

Skin Disease Detection using Machine Learning

Sapna¹, Tejaswini R², Vidya P B³, Prof. Shashidhara M S⁴

Student, Computer Science and Engineering¹⁻³

Associate Professor, Department of Computer Science and Engineering⁴

Kalpataru Institute of Technology, Tiptur, India

Abstract: Skin diseases represent a significant global health concern, affecting millions across all demographics. Traditional diagnostic approaches depend heavily on dermatologist expertise, which can be subjective, time-intensive, and inaccessible in underserved regions. This paper presents an automated skin disease detection system utilizing deep learning and Convolutional Neural Networks (CNNs) to classify skin conditions from digital images. The system identifies multiple disease categories including acne, eczema, lupus, hyper pigmentation, moles, and healthy skin conditions. Built using Python, TensorFlow, Keras, and Flask frameworks, the application provides a user-friendly web interface where users can upload skin images and receive instant predictions with confidence scores and severity analysis. The CNN model employs data augmentation techniques including rotation, zooming, and flipping to enhance training robustness and prevent overfitting. Image preprocessing through OpenCV ensures standardized input quality through resizing, normalization, and noise reduction. Testing demonstrated the system's capability to provide rapid, consistent diagnostic support with accuracy comparable to preliminary clinical assessments. The automated notification of severity levels assists both patients and healthcare providers in prioritizing medical attention. This research demonstrates how artificial intelligence can bridge healthcare accessibility gaps, support early disease detection, and reduce diagnostic delays in resource-limited settings.

Keywords: Skin Disease Classification, Convolutional Neural Networks, Medical Image Analysis, Deep Learning Healthcare, Automated Diagnosis, Flask Web Application, Computer Vision

I. INTRODUCTION

Skin diseases constitute one of the most widespread health conditions globally, affecting individuals across all age groups and socioeconomic backgrounds. From common conditions like acne to severe autoimmune disorders such as lupus, early and accurate identification remains crucial for effective treatment and preventing complications. Traditional diagnostic methods rely predominantly on visual examination by dermatologists, whose expertise varies and whose availability remains limited, particularly in rural and resource-constrained areas.

The subjective nature of manual diagnosis, combined with the time-consuming evaluation process, often results in delayed treatment and inconsistent outcomes. Many patients experience difficulty accessing specialized dermatological care, leading to worsening conditions that could have been addressed through early intervention. Additionally, the increasing patient load on healthcare systems makes rapid, preliminary screening tools increasingly valuable.

Recent advances in artificial intelligence and machine learning, particularly deep learning through CNNs, have opened new possibilities for automated medical image analysis. These networks can learn complex visual patterns directly from data, identifying subtle features that characterize different skin conditions. Unlike traditional computer vision approaches requiring manual feature engineering, CNNs automatically extract their archical representations from raw images.

This project develops a comprehensive skin disease detection system using CNN architecture integrated into a Flask-based web application. The system processes uploaded skin images, applies preprocessing techniques, and utilizes a trained model to classify conditions with associated confidence levels and severity assessments. By providing accessible, rapid preliminary diagnosis, the system aims to support both healthcare professionals and individuals in making informed decisions about seeking medical attention.

II. PROBLEM STATEMENT

Despite skin diseases being among the most common health issues worldwide, timely and accurate diagnosis remains challenging due to limited access to dermatology specialists, especially in rural and underserved areas. Manual diagnosis is often subjective and time-consuming, leading to inconsistent assessments, misdiagnosis, and bottlenecks in healthcare delivery. Delayed detection of early symptoms reduces treatment effectiveness and increases health care costs, while high consultation expenses limit regular monitoring for economically disadvantaged populations. These challenges highlight the urgent need for an automated and accessible diagnostic support system that enables reliable preliminary assessment, early detection, and timely medical intervention.

III. METHODOLOGY

The proposed skin disease detection system follows a structured methodology comprising data collection, preprocessing, dataset splitting, model evaluation, and web application deployment. Each stage is carefully designed to ensure accurate classification and reliable performance.

