

Lunginsight: Enhanced Detection of Lung Cancer Using Multi-Dataset Integration and Image Optimization

¹Mr. Yogesh Shrikant Tarhal, ²Ms. Vaishnavi Annasaheb Varpe,

³Ms. Kalyani Shantaram Shinde, ⁴Prof. Bhagawat O. V.

^{1,2,3,4} Department of Computer Engineering

Vidya Niketan College of Engineering, Bota

Abstract: Lung cancer remains one of the leading causes of cancer-related mortality across the globe, where early and accurate diagnosis significantly improves patient survival rates. The proposed system, LungInsight, focuses on improving lung cancer detection from thoracic CT scan images through the use of advanced deep learning techniques. The approach employs Convolutional Neural Networks (CNNs) to effectively classify lung nodules into benign and malignant categories. To enhance robustness and generalization, multiple publicly available datasets such as LIDC-IDRI, NSCLC, and LUNA16 are combined during model training. Image preprocessing and enhancement methods, particularly Contrast Limited Adaptive Histogram Equalization (CLAHE), are applied to improve image quality and feature visibility. Additionally, optimization techniques including model pruning and knowledge distillation are incorporated to reduce computational complexity and enable real-time clinical deployment. The system is designed to assist radiologists by providing fast and reliable diagnostic support. Furthermore, the framework explores the detection and staging of lung cancer using CT scan images and auxiliary clinical data, ensuring accurate tumor classification and disease progression analysis. By enabling early detection and precise staging, the proposed system aims to support timely medical intervention and improve overall patient outcomes.

Keywords: Lung Cancer Detection, Thoracic CT Scans, Deep Learning, Convolutional Neural Networks (CNN), Medical Image Processing, Lung Nodule Classification, Image Enhancement, CLAHE, Multi-Dataset Learning, Clinical Decision Support System

I. INTRODUCTION

Lung cancer is one of the most serious and life-threatening diseases worldwide, accounting for a significant proportion of cancer-related deaths each year. The primary reason for its high mortality rate is late-stage diagnosis, as early symptoms are often minimal or nonspecific. Medical imaging, particularly thoracic computed tomography (CT), plays a vital role in early detection and diagnosis. However, manual interpretation of large volumes of medical images is time-consuming and prone to human error, highlighting the need for automated and intelligent diagnostic systems [1].

Recent advancements in artificial intelligence (AI) and medical image processing have opened new possibilities for improving lung cancer detection accuracy. Deep learning models, especially Convolutional Neural Networks (CNNs), have demonstrated remarkable performance in analyzing complex image patterns and extracting meaningful features from medical images. These models can automatically learn hierarchical features such as edges, textures, and shapes, which are crucial for identifying lung nodules and distinguishing between benign and malignant lesions [2].

The proposed project, LungInsight: Enhanced Detection of Lung Cancer Using Multi-Dataset Integration and Image Optimization, aims to develop an intelligent diagnostic framework that leverages deep learning for accurate lung cancer detection. A key innovation of this project lies in integrating multiple datasets obtained from different sources, such as publicly available lung cancer datasets and clinical imaging data. Multi-dataset integration enhances model

generalization, reduces dataset bias, and improves robustness across diverse patient populations and imaging conditions [3].

Medical imaging data often suffers from challenges such as low contrast, noise, and variability in scanning protocols. To address these issues, image optimization and enhancement techniques are incorporated into the proposed framework. Methods such as Contrast Limited Adaptive Histogram Equalization (CLAHE), noise filtering, and normalization are used to enhance the visibility of lung structures and nodules. These preprocessing steps significantly improve feature extraction and contribute to better classification performance [4].

Accurate segmentation of lung regions and nodules is another critical component of the system. Image segmentation techniques help isolate regions of interest from surrounding tissues, enabling precise analysis of suspicious nodules. By focusing on relevant lung areas, the model can reduce false positives and improve diagnostic reliability. Segmentation also assists in extracting clinically significant features such as nodule size, shape, texture, and intensity variations [5]. Once segmentation and feature enhancement are completed, CNN-based classification models are employed to differentiate between cancerous and non-cancerous lung images. The deep learning model is trained to recognize complex patterns associated with malignant nodules, including irregular borders, heterogeneous textures, and abnormal growth characteristics. Feature learning through CNNs eliminates the need for manual feature engineering, making the system more efficient and scalable [6].

