

Volume 2, Issue 3, March 2022

Synthesis, Characterization, and Antibacterial Study of Cadmium (II) Thiosemicarbazone Complexes

Omkar V. Vani, Ajay Lathe, Hrutuja Maydeo, Raghunath J. Katkar and Anil M. Palve* Department of Chemistry Mahatma Phule Arts, Science, and Commerce College, Panvel, Navi Mumbai, India

Corresponding Author: palve anil@yahoo.com*

Abstract: The reaction of CdI_2 with thiosemicarbazone-based ligands such as $(benztsczH)_2$ and $(benzoptsczH)_2$ resulted $inCdI_2$ $(benztsczH)_2$ and $CdI_2(benzoptsczH)_2$ complexes where benztsczH and benzoptsczH are benzaldehyde and benzophenone thiosemicarbazone respectively. The above complexes have been prepared and characterized by elemental analysis, infrared and nuclear magnetic resonance $({}^{1}H$ and ${}^{13}C_{\{}^{1}H_{\}})$ spectroscopic techniques. These complexes have been studied for antibacterial activities using Escherichia coli (gram-negative) and Staphylococcusaureus(gram-positive). The minimum inhibitory concentration response of both the complexes was found to be 400ppm against the strains.

Keywords: Cd(II) Complexes; Cadmium Iodide, Thiosemicarbazone, Antibacterial Study

I. INTRODUCTION

Nowadays, the number of infections is caused by bacteria, parasites, viruses, and fungi because of the decreased inability of humans for anti-microbial resistance. The main reason for this is the genetic changes that occur in the pathogens when exposed to antibacterial drugs which result in the evolution of pathogen-resistant agents¹. Thiosemicarbazones and their metal complexes are being studied due to their wide range of biological properties². The influence on the biological activity of the metal complexes can be brought about by the nature of the metal ion, its oxidation state, and the number and type of ligands bound to improve the potentiality of the drugs³. The metal complexes of thiosemicarbazones are frequently more active than the free ligand or sometimes act as a transporter for activation of the ligand as the cytotoxic agent⁴. Thiosemicarbazones complexes possess awidespread set of N, S donor ligands which have shown their importance in coordination chemistry. These ligands became popular due to their great flexibility, which is exhibited by their ability to exist as two forms (thione-thiol), and the capacity to bind metal ions in the anionic or neutral form, working as a monodentate or bidentate ligand^(5,6,7,8). After the formation of complexes, there is delocalization of positive charge of the metal with the donor groups and in chelates which increases the hydrophobic nature which enhances penetration through lipid layers of microorganism causing the death of the bacterias9. The biological activity of thiosemicarbazones is dependent on their chelating ability with transition metal ions, bonding through N, N, and S atoms or O, N, and S atoms¹⁰. Various biological properties are demonstrated by the thiosemicarbazone complexes such as antibacterial, antifungal, antibacterial, antitumor, antioxidant, and DNAinteractions¹¹.

Various thiosemicarbazone complexes have been studied for the antibacterial activity on *E. coli* and *S. aureus*. The thiosemicarbazone complexes of metals include Pd(II) and Zn(II)², Cu(II)¹², 4- and 6- coordinate Ni(II)¹³, Mn(II) and Cr(II)¹⁰, Ag(I)¹⁴, Co(II)¹⁵, Cd(II)³ and many more have been reported so far for the antibacterial activity.

In the present paper, we havesynthesized Cd(II) complexes $[CdI_2(benztsczH)_2 \text{ and } CdI_2(benzoptsczH)_2]$ of thiosemicarbazone ligands of the type the $CdI_2(LH)_2$. Here, benztsczH benzoptsczH are benzaldehyde and benzophenone thiosemicarbazone ligands. The synthesized complexes were used for the antibacterial activity studies of the bacterial species such as gram-positive (*Staphylococcus aureus*) and gram-negative (*Escherichia coli*) bacteria.

