

Sitagliptin and Simvastatin Simultaneous Estimation using RP-HPLC Method

Banothu Srikanth¹ and Dr. B. Kishore²

Assistant Professor, Department of Pharmaceutical Analysis & QA,

St. Mary's Group of Institutions Hyderabad, Telangana, India¹

Professor, Department of Pharmaceutics, Sri Padmavati School of Pharmacy, Tirupati, India²

Corresponding author: Banothu Srikanth

Srikanth007banoth@gmail.com

Abstract: A simple, specific, accurate, rapid, inexpensive isocratic Reversed Phase-High Performance Liquid Chromatography (RP-HPLC) method was developed and validated for the quantitative determination of Sitagliptin and Simvastatin pharmaceutical tablet dosage forms. RP-HPLC method was developed by using BDS C 18 (150 mm*4.6 mm) column. The mobile phase composed of Buffer: Acetonitrile: Methanol 20:70:10. The flow rate was set to 1.0 mL/min with the responses measured at 215 nm. Retention time of simvastatin and sitagliptin were found to be 4.7 min and 3.1 minutes. Sitagliptin showed linearity between 25 - 150 microgm/ml & Simvastatin showed linearity between 2.5-15 microgm/ml. with correlation coefficient. The validation of the developed method was carried out for specificity, linearity, precision, accuracy, robustness, limit of detection, limit of quantitation. The developed method can be used for routine quality control analysis of in simvastatin and sitagliptin pharmaceutical tablet dosage form.

Keywords: Simvastatin and Sitagliptin, UV-Vis detector, Method Development & Validation

I. INTRODUCTION

High-performance liquid chromatography also known as High-pressure or High price or High speed liquid chromatography, HPLC is a form of column chromatography used frequently in analytical chemistry and biochemistry to identify, separate, and quantify compounds. It is a powerful tool in analysis. It is basically an improved form of column chromatography which has been optimized to provide rapid high resolution separations. Early LC used gravity fed open tubular columns with particles 100s of microns in size; the human eye was used for a detector and separations often took hours or even days to develop.

HPLC requires basic & special modules as follows:

- Solvent reservoir with a Degassing system.
- Extremely precise gradient mixers (optional).
- HPLC high pressure pumps with very constant flow.
- Unique high accuracy, low dispersion, HPLC sample valves.
- Very high efficiency HPLC columns with inert packing materials.
- High sensitivity low dispersion HPLC detectors.
- High speed data acquisition systems.

II. EXPERIMENTAL METHODOLOGY

Table -1: Instrumentation:

1.	Instrument	HPLC
2.	Company	Alliance Waters 2695
3.	Type	Auto sampler

4.	Type	Column oven °asser
5.	Detector	2996 PDA detector
6.	Software	Empower-2software

Table –2: Reagents and chemicals:

Regents/Chemical	Company
Sitagliptin & Simvastatin	Hetero Pharma
HPLC grade acetonitrile	Merck chemical division
Milli-Qwater	Milli-Q purification system
Tablets	local Pharmacy

Preparation of solutions:

Buffer solution: Accurately measured 1.0 ml of Ortho phosphoric acid in a 1000 ml of volumetric flask, about 900 ml of HPLC grade water obtained from Milli-Q water purification system was added, sonicated and degassed and lastly fabricated the volume to 1000 ml with water.

Standard Stock Solution: Perfectly Weighed & transferred 100mg of Sitagliptin, 50mg of Simvastatin into a 25 ml and 100ml VF-volumetric flask respectively , add diluent to final volume. From this, 1 ml was pipette out to a 10 ml volumetric flask & diluents added to obtain final volume.

Working Standard Solutions: 0.25, 0.5, 0.75, 1.0, 1.25 & 1.5 ml were pipette out from stock solution & shifted to 10 ml volumetric flask & volume was filled up to 10 ml with diluent. Thisgivesolutionsof25,50,75,100, 125,150 microgm/ml for Sitagliptin and 2.5, 5.0, 7.5, 10.0, 12.5, 15.0 microgm/ml for Simvastatin respectively.

Sample preparation: 1 tablet was weighed and powdered and it was taken into a 100 ml volumetric flask – VF and filled with diluents. This was filtered by HPLC filters.1ml of filtered sample stock solution was transferred to 10ml volumetric flask and made up with diluents.