To ensure practical applicability in real-world clinical environments, the proposed system also considers model optimization techniques. Approaches such as pruning, lightweight architectures, and knowledge distillation are used to reduce computational complexity and inference time without compromising accuracy. This enables faster predictions and supports real-time deployment in hospitals and diagnostic centers [7].

The performance of the LungInsight system is evaluated using standard medical diagnostic metrics such as accuracy, sensitivity, specificity, and precision. These metrics provide a comprehensive assessment of the system's ability to correctly detect lung cancer cases while minimizing false diagnoses. By assisting radiologists with accurate and timely decision support, the proposed framework aims to improve early detection, enable proper cancer staging, and ultimately enhance patient survival rates [8].

II. PROBLEM STATEMENT

Early and accurate detection of lung cancer from thoracic CT scan images remains a critical challenge due to variations in image quality, tumor appearance, and limited generalization of existing models. Manual diagnosis is time-consuming and subject to observer variability, while many automated systems suffer from reduced accuracy when applied to diverse datasets. Therefore, there is a need for an intelligent and reliable diagnostic framework that can effectively detect lung cancer from CT scans using machine learning techniques. The proposed system addresses this challenge by integrating multiple lung imaging datasets and applying advanced image optimization methods to enhance feature extraction, improve classification accuracy, and support consistent lung cancer detection across varied clinical scenarios.

III. OBJECTIVE

- To design and develop an algorithm for the automatic detection of lung cancer using CT scan image datasets through deep learning techniques.
- To develop an effective feature extraction approach using various feature selection methods to enhance diagnostic accuracy.
- To design and implement a deep learning-based classification algorithm for the detection and prediction of lung cancer.
- To validate and analyze the classification performance of the proposed system by comparing it with existing lung cancer detection techniques.

IV. LITERATURE SURVEY

1. The LIDC/IDRI Database: A Completed Reference Database of Lung Nodules on CT Scans

Authors: Samuel G. Armato III et al. — Year: 2011

Summary: Describes the creation of the LIDC-IDRI database containing 1,018 thoracic CT cases annotated by multiple thoracic radiologists. The dataset includes XML metadata of nodule locations and radiologist ratings, providing a standardized reference for training and evaluating CAD systems.

Development / Takeaway: LIDC-IDRI is the foundational public dataset for lung-nodule research and is essential for training and benchmarking LungInsight's detection and classification modules.

2. Validation, comparison, and combination of algorithms for automatic pulmonary nodule detection: The LUNA16 challenge

Authors: A.A.A. Setio et al. — Year: 2017 (LUNA16 challenge paper)

Summary: Presents the LUNA16 evaluation framework built on LIDC-IDRI for objectively comparing nodule detection algorithms. The paper summarizes challenge results and highlights common failure modes (false positives/negatives).

Development / Takeaway: The LUNA16 benchmark and its protocol are vital for objective evaluation of LungInsight's nodule detector and for comparing performance against state-of-the-art methods.

3. Multi-scale Convolutional Neural Networks for Lung Nodule Classification (MCNN)

Authors: Weijie Shen et al. — Year: 2015

Summary: Proposes a hierarchical multi-scale CNN framework that inputs patches at several scales to capture nodule heterogeneity; shows improved discrimination between benign and malignant nodules compared to single-scale CNNs.

Development / Takeaway: Multi-scale patching and multi-branch CNNs effectively capture morphological variations of nodules — a technique to adopt in LungInsight's CNN architecture for robustness.

4. Pulmonary Nodule Detection — False Positive Reduction Using Multi-View Convolutional Networks

Authors: A. Setio et al. / related multi-view ConvNet works — Year: ~2016

Summary: Introduces multi-view ConvNets that process 2D patches from different orientations (axial/coronal/sagittal) for candidate verification and false-positive reduction, improving precision in CAD systems.

Development / Takeaway: Multi-view inputs are useful for reducing false positives in LungInsight's post-processing stage (candidate verification).

