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Abstract: Smart cities demand next-generation wireless communication technologies capable of
supporting ultra-high data rates, low latency, and seamless connectivity. Millimeter-wave (mmWave) and
Terahertz (THz) communication technologies have emerged as promising solutions to meet these
requirements, offering wide bandwidth availability and high-speed data transmission. However, the
propagation of high-frequency signals is significantly affected by severe path loss and complex channel
characteristics. To address these challenges, this paper proposes a machine learning—assisted channel
estimation framework aimed at enhancing connectivity in smart city environments. The proposed
approach integrates convolutional neural networks (CNNs) with long short-term memory (LSTM)
networks to accurately predict channel conditions and dynamically optimize transmission parameters.
Simulation results demonstrate a 30% improvement in spectral efficiency, a 25% reduction in mean
square error (MSE) for channel estimation, and an 8 dB enhancement in signal-to-noise ratio (SNR)
compared to conventional methods. Furthermore, the proposed system achieves a 20% reduction in
latency, ensuring reliable and efficient data transmission for smart city applications. These findings
highlight the potential of combining machine learning with mmWave and THz communication
technologies to enable next-generation high-capacity wireless networks in urban environments.
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L. INTRODUCTION
The rapid urbanization and digital transformation of modern cities have significantly increased the demand for high-
speed, low-latency, and ultra-reliable wireless communication networks. Smart cities rely on a variety of data-intensive
applications, including Internet of Things (IoT) devices, autonomous transportation, real-time surveillance, and
augmented reality (AR)/virtual reality (VR) systems. These applications require seamless connectivity with ultra-high
data rates, which exceed the capabilities of traditional wireless technologies such as 4G LTE and even early 5G
deployments.
To address these challenges, millimeter-wave (mmWave) and terahertz (THz) communication have emerged as
promising solutions due to their vast untapped bandwidth, enabling multi-gigabit-per-second (Gbps) to terabit-per-
second (Tbps) transmission rates. mmWave frequencies (30300 GHz) and THz frequencies (0.1-10 THz) can
significantly enhance network capacity, supporting dense deployments of wireless devices in smart cities. However,
these high-frequency signals face several critical challenges:
* Severe Path Loss & Atmospheric Absorption: Unlike sub-6 GHz frequencies, mmWave and THz signals suffer from
high free-space path loss, absorption by atmospheric gases, and molecular attenuation. These impairments significantly
limit signal propagation distance.
» Blockage Sensitivity: High-frequency waves are highly susceptible to blockages caused by buildings, human
movement, and environmental factors, leading to intermittent connectivity and reduced network reliability.
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* Complex Channel Estimation: Rapid channel variations in mmWave and THz bands necessitate accurate and real-time
channel state information (CSI) estimation to maintain high data rates and minimize packet loss.

To overcome these limitations, recent advances in machine learning (ML) have demonstrated promising potential in
optimizing wireless communications. ML algorithms can be leveraged to enhance channel estimation, beamforming,
interference mitigation, and adaptive resource allocation. Unlike traditional model-based approaches, ML-based
channel estimation techniques can dynamically learn and predict channel variations, enabling real-time adaptation of
transmission parameters.

II. LITERATURE SURVEY
Several studies have explored the potential of mmWave and THz communication in next-generation networks. Previous
research has focused on the physical layer challenges of these high-frequency waves, including attenuation and
molecular absorption. Recent works have investigated reconfigurable intelligent surfaces (RIS) and hybrid
beamforming techniques to improve signal propagation. Additionally, ML-driven solutions have been proposed for
wireless communication tasks, such as beamforming optimization, interference mitigation, and channel estimation.
Despite these advancements, the integration of ML-based channel estimation models for mmWave and THz
communication in smart city environments remains an underexplored area. This paper aims to bridge this gap by
proposing a novel deep learning framework for real-time channel estimation in these networks.
Table 1: Comparative Literature survey

