisture, and environmental sensors have been extensively studied for irrigation scheduling and crop health monitoring [5]. Although these systems improve water-use efficiency and decision-making, they mainly focus on irrigation management and lack direct physical protection for crops during excessive rainfall conditions [6]. Automated and retractable canopy systems have been explored in civil and industrial applications, particularly for roof and shelter mechanisms, demonstrating effective weather protection and structural reliability [8]. However, these systems typically involve complex mechanical designs and high capital investment, making them impractical for agricultural deployment. Additionally, their fixed structural height limits adaptability to different crop growth stages. The literature shows that existing crop protection methods are costly, labor-intensive, and slow to respond to sudden weather changes [9]. Greenhouses are unsuitable for open-field farming due to rigid structures and high installation costs, while most sensor-based systems focus only on irrigation [10]. This reveals the need for an affordable and automated solution that provides direct crop protection in open fields.

IV. PROJECT DESCRIPTION

This project presents the development of an Automated Canopy System that acts as a reliable and intelligent protection layer for crops and various outdoor environments. It is designed to address the growing challenge of unpredictable weather conditions, especially sudden rainfall, which often causes serious damage to open-field crops and outdoor infrastructure. The main goal of the project is to provide a system that can respond instantly to environmental changes and offer protection without requiring continuous human involvement. The system works by continuously monitoring the surroundings through rain, light, and wind sensors. These sensors function like the senses of the system, always observing the environment and identifying any unfavourable conditions. When rainfall is detected, the sensors immediately send signals to the control unit, which serves as the brain of the system. The control unit processes the information and automatically decides the necessary action. This quick decision-making ability ensures that the canopy is deployed at the right time, even during sudden and unexpected rainfall.

Once activated, motorized rollers smoothly extend a waterproof canopy over the crops or protected area. The canopy material is chosen to be lightweight, durable, and resistant to harsh weather, ensuring long-term reliability. The support structure, built using cement poles and metal rods, provides strong stability and prevents tilting or imbalance. This strong framework ensures even load distribution, especially during heavy rainfall, and allows the canopy to operate safely and smoothly. Rollers installed at the top help maintain proper coordination between the motor and the canopy movement, ensuring accurate and efficient extension and retraction. The system also includes well-designed drainage channels that guide rainwater away from the canopy surface. This prevents water accumulation, reduces the risk of structural damage, and minimizes soil erosion and waterlogging in the field. Such water management plays an important role in protecting crop health and maintaining soil quality.

When the rainfall stops, the sensors detect the change in weather conditions and notify the control unit. The system then automatically retracts the canopy, allowing natural sunlight and airflow to reach the crops. This helps maintain proper temperature and humidity levels, preventing excessive moisture buildup and supporting healthy plant growth. The entire process happens automatically, reducing the need for manual supervision and labour. In addition, the project integrates IoT connectivity, enabling remote monitoring and control of the system. Users can observe system status, collect environmental data, and optimize performance over time based on real-world weather patterns. This feature makes the system smarter and more adaptable for future improvements.

Although the primary focus of the project is agriculture, its design is flexible enough to be applied in many other areas such as smart homes, construction sites, logistics hubs, military installations, and solar farms. Anywhere protection from environmental exposure is needed, this system can serve as a practical solution. Overall, this project combines real-time sensing, intelligent automation, mechanical stability, and smart connectivity to create a complete and dependable protection system. It not only safeguards crops and outdoor spaces but also reduces human effort, improves efficiency, promotes sustainability, and offers a forward-looking solution to modern environmental challenges.