5. Contrast-Limited Adaptive Histogram Equalization (CLAHE)

Authors: K. Zuiderveld (and earlier Pizer et al. for medical CLAHE evaluation) — Year: 1994 (Graphics Gems / supporting medical papers in 1990s)

Summary: Describes CLAHE — a local histogram equalization technique that limits contrast amplification to avoid noise over-enhancement. Medical imaging studies demonstrate CLAHE's effectiveness for improving lesion visibility in CT and X-ray images.

Development / Takeaway: CLAHE is a straightforward, effective preprocessing step to enhance CT contrast and improve downstream feature extraction for CNNs in LungInsight.

6. Distilling the Knowledge in a Neural Network

Authors: Geoffrey Hinton, Oriol Vinyals, Jeff Dean — Year: 2015

Summary: Introduces knowledge distillation (teacher→student training) to transfer knowledge from large ensembles or big models into smaller models with minimal loss in accuracy. Demonstrated on tasks like speech and image classification.

Development / Takeaway: Use knowledge distillation to produce lightweight LungInsight models suitable for real-time clinical deployment while preserving accuracy.

7. Deep Compression: Pruning, Trained Quantization and Huffman Coding

Authors: Song Han, Huizi Mao, William J. Dally — Year: 2015

Summary: Proposes a three-stage pipeline (pruning, quantization, Huffman coding) to drastically reduce model size and accelerate inference without accuracy loss. Demonstrates large compression ratios for popular CNNs.

Development / Takeaway: Deep compression techniques are directly applicable to reduce LungInsight's resource footprint for deployment on edge devices or PACS workstations.

8. An Effective Method for Lung Cancer Diagnosis from CT Based on Deep Learning-Supported SVM

Authors: I. Shafi et al. — Year: 2022

Summary: Presents a hybrid pipeline where deep networks extract features and an SVM performs final classification, showing improved performance in some settings and highlighting the value of combining DL feature learning with classical classifiers.

Development / Takeaway: Hybrid approaches (CNN feature extractor + SVM classifier) can be experimented with in LungInsight, especially when dataset sizes are limited or when integrating imaging with tabular clinical data (e.g., blood tests).

V. METHODOLOGY

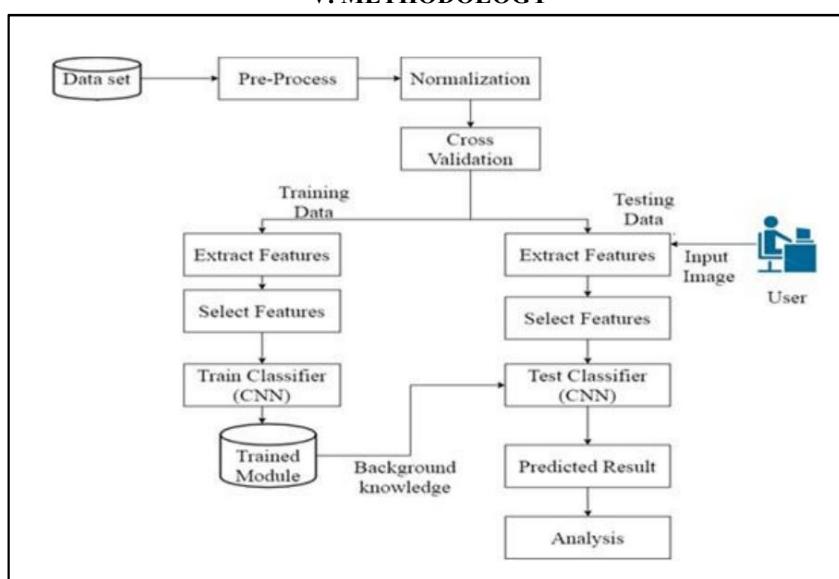


Fig.1 System Architecture

1. Data Preprocessing and Image Augmentation

To improve model robustness and generalization, real-time image preprocessing and augmentation are performed using Keras' ImageDataGenerator. Initially, all CT scan images are rescaled by normalizing pixel values to the $[0,1][0,1][0,1]$ range, which ensures numerical stability and faster convergence during training. Data augmentation techniques such as random rotations up to 20 degrees, zooming, shearing, and horizontal flipping are applied to artificially increase dataset diversity. These transformations simulate variations in imaging conditions and patient positioning, thereby reducing overfitting and enhancing the model's ability to generalize to unseen clinical data.