A. Data Collection

The dataset used in this study consists of more than 1000 medical skin images collected from reliable dermatological datasets and verified online medical sources. Images represent various skin disease categories such as acne, eczema, hyper pigmentation, lupus, moles, and healthy skin. To ensure diverse and balanced representation, images from multiple categories and varying skin conditions are included. This diversity improves the generalization ability of the deep learning model and reduces bias toward specific disease classes.

B. Data Processing

Data preprocessing is a crucial step to prepare raw images for effective model training. All collected images are resized to a fixed dimension to ensure consistent input size for the CNN model. Pixel values are normalized to a standard range, which improves numerical stability and accelerates model convergence during training. To enhance dataset size and reduce overfitting, data augmentation techniques are applied.

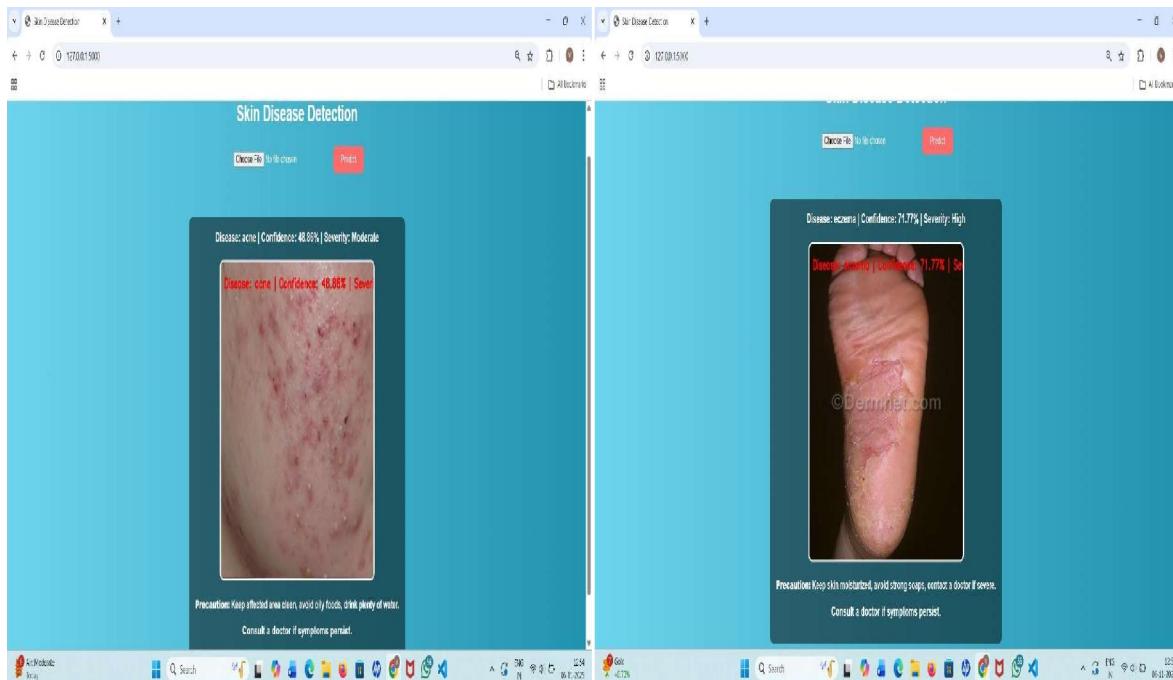
C. Pattern Learning Enhancement

Through preprocessing and augmentation, the model is exposed to enhanced visual patterns such as texture, pattern match, color variation, and lesion boundaries. This improves the CNN's ability to learn discriminative features necessary.

D. Model Evaluation

The trained model is evaluated using unseen test images to assess its effectiveness. Performance is measured using standard evaluation metrics such as: Accuracy, Loss, Confusion Matrix. These metrics provide insights into classification correctness, error distribution, and overall reliability of the model.

E. Web Development and Deployment


A Flask-based web application is developed to deploy the trained model. The web interface allows users to upload skin images easily, receive real-time disease predictions, and view classification results instantly. The integration of machine learning with web technology makes the system user-friendly and accessible for non-technical users.

