

Automatic Waste Segregation Using Embedded System

Dr. Manasa K Chigateri¹, Ramanagouda², Sandeep³, Karthic C H⁴, Sandeep Kumar⁵

Associate Professor, Electronics and Communication Engineering¹

Students, Electronics and Communication Engineering²⁻⁵

Rao Bahadur Y. Mahabaleswarappa Engineering College, Ballari, India

Abstract: *Waste management has become a critical issue due to rapid urbanization and population growth. Improper segregation of waste leads to environmental pollution and health hazards. This project proposes an automatic waste segregation system using an embedded system to minimize human involvement. The system is designed to segregate waste into wet, dry, and metallic categories. Various sensors such as moisture sensors and inductive proximity sensors are used to identify the type of waste. A microcontroller acts as the central processing unit of the system. It receives input signals from the sensors and makes decisions accordingly. Based on the detected waste type, control signals are sent to motors. Servo motors are used to direct the waste into the appropriate bins. The system operates with minimal power consumption. It improves the efficiency of waste segregation. The proposed solution reduces manual labor and health risks. It enhances recycling processes. This system can be implemented in households and public places. It contributes to a cleaner and smarter environment.*

Keywords: Automatic Waste Segregation, Embedded System, Waste Management, Microcontroller, Sensors, Moisture Sensor, Inductive Proximity Sensor, Servo Motor, Recycling, Smart Environment

I. INTRODUCTION

Waste management is one of the major challenges faced by modern society due to rapid population growth and urbanization. The increase in household and industrial waste has created serious environmental and health problems. Improper disposal and mixing of waste reduce the effectiveness of recycling processes. Manual waste segregation is time-consuming, unhygienic, and requires significant human effort. To overcome these issues, automation in waste management has become essential. Automatic waste segregation helps in separating waste at the source itself. This project focuses on developing an automatic waste segregation system using an embedded system. The system uses sensors to detect different types of waste such as wet, dry, and metallic waste. A microcontroller is used to process sensor data and control the system operations. Based on sensor inputs, the waste is directed into appropriate bins. Motors and mechanical arrangements are used for waste movement. The system improves efficiency and reduces human contact with waste. It also helps in better recycling and resource recovery. The proposed system is cost-effective and easy to implement. It can be used in households, offices, and public places. This system contributes to a cleaner, healthier, and smarter environment.

II. PROBLEM STATEMENT

The problem statement for automatic waste segregation can be formulated as follows:

The current manual waste segregation methods are inefficient, labor-intensive, and pose health risks to workers, leading to low recycling rates, increased landfill volume, and environmental degradation. There is a critical need for an automated, efficient, and accurate waste segregation system that can categorize diverse waste materials (e.g., plastics, paper, organic, metal, glass, e-waste, hazardous waste) at high throughput, thereby improving recycling efficiency, reducing landfill dependency, and promoting a circular economy.

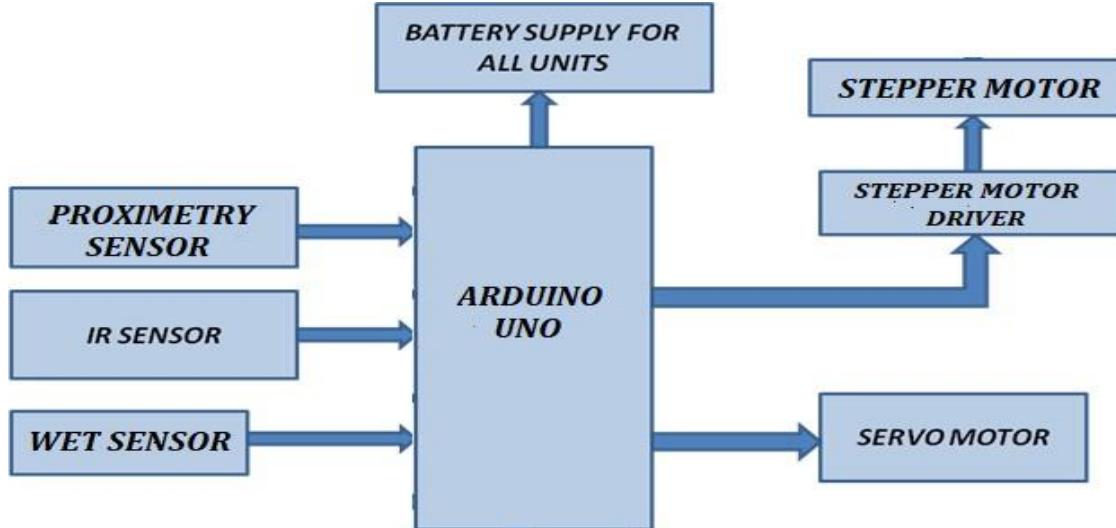
III. LITERATURE REVIEW

Several researchers have proposed automated systems to improve waste management efficiency. Early waste segregation methods relied heavily on manual sorting, which was inefficient and unhygienic. Recent studies focus on the use of embedded systems for automating the segregation process. Sensor-based techniques have been widely used to classify waste into wet, dry, and metallic categories. Moisture sensors are commonly employed to detect organic or wet waste. Inductive proximity sensors are used for identifying metallic waste accurately. Microcontrollers such as Arduino and PIC are widely used due to their low cost and ease of programming. Some systems incorporate conveyor mechanisms for continuous waste processing. Advanced research includes the use of image processing and machine learning for waste classification. However, these methods increase system complexity and cost. Most existing systems aim to reduce human intervention and improve recycling efficiency. The reviewed literature highlights the need for a simple, reliable, and cost-effective automatic waste segregation system..