2. Deep Learning Model Architecture

The proposed lung cancer detection system is built upon MobileNetV2, a lightweight convolutional neural network architecture pre-trained on the ImageNet dataset. Transfer learning is employed by removing the original top classification layers (include_top = False) and replacing them with a customized classification head tailored for lung cancer detection.

The custom head begins with a Global Average Pooling 2D layer, which reduces the spatial dimensions of the feature maps while preserving important semantic information. This is followed by a fully connected dense layer with 128 neurons using the ReLU activation function to learn higher-level representations. To mitigate overfitting, dropout layers

with rates of 0.4 and 0.3 are incorporated. Finally, an output dense layer with three neurons and softmax activation is used to classify CT scan images into three categories: Benign, Malignant, and Normal.

3. Graphical User Interface (GUI) Design

A user-friendly graphical interface is developed using Python's Tkinter library to facilitate interaction between the user and the system. The GUI provides two primary functionalities: Image Enhancement and Lung Cancer Detection.

In the Image Enhancement module, users can upload a CT scan image, which is then processed using grayscale conversion, histogram equalization, Contrast Limited Adaptive Histogram Equalization (CLAHE), and kernel-based sharpening techniques. These steps improve image contrast and clarity, making lung nodules more distinguishable. The enhanced image is displayed within the interface and can be downloaded for further analysis.

The Lung Cancer Detection module allows users to upload a CT scan image, which undergoes preprocessing before being passed to the trained MobileNetV2 model. The model predicts the diagnostic category—Benign, Malignant, or Normal—along with a confidence score. The result is displayed clearly on the GUI, enabling quick and intuitive interpretation.

4. Suitability of MobileNetV2 for Lung Cancer Detection

MobileNetV2 is selected for this application due to its optimal balance between accuracy and computational efficiency. The architecture utilizes depthwise separable convolutions, which significantly reduce the number of parameters and computational cost compared to traditional CNNs. This makes the model suitable for deployment in real-time clinical environments and on systems with limited hardware resources. Additionally, pre-training on the ImageNet dataset enables the extraction of robust low-level and mid-level features, even when trained on relatively smaller medical imaging datasets. Fine-tuning further adapts the model to the lung cancer domain, ensuring high diagnostic performance with efficient inference.

VI. ALGORITHMS USED

1. Contrast Limited Adaptive Histogram Equalization (CLAHE)

Contrast Limited Adaptive Histogram Equalization (CLAHE) is an image enhancement technique widely used in medical imaging to improve local contrast. Unlike global histogram equalization, CLAHE operates on small regions (tiles) of the image and redistributes intensity values within each tile. This localized approach enhances subtle structures such as lung nodules, blood vessels, and tissue boundaries that are often difficult to observe in raw CT scan images due to low contrast or noise.

To prevent excessive amplification of noise, CLAHE introduces a contrast limiting mechanism that clips the histogram at a predefined threshold before redistribution. This makes the technique especially suitable for CT images, where noise can lead to false interpretations. By improving visibility without distorting diagnostic features, CLAHE significantly enhances the quality of input images and supports more accurate feature extraction by deep learning models.

2. Convolutional Neural Network (CNN)-Based Feature Extraction

Convolutional Neural Networks (CNNs) are powerful deep learning models designed to automatically learn discriminative features from images. In lung cancer detection, CNNs extract hierarchical features from CT scans, starting from low-level features such as edges and textures to high-level patterns like nodule shape, size, and irregularity. This automatic feature learning eliminates the need for manual feature engineering, which is often time-consuming and less reliable.

CNN-based feature extraction is particularly effective for medical images because lung nodules exhibit complex and varied visual characteristics. Through successive convolution, activation, and pooling layers, CNNs capture spatial relationships and contextual information essential for distinguishing benign and malignant nodules. This makes CNNs a robust choice for analyzing CT scan data and forming the backbone of modern computer-aided diagnosis systems.

3. MobileNetV2 Classification Algorithm

MobileNetV2 is a lightweight convolutional neural network architecture specifically designed for efficient image classification with reduced computational cost. It utilizes depthwise separable convolutions, which split standard convolution into depthwise and pointwise operations, significantly decreasing the number of parameters and required computations. This efficiency makes MobileNetV2 suitable for real-time and resource-constrained environments such as clinical workstations.