Method Validation: System suitability, Specificity, linearity, precisions, accuracy, robustness, solution stability, LOD, LOQ, assay were evaluated.

Table -3: Optimized chromatographic conditions of Sitagliptin & Simvastatin

S.No.	Systems	Values
1	Mobilephasemix	Buffer,Acetonitrile and methanol Taken in the ratio 20:70:10
2	pH	3.3
3	Column, make	BDS column(4.6x150mm, 5µm)
4	Column temperature	30°C
5	Wavelength	215nm
6	Injectionvolume	10µl
7	Flowrate	1.0ml/min
8	Run time	07 min
9	Retention time(Sitagliptin)	3.1 min
10	Retention time(Simvastatin)	4.7 min

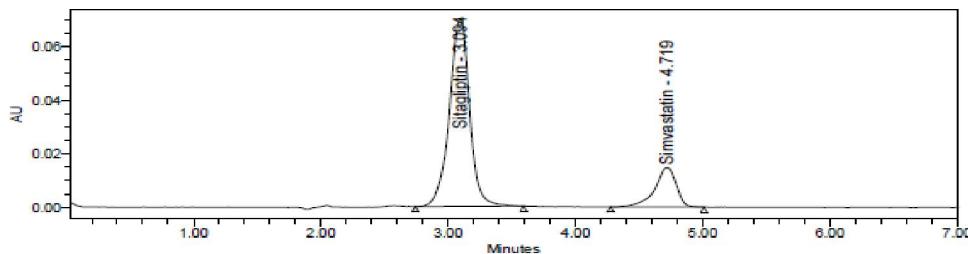


Fig 1: Optimized Chromatogram of Sitagliptin & Simvastatin standards

III. RESULTS AND DISCUSSION

System Suitability: The theoretical plates were > 2000 , USP tailing < 2 and USP resolution >2 . The % RSD of areas for Sitagliptin & Simvastatin were 0.6 and 0.9 respectively.

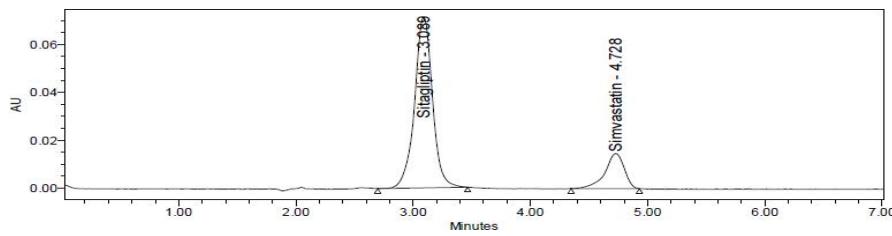


Fig 2: System suitability chromatogram of Sitagliptin & Simvastatin

Specificity: No middle some peak was ascertained at the RT of Sitagliptin & Simvastatin. Thus, the procedure was specific for findout of Sitagliptin & Simvastatin.

Linearity: Sitagliptin showed linearity between 25 - 150 microgm/ml & Simvastatin showed linearity between 2.5- 15 microgm/ml. Linear regression equation was: y (Sitagliptin) = $9038x + 536.2$ ($r^2=0.999$), y (Simvastatin) = $17653x + 2482.4$ ($r^2=0.999$) & correlation coefficient (r^2) for Sitagliptin & Simvastatin was >0.99 . Hence, this was linear.

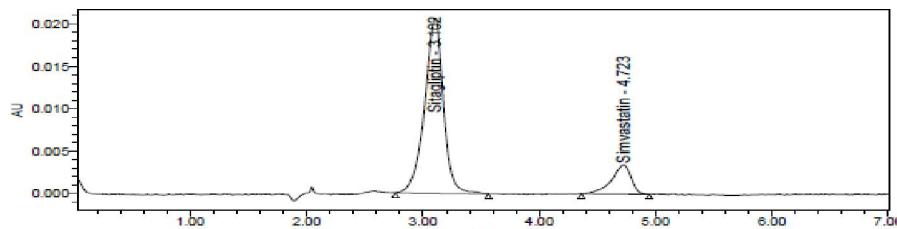


Fig 3: Linearity chromatogram of Sitagliptin & Simvastatin

Table 4: Results of Linearity of Sitagliptin & Simvastatin

Sitagliptin		Simvastatin	
Conc. (microgm/ml)	Peakarea (n=3)	Conc. (microgm/ml)	Peakarea (n=3)
25	226821	2.5	48698
50	456092	5	92342
75	678915	7.5	135218
100	900913	10	176757
125	1122454	12.5	224773
150	1363498	15	266386

