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Abstract: The DNA cryptography stores data in DNA's big space, many parts in parallel, and variability 

inside DNA parts, that makes it very secure. Large Language Models are good at creating and finding 

patterns in data, which constitutes their smartness and ability for continuous improvement overtime. 

Putting these two tools together solves problems in how to make keys, fix errors, and stay strong against 

new threats. Genome LM uses tokenization and transformer architecture for DNA encoding. Expected 

benefits are the increased key entropy, increased brute-force and statistical attack resistance, and 

improved error correction during decryption. But the impact of this discovery goes further than. First, 

this single use case yields revolutionary results for cloud computing. Medicine and finance alike, because 

it allows one to create a quick future- proof and scalable encryption method that is required for the 

constrained in resources; Internet of things IoT and edge devices. 
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I. INTRODUCTION 

Data security is a big concern in this world today because we have data all over the place from cloud data to health 

records, banking systems, IoT devices and the list goes on. The cloud contains archives of billions of people and 

companies, of the health care systems with most sensitive data of our patients, of the Internet of Things, which are 

constantly generating personal data. While at the same time, cyberattacks are growing a n d the threat environment is 

evolving, quantum computing poses a potentially existential threat to encryption. These challenges need future 

generation cryptographic solutions that are not only secure but are also scalable, adaptable, and able to handle new and 

changing cyberattacks. 

Traditional encryption algorithms such as RSA, AES, and ECC are based on complex mathematical problems. 

However, these may not be resistant to the power of a future quantum computer. In addition, previous systems have 

various weak points in the way keys are managed, data is stored, and difficult attacks are prevented. Moreover, they are 

not flexible enough to catch up and thus are less effective against new AI-driven cyberattacks. 

DNA cryptography provides a promising new approach that takes advantage of DNA's huge data capacity, natural 

parallel processing, built-in randomness, and biological complexity. This encoding of plain text data into DNA 

sequences results in unpredictable and highly complex patterns that are difficult for attackers to decode. Thus, DNA 

encryption provides further security outside of digital encryption. Large Language Models have demonstrated 

impressive abilities in generating sequences, recognizing patterns, and learning adaptively has made them ideal for 

analyzing and optimizing sequence-based data like DNA. 

LLMs are increasingly being used for the tasks of cryptanalysis, key generation, and enhancing encryption. 

algorithms, while in bioinformatics they showed a great potential for analyzing DNA and protein sequences. 

However, all the current DNA cryptography schemes suffer from crucial issues in key generation efficiency, error 

correction, and scalability. Although LLMs hold tremendous potential in sequence-based domains, they have 
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not been systematically used to enhance DNA cryptographic frameworks. This gap inspires the development of a 

hybrid model that brings together the unique strengths of DNA cryptography and LLMs. 

This gap inspires the development of a hybrid model that brings together the unique strengths of DNA cryptography 

and LLMs. This paper presents a novel hybrid cryptographic frame- work that combines DNA encoding schemes with 

the LLM- guided key generation and error correction. The approach shows how LLMs can enhance the randomness, 

adaptability, and robustness of DNA-based encryption. The framework is evaluated against traditional DNA-only 

cryptography methods in terms of security, scalability, and decryption accuracy, highlighting its potential as a future 

generation solution for secure and safe communication. 

DNA cryptography [1] [2] continues to be an evolving field that combines biological characteristics with computer 

science and cryptographic principals to achieve secure information encryption using the properties of DNA molec- ules. 

DNA is the basic life element which uses sequences of four nucleotides, which consist of adenine (A), cytosine (C), 

guanine (G) and thymine (T) components to form binary data sequences. The unique ability to encode large amount of 

information makes DNA as an exceptional storage device. By combining DNA sequences with standard encryption 

practices DNA cryptography establishes a fresh method to build se- cure communication channels. Security through 

unauthorized access gets enhanced by DNA’s large data density as well as its complicated genetic pattern structure. The 

cryptographic methods using DNA can be used for encrypting data in ways that are both highly secure and resilient to 

many conventional cryptographic attacks. Tokenization in NLP is the process of breaking down a text into smaller units 