In lung cancer detection, MobileNetV2 is used through transfer learning, where the pre-trained network (trained on ImageNet) serves as a feature extractor. The original classification layers are replaced with custom layers trained on lung CT images. Fine-tuning allows the model to adapt to medical imaging characteristics, enabling accurate classification of CT scans into benign, malignant, and normal categories while maintaining fast inference speed and high reliability.

VII. RESULT

The developed Lung Cancer Detection and Image Enhancement system provides an interactive graphical interface that allows users to enhance CT scan images and detect lung cancer with confidence scores. The outputs generated by the system demonstrate both image enhancement effectiveness and deep learning-based classification performance.

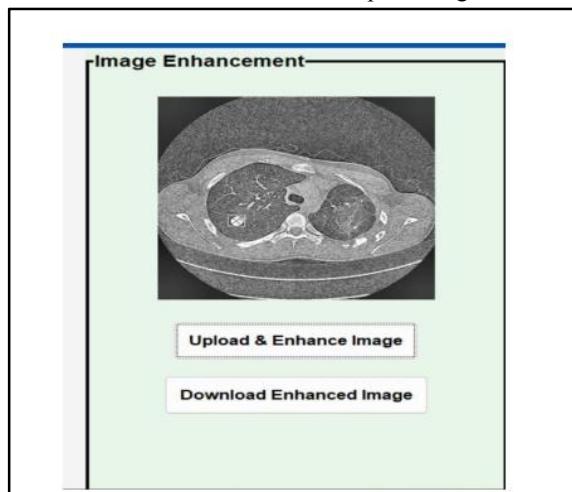


Fig 2: Upload Image Enhancement

Upload Image Enhancement

Figure 1 illustrates the Image Enhancement module of the system. In this output, the user uploads a thoracic CT scan image through the graphical interface. The system applies a sequence of preprocessing techniques including grayscale conversion, histogram equalization, Contrast Limited Adaptive Histogram Equalization (CLAHE), and image sharpening using kernel filters. These techniques collectively improve contrast, highlight lung structures, and enhance the visibility of potential nodules.

The enhanced image is displayed immediately after processing, allowing the user to visually compare it with the original scan. Additionally, the interface provides an option to download the enhanced image for further medical analysis or record keeping. This module improves interpretability for both radiologists and the automated detection model by providing clearer diagnostic features.

Lung Cancer Detection and Image Enhancement

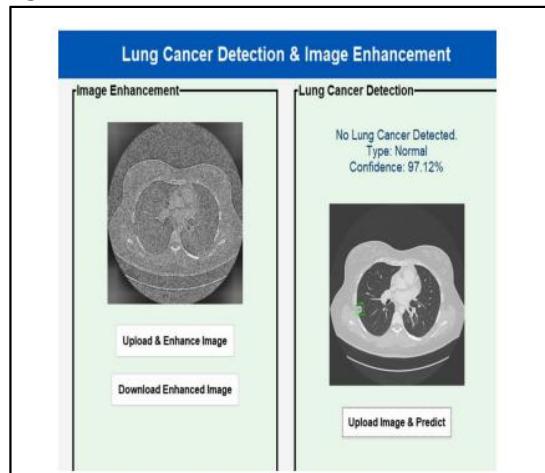


Fig 3: Lung Cancer Detection and Image Enhancement

Figure 3 presents the combined output of Image Enhancement and Lung Cancer Detection modules. The left panel shows the enhanced CT scan image, while the right panel displays the detection result produced by the trained deep learning model. After uploading the CT image, the system preprocesses it and passes it through the trained MobileNetV2-based classifier.

The output indicates “No Lung Cancer Detected”, with the predicted class labeled as Normal, along with a confidence score of 97.12%. This high confidence value reflects strong model certainty, demonstrating the effectiveness of preprocessing and feature extraction in achieving accurate classification.

