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Abstract: Smart cities demand next-generation wireless communication technologies capable of 

supporting ultra-high data rates, low latency, and seamless connectivity. Millimeter-wave (mmWave) and 

Terahertz (THz) communication technologies have emerged as promising solutions to meet these 

requirements, offering wide bandwidth availability and high-speed data transmission. However, the 

propagation of high-frequency signals is significantly affected by severe path loss and complex channel 

characteristics. To address these challenges, this paper proposes a machine learning–assisted channel 

estimation framework aimed at enhancing connectivity in smart city environments. The proposed 

approach integrates convolutional neural networks (CNNs) with long short-term memory (LSTM) 

networks to accurately predict channel conditions and dynamically optimize transmission parameters. 

Simulation results demonstrate a 30% improvement in spectral efficiency, a 25% reduction in mean 

square error (MSE) for channel estimation, and an 8 dB enhancement in signal-to-noise ratio (SNR) 

compared to conventional methods. Furthermore, the proposed system achieves a 20% reduction in 

latency, ensuring reliable and efficient data transmission for smart city applications. These findings 

highlight the potential of combining machine learning with mmWave and THz communication 

technologies to enable next-generation high-capacity wireless networks in urban environments. 
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I. INTRODUCTION 

The rapid urbanization and digital transformation of modern cities have significantly increased the demand for high-

speed, low-latency, and ultra-reliable wireless communication networks. Smart cities rely on a variety of data-intensive 

applications, including Internet of Things (IoT) devices, autonomous transportation, real-time surveillance, and 

augmented reality (AR)/virtual reality (VR) systems. These applications require seamless connectivity with ultra-high 

data rates, which exceed the capabilities of traditional wireless technologies such as 4G LTE and even early 5G 

deployments. 

To address these challenges, millimeter-wave (mmWave) and terahertz (THz) communication have emerged as 

promising solutions due to their vast untapped bandwidth, enabling multi-gigabit-per-second (Gbps) to terabit-per-

second (Tbps) transmission rates. mmWave frequencies (30–300 GHz) and THz frequencies (0.1–10 THz) can 

significantly enhance network capacity, supporting dense deployments of wireless devices in smart cities. However, 

these high-frequency signals face several critical challenges: 

• Severe Path Loss & Atmospheric Absorption: Unlike sub-6 GHz frequencies, mmWave and THz signals suffer from 

high free-space path loss, absorption by atmospheric gases, and molecular attenuation. These impairments significantly 

limit signal propagation distance. 

• Blockage Sensitivity: High-frequency waves are highly susceptible to blockages caused by buildings, human 

movement, and environmental factors, leading to intermittent connectivity and reduced network reliability. 
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• Complex Channel Estimation: Rapid channel variations in mmWave and THz bands necessitate accurate and real-time 

channel state information (CSI) estimation to maintain high data rates and minimize packet loss. 

To overcome these limitations, recent advances in machine learning (ML) have demonstrated promising potential in 

optimizing wireless communications. ML algorithms can be leveraged to enhance channel estimation, beamforming, 

interference mitigation, and adaptive resource allocation. Unlike traditional model-based approaches, ML-based 

channel estimation techniques can dynamically learn and predict channel variations, enabling real-time adaptation of 

transmission parameters. 

 

II. LITERATURE SURVEY 

Several studies have explored the potential of mmWave and THz communication in next-generation networks. Previous 

research has focused on the physical layer challenges of these high-frequency waves, including attenuation and 

molecular absorption. Recent works have investigated reconfigurable intelligent surfaces (RIS) and hybrid 

beamforming techniques to improve signal propagation. Additionally, ML-driven solutions have been proposed for 

wireless communication tasks, such as beamforming optimization, interference mitigation, and channel estimation. 

Despite these advancements, the integration of ML-based channel estimation models for mmWave and THz 

communication in smart city environments remains an underexplored area. This paper aims to bridge this gap by 

proposing a novel deep learning framework for real-time channel estimation in these networks. 

Table 1: Comparative Literature survey 

Reference Focus Area Methodology Key Parameters Results & Findings 

Yu et al. 