V. OBJECTIVE OF SYSTEM

- To design and develop an Automated Canopy System that provides timely and reliable protection against sudden and unpredictable weather conditions, especially rainfall.
- To minimize crop damage and reduce economic losses by enabling automatic deployment of the canopy without manual intervention.
- To continuously monitor environmental conditions using rain, light, and wind sensors for real-time response and quick decision-making.
- To ensure fast and efficient operation of the system through automated control and motorized mechanisms.
- To develop a strong and durable structural framework that can withstand harsh outdoor conditions and ensure long-term reliability.
- To reduce labour dependency by automating the entire process of canopy deployment and retraction.
- To provide proper water management using drainage channels to prevent water accumulation, soil erosion, and waterlogging.
- To integrate IoT connectivity for remote monitoring, control, and data-driven optimization of the system.
- To design a system that is simple to operate, cost-effective, and user-friendly for farmers and other users.
- To make the system versatile so that it can be applied not only in agriculture but also in smart homes, construction sites, logistics infrastructure, military setups, and solar farms.
- To promote sustainability by protecting natural resources, improving crop productivity, and encouraging smart use of technology in outdoor environments.

VI. ADVANTAGES & APPLICATION

Advantages:

- It provides instant protection by automatically covering crops as soon as rainfall is detected.
- It reduces crop damage caused by waterlogging, soil erosion, and heavy rain impact.

- It minimizes manual effort and saves farmers from constant monitoring and physical work.
- It helps maintain a healthy crop environment by allowing sunlight and airflow after rainfall.
- It improves water management through proper drainage channels that prevent water accumulation.
- It reduces long-term costs by lowering crop losses and labour expenses.
- It ensures reliable performance due to its strong structure and durable materials.
- It allows remote monitoring and control through IoT integration.
- It is easy to operate and user-friendly for farmers and other users.
- It is versatile and can be used in agriculture, smart homes, construction sites, solar farms, and more.
- It supports sustainability by protecting natural resources and promoting efficient farming practices
- It gives farmers peace of mind by providing continuous, automatic protection against unpredictable weather.

Applications:

- It protects crops in open fields from sudden rain and weather damage.
- It covers terraces, balconies, and parking areas in smart homes.
- It keeps materials and equipment safe at construction sites.
- It protects goods during loading and unloading in open warehouses.
- It safeguards solar panels and systems in solar farms.
- It provides quick shelter for outdoor events and public spaces.
- It protects vehicles in open parking areas.
- It supports protection of camps and equipment in military and defence areas.
- It shields outdoor machinery in industrial setups.
- It is useful in schools and research farms for practical learning and testing.

VII. RESULTS AND DISCUSSION

This project shows that crops can be protected quickly and effectively using an automated system. It reduces crop damage, saves farmers' time and effort, and works well in open fields. Unlike costly greenhouses and manual methods, it offers a simple, reliable, and farmer-friendly solution for direct crop protection.

Results :

- The system responded quickly to sudden rainfall and protected crops effectively.
- Crop damage was noticeably reduced compared to manual methods.
- Dependence on manual labour was minimized through automation.
- The solution worked well in open-field conditions.
- Excess water exposure to crops was significantly controlled.
- The system operated reliably during unpredictable weather.
- Time and effort of farmers were saved.

Discussion :

- Fast response shows the advantage of automation over manual crop protection.
- Reduced crop damage highlights the practical value of the system for farmers.
- Lower labour dependency makes the solution more convenient and safer to use.
- Suitability for open fields makes it a better alternative to greenhouses.
- Controlling water exposure supports better crop health and productivity.
- Reliable performance proves the system can handle real farming conditions.
- Overall, the project shows strong potential as a cost-effective and efficient crop protection method.

VIII. WORKING OVERVIEW

The system works like a smart helper for farmers. It continuously monitors the weather conditions using sensors. When sudden rainfall is detected, the system automatically activates the protective canopy to cover the crops. This quick action prevents direct damage from heavy rain and excess water. Once the weather becomes normal, the canopy retracts on its own. In this way, the system protects crops without the need for manual effort and ensures timely, reliable protection in open-field farming.