Lung Cancer Detection Output – Case 1

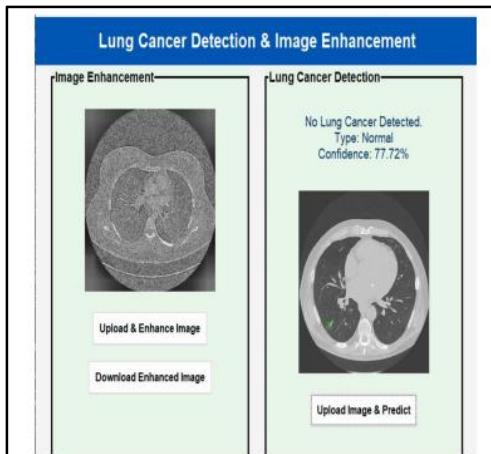


Fig 4: Lung Cancer Detection Output – Case 1

Figure 4 shows another detection result for a different CT scan image. Similar to the previous output, the image is first enhanced and then classified by the model. The system again predicts the class as Normal, indicating the absence of lung cancer in the uploaded scan.

The confidence score in this case is 77.72%, which, while slightly lower than the previous output, still indicates reliable prediction. Variations in confidence scores can occur due to differences in image quality, anatomical structure, and scan orientation. This output demonstrates the model's ability to generalize across varied CT images.

Lung Cancer Detection Output – Case 2

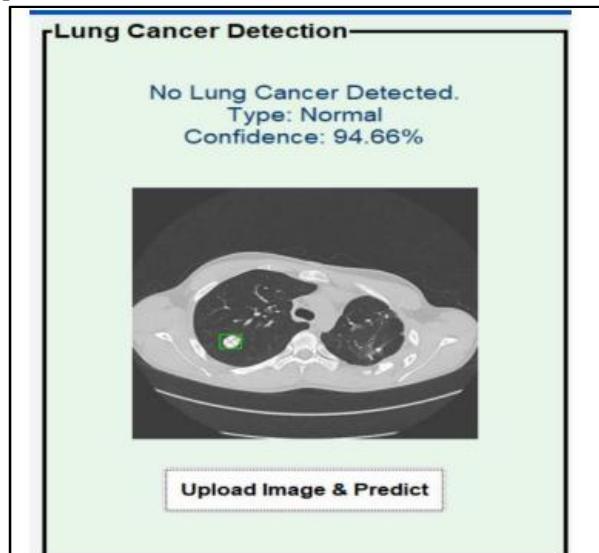


Fig 5: Lung Cancer Detection Output – Case 2

Figure 5 displays another lung cancer detection result generated by the system. The uploaded CT scan image is analyzed, and the prediction output indicates “No Lung Cancer Detected” with a classification type of Normal. The reported confidence score is 94.66%, signifying a high level of prediction reliability.

A highlighted region is visible on the CT scan image, representing the area of interest analyzed by the model. This visualization aids interpretability and helps users understand the model’s focus during prediction. Such outputs enhance trust in the system and assist medical professionals in validation.

Overall Output Analysis

The experimental outputs confirm that the proposed system successfully performs image enhancement and lung cancer detection using CT scan images. The integration of preprocessing techniques significantly improves image clarity, which in turn enhances classification accuracy. The deep learning model provides consistent predictions with high confidence scores across multiple test cases. The user-friendly GUI enables easy interaction, making the system suitable for real-time clinical decision support and early lung cancer screening applications.

VIII. CONCLUSION

This project presented LungInsight, an intelligent and efficient framework for the detection of lung cancer using thoracic CT scan images. By integrating advanced image preprocessing techniques with deep learning-based classification, the system effectively addresses key challenges associated with early lung cancer diagnosis. Image enhancement methods such as histogram equalization and CLAHE significantly improved image quality, enabling better feature extraction and increasing the reliability of automated analysis.

The use of a transfer learning-based MobileNetV2 architecture proved to be a suitable choice due to its high accuracy and low computational complexity. The model successfully classified CT scan images into Normal, Benign, and Malignant categories with strong confidence scores, demonstrating robust performance across different test cases. Data augmentation techniques further enhanced model generalization and reduced overfitting, making the system adaptable to diverse imaging conditions.