IV. RESULTS AND DISCUSSION

The performance of the proposed skin disease detection system was evaluated using a test dataset containing images from multiple skin disease categories, including acne, eczema, lupus, hyper pigmentation, moles, and healthy skin. After training the Convolutional Neural Network (CNN) model, the system was tested on unseen images to assess its classification capability and reliability. The trained model was able to correctly identify most of the skin disease classes based on visual features such as color variation, texture, and lesion patterns. During testing, the model showed

a consistent improvement in accuracy while the loss value gradually decreased across training epochs, indicating effective learning and convergence. The prediction results demonstrated that the system could distinguish between different skin conditions with reasonable confidence levels. Overall, the results indicate that the proposed system performs well as a preliminary skin disease screening tool. While it cannot replace professional dermatological diagnosis, it can assist in early detection, awareness, and decision-making, especially in areas with limited access to healthcare facilities.

V. CONCLUSION

This project successfully developed a machine learning-based skin disease detection system using Convolutional Neural Networks. The system is capable of identifying multiple skin conditions such as acne, eczema, lupus, hyper pigmentation, moles, and healthy skin from uploaded images. By combining deep learning techniques with image preprocessing and a web-based interface, the project demonstrates an effective approach to automated skin disease classification.

The integration of the trained CNN model into a Flask web application makes the system easy to use and accessible to non-technical users. The inclusion of confidence scores and severity analysis enhances the interpretability of predictions and helps users understand the potential seriousness of their condition. The system provides fast and consistent results, making it suitable for preliminary diagnosis and early awareness.

Although the model achieved satisfactory performance, its accuracy can be further improved by increasing the dataset size, ensuring better class balance, and incorporating advanced deep learning architectures such as transfer learning models.

Despite these limitations, the project clearly shows the potential of artificial intelligence in supporting health care applications. In conclusion, the proposed skin disease detection system serves as a useful decision-support tool that can assist individuals and healthcare professionals in early identification of skin diseases. With further enhancements, the system can evolve into a reliable and scalable solution for real-world dermatological screening and preventive healthcare.

VI. ACKNOWLEDGMENT

We express our sincere gratitude to our project guide for their constant guidance, encouragement, and valuable suggestions throughout the development of this project. Their support and technical insights were instrumental in completing this work successfully.

We would also like to thank the faculty members of the Department for providing the necessary knowledge, resources, and motivation during the course of the project. Their continuous support helped us understand the concepts and overcome technical challenges.

We extend our heartfelt thanks to our institution for providing a conducive learning environment and the required facilities to carry out this project. Finally, we are grateful to our friends and family members for their encouragement, patience, and support throughout the project duration.

REFERENCES

- [1] Esteva, A., Kuprel, B., Novoa, R. A., et al., "Dermatologist-level classification of skin cancer with deep neural networks," *Nature*, vol. 542, no. 7639, pp. 115–118, 2017.
- [2] Tschandl, P., Rosendahl, C., and Kittler, H., "The HAM10000 dataset: A large collection of multi-source dermatoscopic images of common pigmented skin lesions," *Scientific Data*, vol. 5, 2018.
- [3] Khan, M. A., Akram, T., Sharif, M., et al., "Intelligent skin cancer detection using deep learning and improved features," *IEEE Access*, vol. 9, pp. 5816–5830, 2021.
- [4] Codella, N. C. F., Rotemberg, V., Tschandl, P., et al., "Skin lesion analysis toward melanoma detection: A challenge at the 2017 ISIC Workshop," *IEEE Transactions on Medical Imaging*, vol. 37, no. 9, pp. 2069–2082, 2018.
- [5] Mahbod, A., Schaefer, G., Wang, C., et al., "Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification," *Computer Methods and Programs in Biomedicine*, vol. 193, 2020. Review," *Information* (MDPI), 2022.
- [6] Al-Masni, M. A., Al-Antari, M. A., Choi, M. T., et al., "Skin lesion segmentation in dermoscopy images via deep full convolutional networks," *Computer Methods and Programs in Biomedicine*, vol. 162, pp. 221–231, 2018.