- The Automated Canopy System operates using real-time environmental sensing and automated mechanical control.
- Rain sensors continuously monitor the surroundings and detect the presence of rainfall.
- Once rainfall is detected, the sensors send signals to the control unit (power house).
- The control unit processes this input and decides the required action instantly.
- It then activates the motorized rollers connected to the shade net deployment system.
- The motors extend the protective canopy to cover crops or outdoor areas during rainfall.
- The canopy structure is supported by strong cement poles and rods, ensuring stability and preventing tilting.
- This support system allows even load distribution, ensuring smooth and perfect canopy opening.
- Rollers placed at the top end ensure proper coordination and smooth movement during shade net roll-in and roll-out.
- The automated action provides quick and reliable protection without any manual intervention.
- When the rainfall stops, the system automatically retracts the shade net.
- Retracting the canopy allows sunlight and airflow to reach the crops again.
- This helps in preventing excessive humidity and reduces the risk of crop diseases.
- Water runoff channels guide rainwater away efficiently.
- These channels reduce soil erosion and prevent waterlogging in the field.
- The system improves crop safety while maintaining proper soil and environmental conditions.
- Its design makes it suitable not only for agriculture but also for construction sites, logistics areas, military applications, and solar farms.
- By reducing manual effort and responding automatically to environmental changes, the system enhances efficiency.
- Overall, the Automated Canopy System promotes better crop protection, sustainability, and smarter resource management.

IX. CONCLUSION

The Automated Canopy System proves to be an effective and practical solution for protecting crops from sudden and unpredictable rainfall. By combining real-time environmental sensing with automated mechanical control, the system ensures quick and reliable deployment of the protective canopy without any manual effort. This timely response significantly reduces crop damage, prevents excessive water exposure, and maintains a healthier growing environment. The strong support structure with cement poles, rods, and coordinated roller mechanisms provides stability, smooth operation, and even load distribution, ensuring long-term reliability. The automatic retraction of the canopy after rainfall allows proper sunlight and airflow, preventing humidity-related issues and supporting better crop growth. Additionally, the inclusion of water runoff channels helps manage rainwater efficiently, reducing soil erosion and waterlogging.

Beyond agriculture, the system's versatility makes it suitable for various applications such as construction sites, logistics infrastructure, military areas, and solar farms. Overall, the project demonstrates a smart, sustainable, and farmer-friendly approach that enhances efficiency, reduces labour dependency, and offers a modern solution for effective crop and infrastructure protection.

X. FUTURE SCOPE

Smart Mobile Control:

The system can be connected to a mobile app, allowing farmers to monitor and control the canopy from anywhere.

Weather Forecast Integration:

By linking with weather forecasting services, the canopy can be activated in advance, even before rainfall begins.

Energy-Efficient Power Options:

Introducing solar or hybrid power systems can make the project eco-friendlier and more cost-effective.

Advanced Environmental Monitoring:

Adding temperature and humidity sensors can help in maintaining an ideal growing environment for crops.

Scalability for Large Farms:

The design can be upgraded to cover larger fields and support commercial-scale farming.

Stronger and Lighter Materials:

Using modern materials can improve durability while reducing overall weight and maintenance costs.

Wind and Storm Protection:

The system can be enhanced to respond to strong winds, providing better protection during storms.

Data-Based Farming Support:

Collected data can be analysed to guide farmers in improving crop management and productivity.

Crop-Specific Customization:

The canopy operation can be adjusted based on the needs of different crops.

Expansion to Other Sectors:

The system can be adapted for use in construction sites, logistics areas, solar farms, and other outdoor events.