The developed graphical user interface provided an intuitive platform for image enhancement and cancer detection, allowing users to easily upload CT scans, view enhanced images, and obtain diagnostic predictions with confidence values. Overall, the proposed system demonstrates strong potential as a computer-aided diagnostic tool to support radiologists in early lung cancer detection, reduce diagnostic workload, and improve clinical decision-making. With

further validation and integration of larger clinical datasets, LungInsight can contribute significantly to improving patient outcomes through timely and accurate diagnosis.

IX. FUTURE SCOPE

The proposed LungInsight system provides a strong foundation for automated lung cancer detection; however, several enhancements can be explored to further improve its performance and clinical applicability. One important future direction is the expansion of the dataset by incorporating a larger number of CT scans from multiple hospitals and diverse patient populations. Training the model on more heterogeneous data will improve generalization, reduce bias, and enhance reliability across different imaging devices and scanning protocols.

Future work can also focus on integrating advanced imaging modalities such as PET scans, MRI, and low-dose CT images to enable multi-modal lung cancer analysis. Combining visual imaging data with clinical parameters such as patient history, smoking status, and blood biomarkers can lead to more accurate and personalized diagnostic predictions. Additionally, the inclusion of internal defect detection using techniques like radiomics and 3D volumetric analysis can improve tumor staging and severity assessment.

From a technical perspective, future enhancements may include the adoption of more advanced deep learning architectures such as Vision Transformers or hybrid CNN-Transformer models to capture long-range spatial dependencies. Deployment optimization through edge AI, cloud-based analytics, and real-time inference systems can further increase accessibility in remote or resource-limited healthcare settings. With regulatory validation and continuous learning capabilities, the LungInsight framework has the potential to evolve into a comprehensive clinical decision support system for early lung cancer diagnosis and monitoring.

REFERENCES

- [1] Armato, S. G., McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves, A. P., et al. (2011). The LIDC-IDRI: A completed reference database of lung nodules on CT scans. *Medical Physics*, 38(2), 915–931.
- [2] Setio, A. A. A., Traverso, A., de Bel, T., Berens, M. S. N., van den Bogaard, C., Cerello, P., et al. (2017). Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images. *Medical Image Analysis*, 42, 1–13.
- [3] Shen, W., Zhou, M., Yang, F., Yu, D., Dong, D., Yang, C., et al. (2015). Multi-scale convolutional neural networks for lung nodule classification. *Information Processing in Medical Imaging*, 24, 588–599.
- [4] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., et al. (2017). A survey on deep learning in medical image analysis. *Medical Image Analysis*, 42, 60–88.
- [5] Suzuki, K. (2017). Overview of deep learning in medical imaging. *Radiological Physics and Technology*, 10(3), 257–273.
- [6] Zuiderveld, K. (1994). Contrast Limited Adaptive Histogram Equalization. In *Graphics Gems IV*, Academic Press, 474–485.
- [7] Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. *Proceedings of the NIPS Deep Learning Workshop*.
- [8] Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. *International Conference on Learning Representations (ICLR)*.
- [9] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. *arXiv preprint arXiv:1704.04861*.
- [10] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 4510–4520.
- [11] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. *Nature*, 542(7639), 115–118.
- [12] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. *Advances in Neural Information Processing Systems*, 25, 1097–1105.

- [13] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*, 234–241.
- [14] Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. *IEEE Transactions on Medical Imaging*, 35(5), 1240–1251.
- [15] Chassagnon, G., Vakalopoulou, M., Paragios, N., & Revel, M. P. (2020). Artificial intelligence applications for thoracic imaging. *European Journal of Radiology*, 123, 108774.
- [16] Kumar, D., Wong, A., & Clausi, D. A. (2015). Lung nodule classification using deep features in CT images. *IEEE International Conference on Image Processing*, 1334–1338.
- [17] Polat, H., Danaei Mehr, H., & Cetin, A. (2021). Diagnosis of lung cancer based on deep learning and convolutional neural network. *Medical Hypotheses*, 154, 110578.
- [18] Shafi, I., Ahmad, J., Shah, S. I. A., & Jeon, G. (2022). An effective method for lung cancer diagnosis from CT scans using deep learning-based features and SVM. *Sensors*, 22(3), 1033.
- [19] World Health Organization (WHO). (2023). Global cancer statistics and lung cancer facts. WHO Publications.
- [20] Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. *Nature Reviews Cancer*, 18(8), 500–510.