Copyright to IJARSCT www.ijarsct.co.in

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 3, March 2022

II. EXPERIMENTAL

2.1 Synthesis of CdI₂ (benztsczH)₂

CdI2(benztsczH)2complex was reported in our previous work¹⁶.In brief, CdI₂ (0.500 g) andbenzaldehyde thiosemicarbazone (0.5056 g) was mixed in 15 mL methanol each and refluxed for 2 h in RB flask. The solid obtained from clear solution was kept for crystallization. Melting Point: 206 °C, (Yield: 86.19 %), Elemental analysis (%) found (calculated): Cd: 20.60 (20.74), C: 35.35 (35.46), H: 3.29 (3.34), N: 15.70 (15.51), S: 11.69 (11.83), Cl: 13.02 (13.08). I.R. (cm-1): 3431, 3271 (v_{NH2} asym and sym), 3190 (v_{NH}), 1575 ($v_{C=N}$), 848 ($v_{C=S}$). N.M.R. (δ in ppm): 1H: 7.36-8.19 (s, 2H, -NH2; + m, 6H, C6H5-CH=); 11.42 (s, 1H, -NH-); 13C (δ in ppm): 178.23 (>C=S), 142.92 (>C=N-), 134.57, 130.32, 129.10, 127.76 (aromatic carbons)

	Methanol, Reflux		
$CdI_2 + 2 LH$		$CdI_2(LH)_2$	(1)

2.2 Synthesis of CdI₂ (benzoptsczH)₂

CdI₂(benzoptsczH)₂ complex was synthesized using the reported method¹⁷. In brief, 0.500 g of CdI₂ and 0.3486g benzaldehyde thiosemicarbazone was mixed into 15 mL methanol each. The above reactants are refluxed for 2 h in the RB flask. The solid obtained from the clear solution was kept for crystallization. Melting point: 91°C, yield: 1.572 g (97.88%), Elemental analysis for CdI₂C₂₈H₂₆N₆S₂, the calculated %: Cd, 12.81; C, 38.35; H, 2.98; N, 9.58; S, 7.31. and found%: Cd, 12.97; C, 38.54; H, 2.84; N, 9.28; S, 7.14. IR, cm–1: 3406, 3286 (v_{NH2} asym and sym), 3192 (v_{N-H}), 1592 (v_{C-N}), 832 (v_{C-S}). 1 H NMR (δ , ppm): 7.32–8.48 (s, NH2, mC6H5– C=N), 8.63 (s, NH); 13C NMR (δ , ppm): 177.64 (C=S), 149.03 (C=N), 136.26, 131.17, 129.96, 129.77, 128.31, 128.25, 127.56 (aromatic carbons).

2.3 Preparation of Inoculums

Stock cultures were maintained at 4°C on slants of nutrient agar. Active cultures of the experiment were prepared by transferring a loopful of cells from the stock cultures to a test tube of Muller-Hinton broth (MHB) for bacteria that were incubated without agitation for 24 hours at 37° C. The cultures were diluted with fresh Muller-Hinton broth.

2.4 Materials

Cadmium iodide $[CdI_2]$, benzaldehyde $[C_7H_6O]$, benzophenone $[C_{13}H_{10}O]$,and thiosemicarbazide $[CH_5N_3S]$, were purchased from Sigma Aldrich, methanol $[CH_3OH]$ was purchased from S. D. Fine Chem Ltd. Distilled water for the required reaction was distilled out in the laboratory. Muller-Hinton broth were purchased from S. D. Fine Chem Ltd. All the chemicals used in the synthesis of the complex were analytical grade and used without any purification.

2.5 Instrumentation

Elemental analyses were performed on Thermo Electron Corporation FLASH EA 1112 series analyzer. The infrared spectra (IR) were recorded as KBr pellets using KBr press on a Perkin Elmer FT-IR spectrometer in the 4000-400 cm⁻¹ range. ¹H and ¹³C{¹H} nuclear magnetic resonance (NMR) were recorded in a 5 mm NMR tube in DMSO-d₆ on a Bruker Avance II 300 MHz NMR spectrometer operating at 300 and 75.47 MHz, respectively. The chemical shifts were referred to as internal standard tetramethylsilane (TMS) for ¹H and ¹³C{¹H} NMR.