REFERENCES

- [1] Reddy, P. Parvatha. "Impacts of climate change on agriculture." In *Climate resilient agriculture for ensuring food security*, pp. 43-90. New Delhi: Springer India, 2014.
- [2] Ahmed, Niaz, Sajid Masood, Shakeel Ahmad, Safdar Bashir, Sajjad Hussain, Waseem Hassan, Rafiq Islam Khandekar, Baqir Hussain, and Muhammad Arif Ali. "Soil management for better crop production and sustainable agriculture." In *Agronomic Crops: Volume 2: Management Practices*, pp. 47-71. Singapore: Springer Singapore, 2019.
- [3] Gullino, M. Lodovica, Ramon Albajes, and Joop C. van Lenteren. "Setting the stage: characteristics of protected cultivation and tools for sustainable crop protection." *DEVELOPMENTS IN PLANT PATHOLOGY* (1999): 1-15.
- [4] Hazmy, Asa Ibnu, Ammar Hawbani, Xingfu Wang, Ahmed Al-Dubai, Aiman Ghannami, Ali Abdullah Yahya, Liang Zhao, and Saeed Hamood Alsamhi. "Potential of satellite-airborne sensing technologies for agriculture 4.0 and climate-resilient: A review." *IEEE Sensors Journal* 24, no. 4 (2023): 4161-4180.
- [5] Selvam, Avines Panneer, and Safaa Najah Saud Al-Humairi. "Environmental impact evaluation using smart real-time weather monitoring systems: a systematic review." *Innovative Infrastructure Solutions* 10, no. 1 (2025): 1-24.
- [6] Makhdoom, Imran, Justin Lipman, Mehran Abolhasan, and Duncan Challen. "Science and Technology Parks: A futuristic approach." *IEEE Access* 10 (2022): 31981-32021.
- [7] Selvam, Avines Panneer, and Safaa Najah Saud Al-Humairi. "Environmental impact evaluation using smart real-time weather monitoring systems: a systematic review." *Innovative Infrastructure Solutions* 10, no. 1 (2025): 1-24.
- [8] Zarko, Damir, Stjepan Stipetic, Marijan Martinovic, Marinko Kovacic, Tino Jercic, and Zlatko Hanic. "Reduction of computational efforts in finite element-based permanent magnet traction motor optimization." *IEEE Transactions on Industrial Electronics* 65, no. 2 (2017): 1799-1807.
- [9] Mishra, Harshit, Rashmi Mishra, Ioannis Adamopoulos, Fredrick Kayusi, Muhammad Yousaf Raza, and Hasnain Shamshad. "Farmers' Beliefs and Concerns About Climate Change and Their Adaptation Behaviour to Combat Climate Change." In *Climate Resilient and Sustainable Agriculture: Volume 1: Adaptation and Mitigation Strategies*, pp. 311-355. Cham: Springer Nature Switzerland, 2025.
- [10] Argento, S., G. Garcia, and S. Treccarichi. *Sustainable and Low-Input Techniques in Mediterranean Greenhouse Vegetable Production. Horticulturae* 2024, 10, 997. 2024.

[11] Khadake, S., Kawade, S., Moholkar, S., Pawar, M. (2024). A Review of 6G Technologies and Its Advantages Over 5G Technology. In: Pawar, P.M., et al. Techno-societal 2022. ICATSA 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-34644-6_107.

[12] V. J. Patil, S. B. Khadake, D. A. Tamboli, H. M. Mallad, S. M. Takpere and V. A. Sawant, "Review of AI in Power Electronics and Drive Systems," 2024 3rd International conference on Power Electronics and IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, 2024, pp. 94-99, doi: 10.1109/PARC59193.2024.10486488

[13] A BalkrishnaDudgikar, A Ahmad Akbar Ingalmi, A GensidhaJamadar et al., "Intelligent battery swapping system for electric vehicles with charging stations locator on IoT and cloud platform", International Journal of Advanced Research in Science Communication and Technology, vol. 3, no. 1, pp. 204-208, January 2023. DOI: 10.48175/IJARSCT-7867. Available at: <https://ijarsct.co.in/Paper7867.pdf>

[14] S. B. Khadake and V. J. Patil, "Prototype Design & Development of Solar Based Electric Vehicle," 2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON), Bangalore, India, 2023, pp. 1-7, doi: 10.1109/SMARTGENCON60755.2023.10442455.