(2022) 

THz ultra-massive 

MIMO channel 

estimation 

Deep learning-

based adaptive 

framework 

Channel sparsity, 

path loss, 

beamforming gain 

Improved channel estimation 

accuracy, reduced 

computational complexity 

Hu, Chen & 

Han (2022) 

Efficient channel 

estimation for 

mmWave & THz 

MIMO 

Pruned AMP 

integrated deep 

CNN (PRINCE) 

SNR, 

computational 

cost, convergence 

rate 

30% reduction in 

computational complexity, 

15% higher accuracy than 

conventional CNN methods 

Hu et al. 

(2022) 

Multi-frequency 

channel modeling 

Generative 

Adversarial 

Networks 

(GANs) 

Frequency bands, 

channel gain, 

interference levels 

Enhanced generalization, 

better frequency prediction 

accuracy across mmWave & 

THz bands 

Kim et al. 

(2024) 

Sparse channel 

estimation for THz 

massive MIMO 

Deep learning-

aided parametric 

sparse estimation 

Low-rank 

approximations, 

spectral efficiency, 

beam 

misalignment 

Achieved 25% lower error 

rate, 20% improvement in 

spectral efficiency 

Boulogeorgos 

et al. (2021) 

Machine learning for 

THz wireless 

networks 

AI-driven IRS 

and beamforming 

Signal-to-noise 

ratio (SNR), IRS 

phase shifts, 

coverage area 

Enhanced signal coverage, 

improved spectral efficiency 

in THz communications 

Jiang & 

Schotten 

(2023) 

Full-spectrum 6G 

wireless 

communications 

AI-based 

spectrum sensing 

& allocation 

Frequency 

coexistence, 

latency, spectrum 

utilization 

Improved network reliability, 

seamless multi-band 

communication 

Mao et al. 

(2021) 

Joint sensing & 

communication 

DRL-based 

adaptive 

waveform 

optimization 

Signal latency, 

energy efficiency, 

sensing accuracy 

35% reduction in latency, 

optimized power consumption 
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Elayan et al. 

(2019) 

THz band challenges 

& applications 

AI-based signal 

processing 

techniques 

Atmospheric 

absorption, 

hardware 

constraints, 

bandwidth 

efficiency 

Identified ML techniques for 

overcoming THz spectrum 

limitations 

Sultan (2022) 
Antenna designs for 

mmWave & THz 

AI-assisted 

reconfigurable 

antenna arrays 

Gain, directivity, 

beamwidth 

Improved radiation efficiency 

and dynamic antenna tuning 

Guan, Kürner 

& Molisch 

(2016) 

THz/mmWave 

mobile radio 

channels 

ML-based 

predictive 

beamforming 

Doppler shift, 

mobility speed, 

link reliability 

Reduced handover 

disruptions, enhanced high-

speed mobility 

communication 

 

III. PROPOSED IMPLEMENTATION WORK 

Architecture Flow: High-Level Overview 

The proposed architecture integrates advanced wireless communication technologies with machine learning techniques 

to enable ultra-high data rate communication in smart city environments. The system is designed to efficiently manage 

the challenges associated with millimeter-wave (mmWave) and Terahertz (THz) communications, such as high path 

loss, dynamic channel conditions, and latency constraints. The overall architecture consists of multiple interconnected 

layers, each responsible for a specific function in the communication pipeline. 

1. Data Acquisition Layer 

The data acquisition layer serves as the foundation of the proposed system. It comprises various smart city devices such 

as IoT sensors, surveillance cameras, autonomous vehicles, and mobile user equipment. These devices continuously 

generate large volumes of data that are transmitted using mmWave and THz frequency bands. During transmission, 

critical channel characteristics including path loss, fading effects, noise, and interference are captured to represent real-

time wireless channel conditions. 

2. Preprocessing and Feature Extraction Layer 

In this stage, the received signals undergo preprocessing to enhance data quality and reliability. Noise reduction 

techniques and signal normalization are applied to mitigate distortions caused by high-frequency propagation. Channel 

State Information (CSI) is extracted, and key features such as signal-to-noise ratio (SNR), delay spread, and path loss 

are derived. These features form the input for the learning model and play a crucial role in accurate channel estimation. 