3.1 Antibacterial Susceptibility Test

III. RESULTS AND DISCUSSION

The agar cup method was used to screen the antibacterial activity. In vitro antibacterial activity was screened by using Muller Hinton Agar (MHA). To the sterile molten MH agar butts of 20 ml, 0.1 microbial culture was added and poured into sterile Petri plates. The plates were allowed to solidify for 5 minutes. The wells were prepared using a cork-borer, the sample of different concentrations was added in wells and the plates were kept for incubation at 37°C for 24 hrs. At the end of incubation, inhibition zones formed around the wells were measured with a transparent ruler in millimeters. Additions are performed according to the addition table. The images for the zone of inhibition are given in figure 1.

Copyright to IJARSCT www.ijarsct.co.in

Volume 2, Issue 3, March 2022

The minimum inhibitory concentration of $CdI_2(benztsczH)_2$ and $CdI_2(benzoptsczH)_2$ was found to be 400ppm against both test organisms *E. coli* and *S. aureus*(Table 1). Table 2 and 3 represents the measurement of the zone of inhibition for $CdI_2(benztsczH)_2$ and $CdI_2(benztsczH)_2$ and $CdI_2(benztsczH)_2$.

Conc.	Stock	Diluent	Total	Culture	CdI ₂ (benztsczH) ₂		CdI ₂ (benztsczH) ₂ CdI ₂ (benzoptsczH) ₂	
(in	Sol.	(NB)	volume	(ml)	Growth of	Growth of	Growth of	Growth of
ppm)	(ml)	(ml)	(ml)		E. coli	S. aureus	E. coli	S. aureus
100	0.5	4.5			++	++	++	++
200	1.0	4.0			+	+	+	+
300	1.5	3.5			+	+	+	+
400	2.0	3.0			-	-	-	-
500	2.5	2.5	5.0	0.1	-	-	-	-
600	3.0	2.0			-	-	-	-
700	3.5	1.5			-	-	-	-
800	4.0	1.0			-	-	-	-
900	4.5	0.5			-	-	-	-
1000	5.0	-			-	-	-	-

Figure 1: A representative antibacterial activity of CdI2(benztsczH)2with test organism (A) E. coli and (B) S. aureus

Conc. of CdI ₂ (benztsczH) ₂	Diameter (in mm) for	Diameter (in mm) for	
(in ppm)	CdI ₂ (benztsczH) ₂ for <i>E. coli</i>	CdI ₂ (benztsczH) ₂ for S. aureus	
200ppm	11mm	12mm	
300ppm	12mm	15mm	
400ppm	15mm	18mm	
500ppm	20mm	20mm	

Г I I А	14	c	C · 1 · 1 · 4 ·	c (7 IT (1 / TT	、
i able 2:	Measurement	of zone	of inhibition	tor C		benztsczH)2

Copyright to IJARSCT www.ijarsct.co.in

Volume 2, Issue 3, March 2022

IJARSCT

Table 3: Measurement of the zone of inhibition for CdI ₂ (benztsczH) ₂	
--	--

Conc. of CdI ₂ (benzoptsczH) ₂	Diameter (in mm) for	Diameter (in mm) for	
(in ppm)	CdI ₂ (benzoptsczH) ₂ for <i>E. coli</i>	CdI ₂ (benzoptsczH) ₂ for S. aureus	
200ppm	10 mm	13 mm	
300ppm	13 mm	16 mm	
400ppm	15 mm	17 mm	
500ppm	18 mm	19 mm	

IV. CONCLUSION

The antibacterial activity of $CdI_2(benztsczH)_2$ and $CdI_2(benzoptsczH)_2$ have been tested against *E. coli* and *S. aureus* for minimum inhibitory concentration and zone of inhibition. The minimum inhibitory concentration was found to be 400ppm against both test organisms. The complexes of $CdI_2(benztsczH)_2$ and $CdI_2(benzoptsczH)_2$ were found to be effective antibacterial agents against *E. coli* and *S. aureus*.