Reference Focus Area Methodology Key Parameters Results & Findings
v ot al THz  ultra-massive | Deep learning- | Channel sparsity, | Improved channel estimation
u . .
(2022) MIMO channel | based adaptive | path loss, | accuracy, reduced
estimation framework beamforming gain | computational complexity
Eff.icier.lt channel Pruned AMP SNR, . 30% . reduction .in
Hu, Chen & | estimation for inteorated  dee computational computational complexity,
Han (2022) mmWave & THz CNI%IT (PRIN CE)p cost, convergence | 15% higher accuracy than
MIMO rate conventional CNN methods
Generative Enhanced generalization,
. . Frequency bands, ..
Hu et al. | Multi-frequency Adversarial . better frequency prediction
. channel gain,
(2022) channel modeling Networks interference levels | 2CCUracy across mmWave &
(GANs) THz bands
Low-rank
Kim et al Sparse channel | Deep learning- | approximations, Achieved 25% lower error
(2024) " | estimation for THz | aided parametric | spectral efficiency, | rate, 20% improvement in
massive MIMO sparse estimation | beam spectral efficiency
misalignment
. . Signal-to-noise .
Machine 1 fi . . Enh d 1 ,
Boulogeorgos achine earm.ng | Aldriven  IRS | ratio (SNR), IRS .n anced - sigha cove.rage
THz wireless . . improved spectral efficiency
et al. (2021) and beamforming | phase shifts, | . .
networks in THz communications
coverage area
. F -
Jiang & | Full-spectrum 6G | Al-based reql.lency Improved network reliability,
. . coexistence, R
Schotten wireless spectrum sensing seamless multi-band
. . latency, spectrum L.
(2023) communications & allocation . communication
utilization
DRL-based Signal latenc
Mao et al. | Joint sensing & | adaptive & . Y1 35% reduction in latency,
. energy efficiency, .. .
(2021) communication waveform . optimized power consumption
S sensing accuracy
optimization
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Atmospheric
. absorption, . .
Al- 1 Identified ML tech fi
Elayan et al. | THz band challenges bas§d signa hardware denti 1ec41 echiques fot
. processing . overcoming THz spectrum
(2019) & applications technidues constraints, limitations
d bandwidth
efficiency
Antenna designs for Al-assisted Gain, directivity, | Improved radiation efficiency
Sultan (2022) reconfigurable . . .
mmWave & THz beamwidth and dynamic antenna tuning
antenna arrays
Reduced hand
Guan, Kiirner | THz/ mmWave ML-based Doppler shift, .e uce. an (.)V6r
. . . . . disruptions, enhanced high-
& Molisch | mobile radio | predictive mobility speed, speed mobili
(2016) channels beamforming link reliability P L 4
communication

III. PROPOSED IMPLEMENTATION WORK
Architecture Flow: High-Level Overview
The proposed architecture integrates advanced wireless communication technologies with machine learning techniques
to enable ultra-high data rate communication in smart city environments. The system is designed to efficiently manage
the challenges associated with millimeter-wave (mmWave) and Terahertz (THz) communications, such as high path
loss, dynamic channel conditions, and latency constraints. The overall architecture consists of multiple interconnected
layers, each responsible for a specific function in the communication pipeline.
1. Data Acquisition Layer
The data acquisition layer serves as the foundation of the proposed system. It comprises various smart city devices such
as IoT sensors, surveillance cameras, autonomous vehicles, and mobile user equipment. These devices continuously
generate large volumes of data that are transmitted using mmWave and THz frequency bands. During transmission,
critical channel characteristics including path loss, fading effects, noise, and interference are captured to represent real-
time wireless channel conditions.
2. Preprocessing and Feature Extraction Layer
In this stage, the received signals undergo preprocessing to enhance data quality and reliability. Noise reduction
techniques and signal normalization are applied to mitigate distortions caused by high-frequency propagation. Channel
State Information (CSI) is extracted, and key features such as signal-to-noise ratio (SNR), delay spread, and path loss
are derived. These features form the input for the learning model and play a crucial role in accurate channel estimation.
3. Machine Learning—-Based Channel Estimation Layer
To address the complexity of dynamic wireless environments, a hybrid machine learning model combining
Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks is employed. The CNN
component effectively extracts spatial features from channel matrices, while the LSTM network captures temporal
dependencies and mobility patterns over time. This integrated approach enables precise prediction of channel
conditions, even in highly dynamic smart city scenarios.
4. Intelligent Resource Optimization Layer
Based on the predicted channel information, the system dynamically optimizes key communication parameters. This
includes adaptive beamforming, modulation and coding scheme selection, and intelligent bandwidth allocation. These
optimization strategies minimize interference, improve spectral efficiency, and ensure reliable communication across
heterogeneous smart city environments.
5. Transmission Optimization Layer
In this layer, optimized transmission parameters are applied in real time to enhance overall system performance.
Adaptive power control, beam selection, and frequency allocation mechanisms are utilized to maintain robust
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communication links. This results in improved data rates, reduced latency, and enhanced quality of service for time-
critical applications.

6. Performance Evaluation and Feedback Layer

System performance is continuously evaluated using key metrics such as spectral efficiency, bit error rate (BER), mean
square error (MSE), latency, and throughput. A feedback mechanism updates the machine learning model based on
performance outcomes, enabling continuous learning and adaptation to changing network conditions.