[15] V. J. Patil, S. B. Khadake, D. A. Tamboli, H. M. Mallad, S. M. Takpere and V. A. Sawant, "A Comprehensive Analysis of Artificial Intelligence Integration in Electrical Engineering," 2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), Lalitpur, Nepal, 2024, pp. 484-491, doi: 10.1109/ICMCSI61536.2024.00076.

[16] Suhas B. Khadake, Sudarshan P. Dolli, K.S. Rathod, O.P. Waghmare and A.V. Deshpande, "AN OVERVIEW OF INTELLIGENT TRAFFIC CONTROL SYSTEM USING PLC AND USE OF CURRENT DATA OF VEHICLE TRAVELS", JournalNX, pp. 1-4, Jan. 2021.

[17] Shraddha S Magar, Archana S Sugandhi, Shweta H Pawar, Suhas B Khadake, H. M. Mallad, "Harnessing Wind Vibration, a Novel Approach towards Electric Energy Generation- Review", IJARSCT, Volume 4, Issue 2, October 2024, pp. 73-82. DOI: 10.48175/IJARSCT-19811.

[18] Khadake, S. B., Padavale, P. V., Dhere, P. M., & Lingade, B. M., "Automatic hand dispenser and temperature scanner for Covid-19 prevention", International Journal of Advanced Research in Science, Communication and Technology, 3(2), 362-367. DOI: 10.48175/IJARSCT-11364. <https://ijarsct.co.in/A11364.pdf>

[19] Seema S Landage, Sonali R Chavan, Pooja A Kokate, Sonal P Lohar, M. K. Pawar, Suhas B Khadake, "Solar Outdoor Air Purifier With Air Quality Monitoring System", Synergies Of Innovation: Proceedings Of Ncstem 2023, Pp. 260-266, September, 2024. Available At: https://www.researchgate.net/publication/383631190_Solar_Outdoor_Air_Purifier_with_Air_Quality_Monitoring_System

[20] Suhas B. Khadake. (2021). Detecting Salient Objects Of Natural Scene In A Video's Using Spatio-Temporal Saliency & Colour Map. Journalnx - A Multidisciplinary Peer Reviewed Journal, 2(08), 30–35. Retrieved From <Https://Repo.Journalnx.Com/Index.Php/Nx/Article/View/1070>

[21] Khadake Suhas .B. (2021). Detecting Salient Objects In A Video's By Using spatio-Temporal Saliency & Colour Map. International Journal Of Innovations In Engineering Research And Technology, 3(8), 1-9.<Https://Repo.Ijiert.Org/Index.Php/Ijiert/Article/View/910>.

[22] Prachi S Bhosale, Pallavi D Kokare, Dipali S Potdar, Shruti D Waghmode, V A Sawant, Suhas B Khadake, "DTMF Based Irrigation Water Pump Control System", Synergies Of Innovation: Proceedings Of NCSTEM 2023, Pp. 267-273, September, 2024. Available At: https://www.researchgate.net/publication/383629320_DTMF_Based_Irrigation_Water_Pump_Control_System

[23] Pramod Korake, Harshwardhan Murade, Rushikesh Doke, Vikas Narale, Suhas B. Khadake, Aniket S Chavan, "Automatic Load Sharing of Distribution Transformer using PLC", Synergies Of Innovation: Proceedings Of NCSTEM 2023, Pp. 253-259, September, 2024. Available At: https://www.researchgate.net/publication/383628063_Automatic_Load_Sharing_of_Distribution_Transformer_using_PLC