called tokens, which can be words, subwords, or characters (shown in Figure-1). The process of text data preparation 

requires tokenization as an essential step because it transforms unstructured text into a form suitable for NLP modeling 

algorithms to utilize. Through one-hot encoding NLP transforms categorical information including text corpus words 

into machine learning accessible numerical values. The NLP model uses one-hot encoding as a method to convert each 

unique word to a binary vector representation (Table-I). The binary vector contains a length matching the vocabulary 

size where it has one active “hot” position and all remaining positions remain at zero. Through its encoding method 

each word becomes distinct so that no ordinal connection exists between words. The fixed- length input requirement of 

models makes one-hot encoding highly useful because it enables word representation through binary vectors regardless 

of word frequency or contextual relevance. 

 

II. BACKGROUND AND RELATED WORK 

DNA cryptography utilizes the unique properties of DNA molecules and their nucleotide sequences (adenine [A], 

thymine [T], cytosine [C], and guanine [G]) to securely encode, store, and deliver data. Common encoding 

techniques include binary-to- 

DNA mapping, where binary pairs 

are translated into nucleotide bases (e.g., 00→A, 01→C, 10→G, 11→T), the use of DNA complementary rules 

based on Watson–Crick base pairing for encryption and decryption, 

DNA-based XOR operations on sequences, and hybrid 

methods that combine DNA encoding with traditional cryptographic algorithms such as AES and RSA to enhance 

security. Applications of DNA cryptography includes, secure digital data storage, steganography (placing hidden 

messages within DNA sequences), protection of sensitive medical and genomic data, and encryption systems for cloud 

computing and Internet of Things (IoT) environments. 

Large Language Models (LLMs): Overview Large Language Models are deep neural networks trained on massive 

datasets to understand and generate complex human language as well as structured sequences. Most LLMs are built on 

the Transformer architecture, which uses self-attention mechanisms to capture long-range dependencies in data far 

more effectively than earlier models such as recurrent neural networks (RNNs) and long short- term memory (LSTM) 

networks. Their strengths include learning complex sequence patterns, generating structured outputs in different 

domains including DNA and RNA sequences, and applicability in cryptography for key generation, cryptanalysis, and 

optimization of encryption protocols. Within bioinformatics, LLMs have been increasingly used for tasks such as DNA 

and protein sequence prediction, mutation detection, and also modeling of biological data. 
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Relevant Advancements and Research Context- Recent DNA cryptography research highlights that DNA’s massive 

parallelism and natural unpredictability, together offer resistance against brute-force attacks. Researchers are also 

exploring hybrid security models that combine DNA-based methods with classical encryption or neural network 

techniques to secure cloud and IoT platforms. At the same time, benchmarks like CipherBank and AICrypto show the 

increasing importance of LLMs in cryptographic reasoning, demonstrating clear advantages over older neural models in 

analysing biological sequences. Despite these developments, the use of modern LLM architectures in DNA 

cryptography is still limited. This gap presents an opportunity to design improved hybrid frameworks that bring 

together the strengths of biologically inspired DNA encryption and the adaptive and pattern recognition abilities of 

advanced LLMs. 

Algorithm 1: How DNA Cryptography works:  

Inputs: 

Plaintext message p 

A pre-trained LLM (for example, a Transformer-based model trained on genomic or text data 

Binary-to-DNA encoding map M (e.g., 00→A, 01→C, 10→G, 11→T) 

Outputs: 

Encrypted DNA sequence E 

A pre-trained LLM (for example, a Transformer-based model trained on genomic or text data 

Binary-to-DNA encoding map M (e.g., 00→A, 01→C, 10→G, 11→T) 

Encryptions Steps: 

1: Tokenize plaintext 

2: Binary conversion 

3: Binary-to-DNA mapping 

4: Generate pseudo-key  

5: LLM key generation  

6: Encrypt message 

7: Transmit  

Decryption Steps: 

1: Receive 

2: Regenerate key 

3: Decrypt 

4. Error correction using LLM-based techniques 

5. Recover plain text 

 

III. RELATED-WORK 

Recent studies have explored the intersection of DNA cryptography and large language models (LLMs), particularly 

transformer-based architectures, which have shown remarkable abilities for enhancing cryptographic schemes and 

modeling biological sequences and enhancing cryptographic structures. 