3. Machine Learning–Based Channel Estimation Layer 

To address the complexity of dynamic wireless environments, a hybrid machine learning model combining 

Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks is employed. The CNN 

component effectively extracts spatial features from channel matrices, while the LSTM network captures temporal 

dependencies and mobility patterns over time. This integrated approach enables precise prediction of channel 

conditions, even in highly dynamic smart city scenarios. 

4. Intelligent Resource Optimization Layer 

Based on the predicted channel information, the system dynamically optimizes key communication parameters. This 

includes adaptive beamforming, modulation and coding scheme selection, and intelligent bandwidth allocation. These 

optimization strategies minimize interference, improve spectral efficiency, and ensure reliable communication across 

heterogeneous smart city environments. 

5. Transmission Optimization Layer 

In this layer, optimized transmission parameters are applied in real time to enhance overall system performance. 

Adaptive power control, beam selection, and frequency allocation mechanisms are utilized to maintain robust 
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communication links. This results in improved data rates, reduced latency, and enhanced quality of service for time

critical applications. 

6. Performance Evaluation and Feedback Layer

System performance is continuously evaluated using key metrics such as spectral e

square error (MSE), latency, and throughput. A feedback mechanism updates the machine learning model based on 

performance outcomes, enabling continuous learning and adaptation to changing network conditions.

7. Smart City Application Layer 

At the top of the architecture, the optimized communication framework supports a wide range of smart city 

applications, including autonomous transportation systems, intelligent traffic management, real

healthcare monitoring, and smart grid operations. The proposed architecture ensures reliable, low

throughput communication essential for next

Technical Implementation (Mathematical 

accurate channel estimation in mmWave and THz communication. The framework consists of the following key 

components: 

• Dataset Generation: A dataset comprising real

models is used for training. 
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6. Performance Evaluation and Feedback Layer 

System performance is continuously evaluated using key metrics such as spectral efficiency, bit error rate (BER), mean 

square error (MSE), latency, and throughput. A feedback mechanism updates the machine learning model based on 

performance outcomes, enabling continuous learning and adaptation to changing network conditions.

At the top of the architecture, the optimized communication framework supports a wide range of smart city 

applications, including autonomous transportation systems, intelligent traffic management, real

nitoring, and smart grid operations. The proposed architecture ensures reliable, low

throughput communication essential for next-generation smart city ecosystems. 

 
Fig 1: Process of Implementation 

 Model): The proposed model employs a deep learning-

accurate channel estimation in mmWave and THz communication. The framework consists of the following key 

• Dataset Generation: A dataset comprising real-world mmWave and THz channel measurements and synthetic channel 
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• Deep Learning Model: A convolutional neural network (CNN) and long short

combined to extract spatial and temporal features from mmWave and THz channel data.

• Real-Time Adaptation: The model dynamically adjusts transmission

conditions, ensuring optimized performance.

• Simulation Environment: MATLAB and Python

propagation and evaluate the effectiveness of the proposed ML model.

The proposed implementation is designed to enhance data throughput, minimize errors, and improve overall network 

efficiency for smart city applications. 

 

3.1 Channel Model for mmWave & THz Communication

The received signal y(t) in a mmWave/THz communication

 
For a multi-path environment, the channel matrix H(t) is given by:

  
 

3.2 Machine Learning-Based Channel Estimation

A deep learning model estimates the channel state H^(t) given input features X:

   
The model is trained to minimize the mean squared error (MSE):

  
 

3.3 Beamforming Optimization 

The optimal beamforming vector w∗ is computed as:

  
A reinforcement learning (RL) agent optimizes w

  
Where SINR (Signal-to-Interference-plus-Noise Ratio) is:

  
 

3.4 Smart City Network Throughput Maximization

The total achievable data rate for a given bandwidth BBB is:
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• Deep Learning Model: A convolutional neural network (CNN) and long short-term memory (LSTM) network are 

combined to extract spatial and temporal features from mmWave and THz channel data. 

Time Adaptation: The model dynamically adjusts transmission parameters based on predicted channel 

conditions, ensuring optimized performance. 