- [24] Suhas B khadake, Pranita J Kashid, Asmita M Kawade, Santoshi V Khedekar, H. M. Mallad ,“Electric Vehicle Technology Battery Management –Review”, International Journal of Advanced Research in Science, Communication and Technology, Volume 3, Issue 2, Septeber 2023,pp. 319-325. DOI: 10.48175/IJARSCT-13048. Available at: https://www.researchgate.net/publication/374263508_Electric_Vehicle_Technology_Battery_Management_-Review
- [25] Suhas B. khadake, Amol Chounde, Buddhapriy B. Gopnarayan, Karan Babaso Patil, Shashikant S Kamble. (2024). Human Health Care System: A New Approach towards Life, 15th International Conference on Advances in computing, Control, and Telecommunication Technologies, ACT 2024, 2024, 2, pp. 5487-5494.
- [26] Khadake SB, Patil VJ, Mallad HM, Gopnarayan BB, Patil KB. Maximize farming productivity through agriculture 4.0 based intelligence, with use of agri tech sense advanced crop monitoring system. Grenze Int J Eng Technol. 2024;10(2):5127–5134. Available At: https://www.researchgate.net/publication/382625572_Maximize_Farming_Productivity_through_Agriculture_40_based_Intelligence_with_use_of_Agri_Tech_Sense_Advanced_Crop_Monitoring_System
- [27] Suhas B Khadake, Santoshi V Khedekar, Asmita M Kawade, Shraddha Shivaji Vyavahare, Pranita J Kashid, Chounde Amol B, H. M. Mallad., “Solar Based Electric Vehicle Charging System-Review”, IJARSCT, vol. 4, Issue 2, December 2024, pp. 42-57, DOI: 10.48175/IJARSCT-22705
- [28] Akshay B Randive , Sneha Kiran Gaikwad , Suhas B Khadake , Mallad H. M., “Biodiesel: A Renewable Source of Fuel”, IJARSCT, vol. 4, Issue 3, December 2024, pp. 225-240, DOI: 10.48175/IJARSCT-22836 Available at: https://www.researchgate.net/publication/387352609_Biodiesel_A_Renewable_Source_of_Fuel
- [29] K. K. Sayyad Liyakat, S. B. Khadake, A. B. Chounde, A. A. Suryagan, M. H. M. and M. R. Khadatare, "AI-Driven-IoT(AIIoT) Based Decision Making System for High-Blood Pressure Patient Healthcare Monitoring," 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 2024, pp. 96-102, doi: 10.1109/ICSCNA63714.2024.10863954.
- [30] K. K. Sayyad Liyakat, S. B. Khadake, D. A. Tamboli, V. A. Sawant, M. H. M. and S. Sathe, "AI-Driven-IoT(AIIoT) Based Decision-Making- KSK Approach in Drones for Climate Change Study," 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS), Gobichettipalayam, India, 2024, pp. 1735-1744, doi: 10.1109/ICUIS64676.2024.10866450.
- [31] Suhas B khadake, Shraddha S Magar, Archana S Sugandhi, Shweta H Pawar, “ A Research Paper on Harnessing Wind Vibration Novel Approach towards Electric Energy Generation”, IJARSCT, Volume 5, Issue 4, May 2025, pp. 533-552. DOI: 10.48175/IJARSCT-26466. Available At: https://www.researchgate.net/publication/391857597_A_Research_Paper_on_Harnessing_Wind_Vibration_Novel_Approach_towards_Electric_Energy_Generation
- [32]. Avinash. A. Suryagan, Arti L Nemte, Kirti D Thorat, Suhas B Khadake,“ IoT Based Flood Monitoring System by using Thing Speak Cloud”, IJARSCT, Volume 5, Issue 4, May 2025, pp. 666-687. DOI: 10.48175/IJARSCT-26480
- [33]. Sagar M Chavare, Prasad P Nanaware, Shriprasad S Wagh, Ashish T Jadhav, Yeole Yogesh, Suhas B Khadake,“ Smart Plant Monitoring and Automated Irrigation System Using IOT”, IJARSCT, Volume 5, Issue 4, May 2025, pp. 688-706. DOI: 10.48175/IJARSCT-26481
- [34] Swapnil S Sudake, Suhas B Khadake, Santoshi V Khedekar, Asmita M Kawade, Shraddha S Vyavahare,“ Solar Based Wireless Electric Vehicle Charging System”, IJARSCT, Volume 5, Issue 5, May 2025, pp. 325-348. DOI: 10.48175/IJARSCT-26647
- [35] Manjeet Kumar, Shubhangi S Sul, Jyoti S Lakhara, Pranita J Kashid, Shravani R Bhinge, Amaraja S Waghmode, Suhas B Khadake,“ Small Wind Electric System Energy Saver”, IJARSCT, Volume 5, Issue 5, May 2025, pp. 447-466. DOI: 10.48175/IJARSCT-26663
- [36] Namrata Ganesh Jadhav , Pranjali R Nagane , Akanksha M Khapare , Arvind Pande , Suhas B Khadake,“Identify and Measuring Parameter of PV Module Test Bench with the Ammeter and Voltmeter”, IJARSCT, Volume 5, Issue 6, May 2025, pp. 5-24. DOI: 10.48175/IJARSCT-26702
- [37] Sujit N. Bhandare, Prashant R. Mule, Yogesh A. Yeole, Krushna D More, Suhas B. Khadake,“ Vehicle Tracking And Accident Alert System”, IJARSCT, Volume 5, Issue 6, May 2025, pp. 234-252. DOI: 10.48175/IJARSCT-26728