Transformer-based genomic language models like DNABERT, Nucleotide, Transformer, and GenSLM have been 

developed to capture complex dependencies in DNA sequences with byte-pair encoding or tokenizing them into k-mers.In 

tasks like sequence classification, prediction, and representation learning, these models perform better and more then 

recurrent neural networks. Their good results indicates their potential for the application in secure DNA-based methods 

of encryption. 

LLMs have been proved for key generation, cryptanalysis, and cryptographic protocol optimization. Benchmarks like 

CipherBank and AICrypto demonstrate that modern transformer LLMs have the capability of carrying out nontrivial 

cryptanalysis and key reasoning tasks. This indicates that enhanced by the LLM DNA cryptography systems new attack 

surfaces and opportunities. 

For encoding, error correction, or key generation, existing DNA cryptography frameworks have mostly used classical 

neural networks like LLMs and CNNs; however, these methods do not fully utilize transformer LLMs' improved context 
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modeling and sequence generation capabilities. According to recent studies, integrating LLMs as intelligent agents that 

produce strong cryptographic keys from DNA sequences and enhance error correction during decryption may be 

possible. 

To dynamically improve cryptographic strength, one innovative method combines DNA encoding schemes with LLM-

driven secure key generation. According to Wang et al. (2024), this hybrid approach shows enhanced security in 

resource-constrained environments like IoT or cloud systems by periodically updating the LLM-based key generator to 

increase resilience against adversarial attacks. 

The systematic application of cutting-edge LLMs and transformers in DNA cryptography is still a developing field 

despite these developments. Research and development is still needed to address issues like scalability in real-world 

implementations, thorough security analysis against LLM- assisted cryptanalysis, and integrating adaptive LLM-driven 

key generation with biological encoding. 

 

IV. METHODOLOGY 

Architecture of the System The suggested system consists of six primary       parts and is a modular hybrid framework: 

Preprocessor: Transforms tokens into binary sequences after tokenizing plaintext. 

DNA Encoder/Mapper: Increases obfuscation by mapping binary sequences to DNA bases (A, C, G, and T) with 

optional scrambling and shuffling operations. 

LLM Key Generator: Takes an initial pseudo-key or contextual input and uses an LLM neural network model to 

produce final cryptographic keys (in binary or DNA form). 

Encryptor: Combines traditional cryptography techniques with cryptographic operations like XOR, DNA-level 

manipulations, and optional  

Fig. 1. DNA Cryptography Architecture Proposed Using LLM 

Channel/Noise Model: To test robustness, it simulates transmission noise like bit flips, base substitutions, and indels. 

Decryptor + LLM Error Corrector: Uses the LLM to generate cryptographic keys, reverses encryption, and performs 

LLM- assisted decoding and error correction to retrieve the original plaintext. 

Procedure for Encryption and Decryption The first step in the encryption process is to transform the input text into one-

hot encoded vectors, which are subsequently converted into binary sequences using token indices. A binary-to-DNA 

encoding scheme (00→A, 01→C, 10→G, 11→T) is used to map binary sequences to corresponding DNA sequences. 

The final key is obtained by running a randomly generated pseudo-key through the LLM model. In order to create an 

encrypted DNA sequence for transmission, encryption entails XOR operations between binary DNA representations 

and the generated key. 

This process is reversed during decryption: the final decryption key is generated by inputting the pseudo-key into the 

LLM. The original DNA binary data is recovered by XORing the encrypted DNA sequence with the key, decoding it 

back into one-hot vectors, and then reconstructing it into plaintext tokens. 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology 

                          International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 6, Issue 1, January 2026 

Copyright to IJARSCT DOI: 10.48175/IJARSCT-30738   246 

www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 
Different plaintext datasets, such as the 20 Newsgroups corpus for variety, specific Project Gutenberg texts for long- 

form content, and custom short messages to mimic Internet of Things scenarios, are used in experimental setup 

experiments. Synthetic DNA sequences with regulated nucleotide compositions and publicly accessible nucleotide 

datasets from NCBI/GenBank support genomic language model pretraining and evaluation for biological realism. 