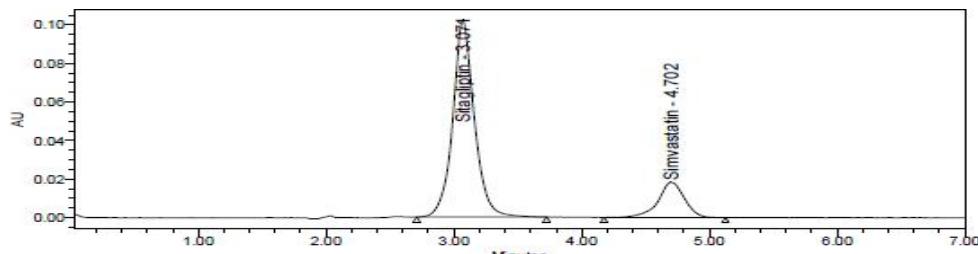


Fig 4: Accuracy chromatogram of Sitagliptin & Simvastatin

Accuracy: Fixed sample solutions added to 50%, 100% & 150% standard solutions. The %Mean recovery for Sitagliptin & Simvastatin were 100.94 & 101.02, respectively. %RSD for Sitagliptin & Simvastatin were 0.62 and 1.07. Thus, the method was accurate.

Table - 5: Results of Accuracy of Sitagliptin & Simvastatin

Fixed amount (microgm/ml)		Spiked Amount (microgm/ml)		% Recovered	
Sitagliptin	Simvastatin	Sitagliptin	Simvastatin	Sitagliptin	Simvastatin
100	10	50	5	101.07	99.94
100	10	50	5	100.08	102.92
100	10	50	5	101.87	101.40
100	10	100	10	101.43	100.82
100	10	100	10	101.15	100.62
100	10	100	10	100.48	101.12
100	10	150	15	100.78	100.19
100	10	150	15	100.16	99.80
100	10	150	15	101.44	102.41
				MEAN	100.94
				SD	0.61
				%RSD	1.07

Precision: The repeatability and intermediate precision data were summarized in below Table.

Repeatability: The %RSD for Sitagliptin & Simvastatin were 0.6 and 1.2. Mean area: 760283 for Sitagliptin, 174419 for simvastatin.

Table - 6: Results of Repeatability of Sitagliptin & Simvastatin

S.NO	Sitagliptin			Simvastatin		
	Area	USP Plate Count	USP Tailing	Area	USP Plate Count	USP Tailing
1	754903	2293	1.01	173255	4319	1.00
2	760395	2204	1.00	177112	4416	1.01
3	764412	2259	1.01	172896	4380	1.02
4	756031	2072	1.02	177052	4517	1.02
5	766483	2139	1.00	173772	4534	1.00
6	759481	2179	1.01	172429	4564	1.02
Mean	760283			174419		
Std. Dev.	4542.8			2109		
%RSD	0.6			1.2		

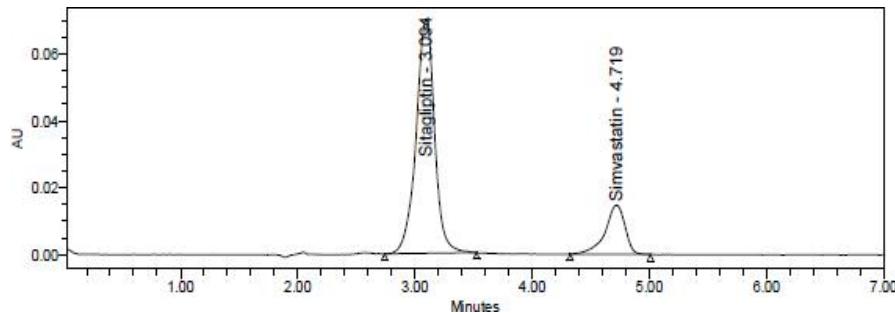


Fig 5: Repeatability Chromatogram of Sitagliptin & Simvastatin

LOD and LOQ: Sitagliptin LOD and LOQ were 0.19 and 0.55 microgm/ml, respectively and for Simvastatin were 0.04 and 0.10microgm/ml.