- [38] Manjeet Kumar, Suhas B Khadake, Madhuri S Doke, Shivani D Pujari, Pratiksha B Rupnar, " Sun Track: A Compact IoT System for PV Parameter Monitoring with NodeMCU", IJARSCT, Volume 5, Issue 9, May 2025, pp. 261-280. DOI: 10.48175/IJARSCT-27037
- [39] Nikita R Bhosale , Sakshi D Shete , Laxmi A Koganure ,Aditi A Gaikwad ,Vedhangi S Sukre , Suhas B Khadake, " Development of a Real-Time Hydrogen Level Detection System for Storage Cylinders", IJARSCT, Volume 5, Issue 4, June 2025, pp. 690-708. DOI: 10.48175/IJARSCT-27666
- [40] Bhinge Shravani Rajendra, Salunkhe Majushree Jayant, Tarse Mayuri Kundlik, Suhas B Khadake, B. B. Gopnarayan, Manisha P Bidve, " Smart Water Waste Collection System Using Bluetooth Control", IJARSCT, Volume 5, Issue 7, June 2025, pp. 561-578. DOI: 10.48175/IJARSCT-28072
- [42] K. K. Sayyad Liyakat, S. B. Khadake, P. S. More, R. J. Shinde, K. P. Konduhairi and S. S. Kamble, "AI-Driven IoT based Decision Making for Hepatitis Diseases Patient's Healthcare Monitoring: KSK Approach for Hepatitis Patient Monitoring," 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 256-263, doi: 10.1109/ICISS63372.2025.11076213.
- [43] K. K. Sayyad Liyakat, S. B. Khadake, K. Galani, K. B. Patil, A. Dhavale and S. D. Sarik, "AI-Powered-IoT (AIoT) based Bridge Health Monitoring using Sensor Data for Smart City Management- A KSK Approach," 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 296-305, doi: 10.1109/ICISS63372.2025.11076329.
- [44] Rani N Bhosale , Tejasri M Salunkhe , Sayali S Ghodake , Shruti S Deshpande ,Chandani N Kendale , Suhas B Khadake, " Smart Lawn Cutter using Solar and Bluetooth", IJARSCT, Volume 5, Issue 1, august 2025, pp. 158-171. DOI: 10.48175/IJARSCT-28618.
- [45] Ganesh Navnath Surwase, Ashish Tukaram Jadhav, Krushna Dinesh More, Ingudam Chitrasen Meitei, Suhas B Khadake, "Accident Detection and Alerting Using Embedded System", IJRSCT, Volume 5, Issue 2, October 2025, pp. 550-562. DOI: 10.48175/IJARSCT-29269.
- [35] Fogue, M., Piqueras, P., Martinez, F. J., & Calafate, C. T. (2014). A system for automatic notification and severity estimation of road accidents. *IEEE Transactions on Mobile Computing*, 13(5), 948–963.
- [36] Gupta, V., Chaudhary, G., & Kumar, M. (2018, February). IoT based vehicle accident detection and tracking system. In 2018 4th International Conference on Computing Communication and Automation (ICCCA) (pp. 1-5). IEEE.
- [37] Karthikeyan, P., & Muruganantham, B. (2016). Smart vehicle system for accident detection and notification. *Indian Journal of Science and Technology*, 9(38).
- [38] Kshirsagar, M., & Shingate, S. (2015). A review paper on accident detection and reporting system using GPS and GSM. *International Journal of Advanced Research in Computer and Communication Engineering*, 4(2), 273-275.
- [39] Patil, P., Deore, S., & Ahire, P. (2016). Accident detection and alert system. *International Journal of Recent Trends in Engineering & Research*, 2(4), 384-389.
- [40] Prathyusha, K., & Kumar, T. A. (2014). Vehicle accident detection and tracking system using GPS and GSM. *International Journal of Engineering Trends and Technology*, 10(11), 570–574.
- [41] Sathish, K., Kumar, Y. V. P., & Ahmed, S. T. (2021). An IoT-based intelligent accident detection system with smart alert generation and cloud data management. In *Data Engineering and Communication Technology* (pp. 431-439). Springer, Singapore.
- [42] Thompson, C., White, J., Dougherty, B., Albright, A., & Schmidt, D. C. (2010, November). Using smartphones to detect car accidents and provide situational awareness to emergency responders. In *Proceedings of the 8th international conference on mobile systems, applications, and services* (pp. 179-192).
- [43] Kutubuddin, KSK Approach in LOVE Health: AI-Driven- IoT(AIIoT) based Decision Making System in LOVE Health for Loved One, GRENZE International Journal of Engineering and Technology, 2025, 11(1), pp. 4628-4635. Grenze ID: 01.GIJET.11.1.371_1
- [44] Kazi Kutubuddin Sayyad Liyakat. Multimedia Technology in Healthcare: A Study. *Journal of Multimedia Technology & Recent Advancements*. 2025; 12(1): 23–29p.