7. Smart City Application Layer

At the top of the architecture, the optimized communication framework supports a wide range of smart city
applications, including autonomous transportation systems, intelligent traffic management, real-time surveillance,
healthcare monitoring, and smart grid operations. The proposed architecture ensures reliable, low-latency, and high-
throughput communication essential for next-generation smart city ecosystems.

smart City Devices
{loT, Vehicles, Cameras)

|

[mmWaue / THz Communication Channelj

l

Preprocessing & Feature Extraction
(SNR, C5I, Delay Spread)
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Fig 1: Process of Implementation
Technical Implementation (Mathematical Model): The proposed model employs a deep learning-based approach for
accurate channel estimation in mmWave and THz communication. The framework consists of the following key
components:
* Dataset Generation: A dataset comprising real-world mmWave and THz channel measurements and synthetic channel
models is used for training.
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* Deep Learning Model: A convolutional neural network (CNN) and long short-term memory (LSTM) network are
combined to extract spatial and temporal features from mmWave and THz channel data.

* Real-Time Adaptation: The model dynamically adjusts transmission parameters based on predicted channel
conditions, ensuring optimized performance.

* Simulation Environment: MATLAB and Python-based frameworks are used to simulate mmWave and THz signal
propagation and evaluate the effectiveness of the proposed ML model.

The proposed implementation is designed to enhance data throughput, minimize errors, and improve overall network
efficiency for smart city applications.

3.1 Channel Model for mmWave & THz Communication
The received signal y(t) in a mmWave/THz communication system can be expressed as:

y(t) = H(t) - z(¢) + n(?)

For a multi-path environment, the channel matrix H(t) is given by:
L
i H
H(t) =Y oe’a,(6)af (1)
1=1

3.2 Machine Learning-Based Channel Estimation
A deep learning model estimates the channel state H*(t) given input features X:

H(t) = fo(X)

The model is trained to minimize the mean squared error (MSE):
N

1 a
) = 3 > IH: — Bl
i=1

3.3 Beamforming Optimization
The optimal beamforming vector w# is computed as:

|‘LUHH3|2
| Hs||?

w® = arg max
w

A reinforcement learning (RL) agent optimizes w* using a reward function:
R = log,(1 + SINR)

Where SINR (Signal-to-Interference-plus-Noise Ratio) is:

P,|Huwl|?

SINR =
P E.HL‘; Pi|H'éw

2

3.4 Smart City Network Throughput Maximization
The total achievable data rate for a given bandwidth BBB is:
N
R =B log,(1+ SINR,)
i=1
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Where:

* R = total data rate

* B = system bandwidth

* N = number of users

The goal is to maximize R while ensuring fairness across users.

IV. RESULTS ANALYSIS

Experimental evaluations demonstrate the effectiveness of the ML-assisted channel estimation model. Key findings
include:
» Spectral Efficiency Improvement: The proposed model enhances spectral efficiency by 30% compared to
conventional estimation techniques.
* Reduction in Estimation Errors: The ML-based approach achieves a 25% lower mean square error (MSE) in channel
prediction.
* SNR Enhancement: The model provides an average 8 dB improvement in SNR, leading to more reliable data
transmission.
» Latency Reduction: The dynamic adaptation of transmission parameters reduces latency by 20%, ensuring seamless
smart city connectivity.
The results validate the feasibility of using ML for mmWave and THz communication in urban environments and
highlight its potential to revolutionize wireless connectivity.

Table 2: Performance comparisons

Metric Proposed Model | Conventional Techniques | Improvement (%)
Spectral Efficiency 30% higher Baseline 30%
Mean Square Error (MSE) 25% lower Higher error -25%
SNR Enhancement +8 dB Standard SNR Higher Reliability
Latency Reduction 20% lower Higher latency -20%

» The ML-based approach significantly improves spectral efficiency and reduces estimation errors.
* SNR gains of 8 dB led to more robust and reliable transmission.
* The model also reduces latency by 20%, enhancing real-time communication for smart city applications.

Spectral Efficiency Comparison

Efficiency (Normalized)

Conventional Proposed Model

Fig 1: Spectral Efficiency Comparison
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V. CONCLUSION

This study explores machine learning-assisted channel estimation for millimeter-wave (mmWave) and terahertz (THz)
communication to enhance smart city connectivity. The proposed CNN-LSTM model significantly improves spectral
efficiency (30%), reduces mean square error (25%), enhances SNR by 8 dB, and lowers latency by 20%. These
advancements enable reliable, high-speed wireless networks for smart city applications like autonomous transport, 0T,
and AR/VR. Future work should focus on real-world deployment, adaptive beamforming, 6G integration, security, and
energy-efficient hardware. Addressing these challenges will solidify ML-driven high-frequency communication as a
cornerstone for next-generation wireless networks.
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