• Simulation Environment: MATLAB and Python-based frameworks are used to simulate mmWave and THz signal 

propagation and evaluate the effectiveness of the proposed ML model. 

The proposed implementation is designed to enhance data throughput, minimize errors, and improve overall network 

3.1 Channel Model for mmWave & THz Communication 

The received signal y(t) in a mmWave/THz communication system can be expressed as: 

 
path environment, the channel matrix H(t) is given by: 

 

Based Channel Estimation 

A deep learning model estimates the channel state H^(t) given input features X: 

mize the mean squared error (MSE): 

 

is computed as: 

 
A reinforcement learning (RL) agent optimizes w∗ using a reward function: 

 
Noise Ratio) is: 

 

Smart City Network Throughput Maximization 

The total achievable data rate for a given bandwidth BBB is: 
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Where: 

• R = total data rate 

• B = system bandwidth 

• N = number of users 

The goal is to maximize R while ensuring fairness across users.

 

Experimental evaluations demonstrate the effectiveness of the ML

include: 

• Spectral Efficiency Improvement: The proposed model enhances spectral efficiency by 30% compared to 

conventional estimation techniques. 

• Reduction in Estimation Errors: The ML

prediction. 

• SNR Enhancement: The model provides an average 8 dB improvement in SNR, leading to more reliable data 

transmission. 

• Latency Reduction: The dynamic adaptation of transmission parameters reduces latency by 20%, ensuring seamless 

smart city connectivity. 

The results validate the feasibility of using ML for mmWave and THz communication in urban environments and 

highlight its potential to revolutionize wireless connectivity.

Table 2: Performance comparisons

Metric Proposed Model
Spectral Efficiency 

Mean Square Error (MSE) 
SNR Enhancement 
Latency Reduction 

• The ML-based approach significantly improves spectral efficiency and reduces estimation errors.

• SNR gains of 8 dB led to more robust and reliable tran

• The model also reduces latency by 20%, enhancing real

Fig 1: Spectral Efficiency Comparison
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IV. RESULTS ANALYSIS 

Experimental evaluations demonstrate the effectiveness of the ML-assisted channel estimation model. Key findings 

• Spectral Efficiency Improvement: The proposed model enhances spectral efficiency by 30% compared to 

• Reduction in Estimation Errors: The ML-based approach achieves a 25% lower mean square error (MSE) in channel 

• SNR Enhancement: The model provides an average 8 dB improvement in SNR, leading to more reliable data 

• Latency Reduction: The dynamic adaptation of transmission parameters reduces latency by 20%, ensuring seamless 

The results validate the feasibility of using ML for mmWave and THz communication in urban environments and 

highlight its potential to revolutionize wireless connectivity. 

Table 2: Performance comparisons 

Proposed Model Conventional Techniques Improvement (%)
30% higher Baseline 
25% lower Higher error 

+8 dB Standard SNR Higher Reliability
20% lower Higher latency 

 

based approach significantly improves spectral efficiency and reduces estimation errors. 

• SNR gains of 8 dB led to more robust and reliable transmission. 

• The model also reduces latency by 20%, enhancing real-time communication for smart city applications.
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• Latency Reduction: The dynamic adaptation of transmission parameters reduces latency by 20%, ensuring seamless 
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Improvement (%) 
30% 
-25% 

Higher Reliability 
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Fig 2: MSE Chart 

 
Fig 3: SNR comparisons 

 
Fig 4: Latency comparison 
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V. CONCLUSION 

This study explores machine learning-assisted channel estimation for millimeter-wave (mmWave) and terahertz (THz) 

communication to enhance smart city connectivity. The proposed CNN-LSTM model significantly improves spectral 

efficiency (30%), reduces mean square error (25%), enhances SNR by 8 dB, and lowers latency by 20%. These 

advancements enable reliable, high-speed wireless networks for smart city applications like autonomous transport, IoT, 

and AR/VR. Future work should focus on real-world deployment, adaptive beamforming, 6G integration, security, and 

energy-efficient hardware. Addressing these challenges will solidify ML-driven high-frequency communication as a 

cornerstone for next-generation wireless networks. 
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