Table -7: LOD and LOQ data of Sitagliptin & Simvastatin

Sitagliptin			Simvastatin		
S.NO	SLOPE	Y-INTERCEPT	S.NO	SLOPE	Y-INTERCEPT
1	8987.1	136.54	1	17666	2456.4
2	9187.6	382.04	2	17590	2663
3	8939.3	1090.1	3	17703	2328.5
AVG	9038	536	AVG	17653	2482
SD		496.5	SD		168.90
LOD		0.19	LOD		0.04
LOQ		0.55	LOQ		0.10

IV. CONCLUSION

A new simple, precise and accurate HPLC method was developed and validated for the simultaneous estimation of Sitagliptin & Simvastatin in marketed formulations. In this method, BDS 150mm x 4.6 mm, 5 μ . column was picked as stationary phase. Buffer and acetonitrile,methanol were taken in the ratio 20:70:10%v/v and mobile phase with 1.0 ml/min flow rate. The retention times of Sitagliptin & Simvastatin were found to be 3.1min & 4.7min, respectively. Here, number of theoretical plates were 2285 and 4301, USP tailing were 1.01, 1.02 for Sitagliptin & Simvastatin, respectively; this showed optimized method met the system suitability parameters. Presently, regression coefficient was 0.999 for Sitagliptin & Simvastatin and was linear. The percentage mean recovery of Sitagliptin & Simvastatin were found to be 100.94, and 102.42%, respectively and it showed that the proposed method was accurate. RSD values of Repeatability & intermediate precision were ≤ 2 and system is precise. The lowest values of LOD and LOQ (0.19 and 0.55 μ g/ml; 0.04 and 0.10 μ g/ml for Sitagliptin & Simvastatin, respectively) indicate sensitive. Solutionstability studies of method indicate Sitagliptin & Simvastatin drugs were stable upto 24hours.

REFERENCES

- [1]. Raghava, K. A. S. Rao, S. Venkat; Krishna, J. Anath Satyanand, Y. s. v. r. "Simultaneous estimation of sitagliptin and simvastatin in tablet dosage form by a validated rp-hplc method," International journal of PharmaSci Review & Research, 2012, v.15(1),pp. 41.
- [2]. R. Lavanya, Md. Yunos Development and Validation of RP-HPLC method for the "estimation of Sitagliptin Phosphate in Bulk and its Tablet Dosage Form" Jurnal of Advanced Pharmacy Education & Research Oct-Dec 2013, v.3 (4),pp.497-479.
- [3]. T. Raja and A. Lakshmana Rao validated RP-HPLC method for "Simultaneous estimation of Metformin hydrochloride and sitagliptin phosphate in Bulk drug" and pharmaceutical formulation International journal of pharma , chem. and biological sciences 2012, v.2(4) pp.696-702.