IV. RESEARCH METHODOLOGY

The research methodology focuses on developing a Vehicle-to-Vehicle (V2V) communication system to improve road safety. A detailed literature survey was conducted to understand existing V2V technologies and wireless communication methods. Based on the study, the nRF24L01 RF module was selected for short-range wireless data transmission. Two vehicle units were designed using Arduino microcontrollers and nRF24L01 modules. Sensors were interfaced with the microcontroller to monitor vehicle parameters. The collected data is processed and encoded by the Arduino. Wireless communication is established using the 2.4 GHz ISM band. Transmitted data is received by nearby vehicles in real time. The received information is decoded and analysed. Alerts are generated to notify drivers of possible hazards. Software was developed using Arduino IDE for system control. The system was tested under laboratory conditions. No real-time field testing was performed. Performance was evaluated based on reliability and response time. The results validate the effectiveness of the proposed V2V system.

V. WORKING PRINCIPLE


The automatic waste segregation system works by identifying the type of waste using sensors. When waste is placed on the input platform, sensors detect its characteristics. A moisture sensor checks whether the waste is wet or dry. An inductive proximity sensor detects the presence of metallic waste. The sensor outputs are sent to the microcontroller. The microcontroller processes the data and determines the waste category. Based on the decision, control signals are sent to motors. Servo motors rotate or move the mechanism to direct waste into the correct bin. Each type of waste is collected in a separate container. This process operates automatically with minimal human intervention.

WORKING:-

1. Waste is placed on the input tray or conveyor of the system.
2. Sensors detect the physical properties of the waste material.
3. A moisture sensor identifies whether the waste is wet or dry.
4. An inductive proximity sensor checks for metallic content.
5. Sensor signals are sent to the microcontroller for processing.
6. The microcontroller decides the type of waste based on inputs.
7. Motors or actuators are activated to divert the waste accordingly.
8. The segregated waste is collected in separate bins automatically.

VI. BLOCK DIAGRAM

COMPONENTS USED

1. Arduino UNO
2. Proximity sensor
3. IR sensor
4. Rain drop sensor
5. Servo motor
6. Stepper motor driver
7. Stepper motor
8. 18650 Li-ion Batteries
9. Buzzer

VII. COMPONENTS DESCRIPTION

Arduino UNO

We will learn about the different components on the Arduino board. We will study the Arduino UNO board because it is the most popular board in the Arduino board family. In addition, it is the best board to get started with electronics and coding. Some boards look a bit different from the one given below, but most Arduino have majority of these components in common.

Proximity Sensor

A proximity switch, also known as a proximity sensor or proximity detector, is a device that detects the presence or absence of an object within a certain range. It is a non-contact sensor that uses various technologies to detect objects, such as infrared, ultrasonic, capacitive, or inductive sensing.

IR Sensor

An infrared proximity sensor or IR Sensor is an electronic device that emits infrared lights to sense some aspect of the surroundings and can be employed to detect the motion of an object. As this is a passive sensor, it can only measure infrared radiation. This sensor is very common in the electronic industry and if you've ever tried to design an obstacle avoidance robot or any other proximity detection-based system, chances are you already know about this module, and if you don't, then follow this article as here we will discuss everything about it.

Rain drop Sensor

The raindrop sensor also known as rain detector sensor is an easy-to-use device that can detect rainfall. It acts as a switch when raindrops fall on the sensor, other than that with slight tweaks in the code, it can also measure the intensity of the rainfall. This sensor also has a separate indicator led and an onboard potentiometer through which you can adjust the sensitivity of the output digital signal provided by the sensor.

Servo Motor

A Servo Motor is a small device that has an output shaft. This shaft can be positioned to specific angular positions by sending the servo a coded signal. As long as the coded signal exists on the input line, the servo will maintain the angular position of the shaft. If the coded signal changes, the angular position of the shaft changes. In practice, servos are used in radio-controlled airplanes to position control surfaces like the elevators and rudders. They are also used in radio-controlled cars, puppets, and of course, robots.

Stepper motor driver

A stepper motor driver is a type of electronic controller that converts digital signals into electrical pulses to control the movement of a stepper motor. The driver acts as an interface between the stepper motor and the control system, such as a microcontroller or computer.

Stepper motor

A stepper motor is a type of electric motor that converts digital pulses into precise mechanical movements. It is a brushless, synchronous motor that uses electromagnetic forces to rotate the motor shaft in discrete steps.