Triplets of plaintext, DNA ciphertext, and pseudo-key created by the encryption pipeline make up training datasets, 

which are enhanced with noisy versions to create reliable error correction. 

Systems with Intel i5/i7 processors, at least 8GB of RAM, and SSDs larger than 256GB are used for computations. 

Python is used for primary programming, with Biopython, NumPy, and cryptography libraries for DNA processing and 

encryption features. PyTorch and TensorFlow frameworks are used in the development of LLM models. Tools for 

bioinformatics and visualization include VS Code, Jupyter Notebook, and DNAplotlib. With optional access to DNA 

synthesis/sequencing hardware for longer physical validations, the environment is compatible with Windows, Linux, or 

macOS. 

Baselines and Evaluation Metrics Security and performance are assessed in a number of ways: 

Correctness and Reliability: Bit error rate (BER), token-level recovery rates, and decryption accuracy (percent full 

recovery). 

Randomness and Key Quality: Shannon entropy metrics of keys and ciphertexts, NIST Statistical Test Suite facets (fre- 

quency, runs, autocorrelation), and avalanche effect measures. 

Security and Cryptanalysis: Keyspace entropy, brute-force resistance estimates, statistical attack success rates, and 

LLM- based cryptanalysis effectiveness as a new threat class. 

Performance and Scalability: Throughput in MB/s, end- to-end latency including LLM inference, computational and 

memory costs, and trade-offs between model size and secu- rity/accuracy gains. 

Comparative Baselines: Benchmarked against pure DNA- only schemes, prior LLM-assisted DNA cryptography meth- 

ods, and hybrid classical+DNA layered encryption frame- works. 

 

V. RESULT ANALYSIS AND DISCUSSION 

 

The training and validation loss curves show a consistent downward trend across epochs. Training loss decreased from 

2.4 to nearly 1.18, while validation loss reduced from 1.6 to nearly 1.12. This indicates effective learning and 

convergence of the model. The close gap between training and validation loss suggests that the model does not suffer 

from overfitting,. 

Training accuracy improved from 76.8 to 76.8 to 77.6, while validation accuracy increased from 77.9 to 78.2 percent 

across epochs. The validation accuracy continuously stayed marginally higher than the training accuracy, demonstrating 

the LLM's strong handling flexibility and resilience. 
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Encoded data based on DNA. Additionally, the model appears to have stabilized rapidly based on the marginal 

improvements across epochs. 

 

The encryption process confirmed effective learning during the encoding phase by achieving low and stable loss values 

(0.4 to 0.5). Decryption loss, on the other hand, started out higher at almost 2.0 but gradually decreased to 0.75 by the 

last epoch. 

This discrepancy shows that decryption is still computationally more difficult and introduces small errors. The findings 

imply that although encryption is very dependable, decryption needs additional optimization to lower residual loss. 

 

 

 

 

 

 

 

 

 

 

 

 

Training time fluctuated greatly, reaching a peak of 260 seconds in Epoch 3 and then stabilizing at 195 seconds in 

subsequent epochs. Dynamic changes in weight updates and resource distribution during early training are responsible 

for the initial oscillations. The stabilization shows that the model effectively adjusted over time, lowering 

computational overhead. 
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Over time, the model's loss decreased, and by the fifth epoch, it had dropped by over half. The majority of the 

improvement occurred early on, suggesting that the LLM identified the primary DNA-encoding patterns rather rapidly. 

Smaller, more gradual improvements resulted from the training process's subsequent refinement of what it had already 

learned. 

The bar chart summarizes the overall performance: 

Training Accuracy: 77.6 

Validation Accuracy: 78.2 

Training Loss: 118 

Validation Loss: 111 

The model's good generalization to new data is further supported by the narrow difference between training and 

validation metrics. Although predictions are accurate, additional fine-tuning could reduce the loss magnitude, as 

indicated by the comparatively higher loss values (compared to accuracy). 
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