- [45] Kazi Kutubuddin Sayyad Liyakat. TensorFlow- Based Big Data Analytics for IoT Networks: A Study. International Journal of Data Structure Studies. 2025; 3(1): 32–40p.
- [46] Kazi Kutubuddin Sayyad Liyakat. Brand Protection Using Machine Learning: A New Era. E-Commerce for Future & Trends. 2025; 12(1): 33-44p.
- [47] Dhanve and Liyakat, "Machine Learning Forges a New Future for Metal Processing: A Study," International Journal of Artificial Intelligence in Mechanical Engineering, vol. 1, no. 1, pp. 1-12, Mar. 2025.
- Kutubuddin Sayyad Liyakat. e-Skin Applications in Healthcare and Robotics: A Study. Journal of Advancements in Robotics. 2025; 12(1):13 –21p.
- [48] Kutubuddin Sayyad Liyakat. Millimeter Wave in Internet of Things Connectivity: A Study. International Journal of Wireless Security and Networks. 2025; 03(01):13-23.
- [49] Kutubuddin Sayyad Liyakat. TensorFlow-Based Big Data Analytics for IoT Networks: A Study. International Journal of Data Structure Studies. 2025; 03(01):31-38.
- Kutubuddin Sayyad Liyakat. Multimedia Technology in Healthcare: A Study. Journal of Multimedia Technology & Recent Advancements. 2025; 12(01):23-29.
- [50] Jatin M. Patil, "Robotic Surgery using AI-Driven-IoT Based Decision Making for Safety: A Study" International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, vol. 1, no. 1, pp. 35-44, Mar. 2025.
- [51] K. K. S. Liyakat,(2025). VHDL Programming for Secure True Random Number Generators in IoT Security, Research & Review: Electronics and Communication Engineering, vol. 2, no. 1, pp. 38-47, Mar. 2025.