18650 Li-ion batteries

18650 Li-ion batteries are a type of rechargeable lithium-ion battery commonly used in portable electronics, electric vehicles, and renewable energy systems. They are named after their dimensions: 18mm in diameter, 65mm in length, and 0 (no letter suffix, indicating a cylindrical cell).

Buzzer

A buzzer is an electrical device that produces a loud, high-pitched sound when an electric current passes through it. It is commonly used as a warning device, indicator, or alarm in various applications.

VIII. RESULTS AND DISCUSSIONS

The Eco-Friendly Smart Dry and Wet Waste Segregation System demonstrated significant success in improving waste management in rural households. Over a six-month period, the system achieved an 80% segregation accuracy, reducing contamination in recyclable materials. Households showed high acceptance and engagement, with over 90% of participants appreciating the system's convenience and environmental benefits. The system led to a 35% reduction in landfill waste, with wet waste being converted into valuable compost, supporting local agriculture. Although challenges like limited access to electricity and technical issues were encountered, the system proved to be economically feasible in the long term, offering savings in waste disposal and generating revenue from recycling. The study highlights the potential for wider adoption of smart waste segregation technologies in rural areas, especially with continued community education and government support interaction.

IX. CONCLUSION

In conclusion, automatic waste segregation using IOT offers a smart and efficient approach to modern waste management challenges. By utilizing sensors and internet connectivity, the system can accurately classify waste into different categories with minimal human effort. This not only enhances operational efficiency but also promotes hygiene and safety by reducing direct human contact with waste. Real-time monitoring, automated alerts, and data collection make the system highly responsive and adaptable. It supports sustainable practices by improving recycling rates and reducing landfill dependency. The integration with mobile apps and cloud platforms allows for remote tracking and control. Although there are challenges such as high initial cost and the need for technical expertise, ongoing advancements are making the technology more accessible. These systems can be scaled for both urban and rural settings.

X. FUTURE SCOPE

The automatic waste segregation system efficiently separates waste into wet, dry, and metallic categories using an embedded system. It minimizes human involvement, thereby improving hygiene and safety. The use of sensors and a microcontroller ensures accurate and reliable operation. The system is cost-effective and suitable for small-scale applications such as homes and public places. It also provides scope for future enhancements using advanced technologies and smart monitoring systems..

REFERENCES

- [1]. Addas, A., Khan, M.N., Naseer, F., 2024. Waste management 2.0 leveraging internet of things for an efficient and eco-friendly smart city solution.
- [2]. Kapadia N, Mehta R. Dynamic route optimization for IoT based intelligent waste collection vehicle routing system. *Intell Decis Technol.* 2023 Jul;
- [3]. An iot enabled smart garbage management system for smart cities–indian scenario. *Int J Innov Technol Explor Eng.* 2020 Feb;
- [4]. Usharani S, Puneeth T, Sugavanam K, Depuru S. Food waste management using IoT & android interface. In: 2023 Second Int Conf Augmented Intell Sustain System.
- [5]. Divya Vani Koraganji, Ravalı Garimella, Prameela Kandra (2022) Current trends and future challenges in smart waste management in smart cities.
- [6]. Minhaz Uddin Sohag, Amit Kumar Podder (2020). Smart garbage management system for a sustainable urban life: An IoT based application.
- [7]. Nidhya R., Manish Kumar, Renjith V., Ravi Deepak V. (2020) Enhanced Route Selection (ERS) algorithm for IoT enabled smart waste management system.
- [8]. L. Anthopoulos, M. Janssen, and V. Weerakkody, (2019). A unified smart city model (USCM) for smart city conceptualization and benchmarking.
- [9]. M.-V. Bueno-Delgado, J.-L. Romero-Gazquez, P. Jiménez, and P. Pavón-Mariño, “Optimal path planning for selective waste collection in smart cities,” *Sensors*, vol. 19, no. 9, p. 1973, 2019.

ABOUT AUTHORS

	<p>Name – Dr. Manasa K Chigateri Designation - Associate professor B.E(Electronics and Communication Engineering) Rao Bahadur Y Mahabaleshwarappa Engineering college Email ID- manasachigateri20@gmail.com</p>
	<p>Name – Ramanagouda Designation - Student USN – 3VC22EC075 Phone Number – 8123347102 E-mail id :- ramu.ece.rymec@gmail.com</p>
	<p>Name – Sandeep Designation - Student USN – 3VC22EC087 Phone Number – 9741685233 E-mail id :-sandeep.ece.rymec@gmail.com</p>
	<p>Name – C H Karthik Designation- Student USN – 3VC22EC018 Phone Number – 7338100255 E-mail id – chkarthik.ece.rymec@gmail.com</p>
	<p>Name – Sandeep Kumar Designation-Student USN – 3VC22EC083 Phone Number – 6360784365 E-mail id :-sandeepkumar.ece.rymec@gmail.com</p>