- [4]. L narasimha rao vemula, n. Tamilselvi2, r. Krishnan a validated rp-hplc method for “Simultaneous estimation of sitagliptin and Simvastatin in tablet dosage” form International journal of Pharmacy and Pharma Sciences 2013, v.5(2) pp.429-431.
- [5]. Ramanjaneyulu Juvviguanta , G. Nagarjuna Reddy, D. Dhanalakshmi and B. Ramesh A New Analytical method development and validation for “Simultaneous Estimation of Sitagliptin and Metformin Hydrochloride in Tablet Dosage form” by RP-HPLC International journal of Pharma Sciences 2013, v. 3(5) pp.360-364 .
- [6]. Shailaja B. Jadhav Swati K. Kupkar, Deepali L. Dharam Development and Validation of RP-HPLC and HPTLC Methods for “Simultaneous Estimation of Sitagliptin Phosphate and Metformin Hydrochloride in Bulk and Dosage form” Indian Jurnal of Pharma Education and Research, 2013, v.47(1) pp.13-16 .
- [7]. A.B. Loni , M.R. Ghante , Dr. S. D. Sawant method development and validation for “Simultaneous determination of Sitagliptin phosphate and metformin hydrochloride by rp-hplc in bulk and Tablet dosage form” asian jurnal of pharma sciences and research 2012, v.2 (8) pp.25-29.
- [8]. Karimulla S K , Vasanth P M , Ramesh T , Ramesh “Method development and validation of sitagliptin and metformin using reverse phase HPLC method in bulk and tablet dosage form” Scholars Research Library Der Pharmacia Lettre, 2013, v. 5 (5) pp.168-174.
- [9]. Sachin L Patil1 Jayant R Bhinge and Chetan M Bhalgat Development and Validation of a Stability Indicating RP-HPLC Method for “Simultaneous Determination of Sitagliptin and Metformin in Tablet Dosage Form” International Jurnal of Research in Pharmacy and Biomedical sciences 2013, v.4 (2) pp.590-596.
- [10]. Narendra Nyola and Govinda Samy Jeyabalan method development of “Simultaneous estimation of Sitagliptin and metformin hydrochloride in pure and Tablet dosage form” by uv-vis spectroscopy world jurnal of pharmacy and pharma sciences 2010, v.1(4) pp.1392-1401.
- [11]. Sheetal Sharma Nimita Manocha, Priya Bhandari Development of UV- SPectrophotometry and RP-HPLC Method and Its Validation for “Simultaneous Estimation of Sitagliptin Phosphate and Simvastatin in Marketed Formulation” International Jurnal of Pharma & Biological Archives 2012, v.3(3) pp.673-678.
- [12]. Praveen Kumar S. N. and Bhadre Gowda D.G Development and Validation of HPLC Method for the Determination of “Simvastatin in Bulk and Pharmaceutical Formulation” Jurnal of Chem and Pharma Research, 2012, v. 4(5) pp.2404-2408.
- [13]. Mujeeb ur Rahman , Gazala Parveen , N.K.Nyola “Simultaneous estimation of simvastatin and ezetimibe in pharmaceutical Tablet dosage forms” by RP-HPLC International Journal of Pharma Research and Development 2008, V.2(9) pp.56-62.
- [14]. Muhammad ashfaq a, Islam ullahkhan hplc determination of “Sitagliptin and simvastatin in pharmaceutical formulations” International Jurnal Chil. Chem. Since 2007, v.52(3) pp.1220-1223.
- [15]. Nilesh Jain, Ruchi Jain, Hemant Swam RP-HPLC Method for “Simultaneous Estimation of Simvastatin and Sitagliptin in Bulk Drug and its Combined Dosage Form” Asian Jurnal Research Chem. 2008, v. 1(1) pp.29-31.
- [16]. D. Madhu latha , K. Ammani P. Jitendra kumar , validated stability indicating hplc method for “Simultaneous determination of Simvastatin and Sitagliptin in bulk drug and Pharmaceutical formulations” International Jurnal of research in pharmacy and chemistry 2014, v. 4(2) pp.406-414.
- [17]. Suddhasatty Dey, Anjan De, Sudip Kumar Mandal development and validation of rp-hplc method for the “Estimation of simvastatin in bulk and pharmaceutical dosage form” Indo American Journal of Pharmaceutical Research 2013, v.3(9) pp.7376-7384.
- [18]. Jayapal Reddy Samaa Rama Rao Kalakuntla “Simultaneous estimation of Simvastatin and Ezetimibe in pharmaceutical formulations by RP-HPLC method” Jurnal of Pharma Sciences and Research 2010, v.2(3) pp.1220-1223.
- [19]. Varsha Balkrishna Mane, Surekha Babar, Nita Kulkarni Development of UV Spectrophotometric method for the“Simultaneous estimation of Simvastatin and Ezetimibe in tablet dosage form by simultaneous equation and absorbance ratio method” International Jurnal of Pharm Tech Research 2011, v.3(3) pp.1459-1466.

[20]. Nagaraju P. Vishnu vardhan Z. A validated reverse phase hplc method for the “Simultaneous estimation of simvastatin and ezetimib in pharmaceutical dosage forms” Jurnal of Global Pharma Technology. 2010, v. 2(4) pp.113-117.