REFERENCES

- Nasiri Sovari, S.; Zobi, F. Recent Studies on the Anitibacterial Activity of Transition Metal Complexes of Groups 6–12. Chemistry (Easton).2020, 2 (2), 418–452. https://doi.org/10.3390/chemistry2020026.
- [2]. Kizilcikli, I.; Kurt, Y. D.; Akkurt, B.; Genel, A. Y.; Birteksöz, S.; Ötük, G.; Ülküseven, B. Anitibacterial Activity of a Series of Thiosemicarbazones and Their Zn II and PdII Complexes. Folia Microbiol. (Praha).2007, 52 (1), 15–25. https://doi.org/10.1007/BF02932132.
- [3]. Konakanchi, R.; Haribabu, J.; Prashanth, J.; Nishtala, V. B.; Mallela, R.; Manchala, S.; Gandamalla, D.; Karvembu, R.; Reddy, B. V.; Yellu, N. R.; et al. Synthesis, Structural, Biological Evaluation, Molecular Docking and DFT Studies of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) Complexes Bearing Heterocyclic Thiosemicarbazone Ligand. Appl. Organomet. Chem.2018, 32 (8), 1–18. https://doi.org/10.1002/aoc.4415.
- [4]. Tavares, T. T.; Paschoal, D.; Motta, E. V. S.; Carpanez, A. G.; Lopes, M. T. P.; Fontes, E. S.; Dos Santos, H. F.; Silva, H.; Grazul, R. M.; Fontes, A. P. S. Platinum(II) and Palladium(II) Aryl-Thiosemicarbazone Complexes: Synthesis, Characterization, Molecular Modeling, Cytotoxicity, and Anitibacterial Activity. J. Coord. Chem.2014, 67 (6), 956–968. https://doi.org/10.1080/00958972.2014.900664.
- [5]. V, E. S. P. B.; Kauffman, B.; Introduction, A. Of the Sulfur Donor Ligands, Thiosemicarbazones Have Perhaps Not Received [2,3], as Much Attention as, e.g., Dithiophosphates [1], Dithiocarbamates *. Science (80-.).1985, 63, 127–160.
- [6]. West, D. X.; Liberta, A. E.; Padhye, S. B.; Chikate, R. C.; Sonawane, P. B.; Kumbhar, A. S.; Yerande, R. G. Thiosemicarbazone Complexes of Copper(II): Structural and Biological Studies. Coord. Chem. Rev.1993, 123 (1–2), 49–71. https://doi.org/10.1016/0010-8545(93)85052-6.
- [7]. Berkessel, A.; Hermann, G.; Rauch, O. T.; Büchner, M.; Jacobi, A.; Huttner, G. Preparation and X-Ray Crystal Structure of the First Trimeric Thiosemicarbazone Complex: The First Example of by Both Ni-O-Ni and Ni-S-Ni. Chem. Ber.1996, 129 (12), 1421–1423. https://doi.org/10.1002/cber.19961291203.
- [8]. Gan, C.; Cui, J.; Su, S.; Lin, Q.; Jia, L.; Fan, L.; Huang, Y. Synthesis and Antiproliferative Activity of Some Steroidal Thiosemicarbazones, Semicarbazones and Hydrozones. Steroids2014, 87, 99–107. https://doi.org/10.1016/j.steroids.2014.05.026.
- [9]. Sawant, N. V.; Biswal, J. B.; Garje, S. S. Synthesis, Structural and Thermal Studies of Some Biologically Active Antimony Semicarbazones and Thiosemicarbazones. J. Coord. Chem.2011, 64 (10), 1758–1769. https://doi.org/10.1080/00958972.2011.572163.
- [10]. Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.; Bedier, R. A. Synthesis, Characterization, Optical Band Gap, in Vitro Anitibacterial Activity and DNA Cleavage Studies of Some Metal Complexes of Pyridyl Thiosemicarbazone. J. Mol. Struct.2013, 1035, 307–317. https://doi.org/10.1016/j.molstruc.2012.10.058.

Copyright to IJARSCT www.ijarsct.co.in

Volume 2, Issue 3, March 2022

- [11]. Ilies, D. C.; Pahontu, E.; Shova, S.; Georgescu, R.; Stanica, N.; Olar, R.; Gulea, A.; Rosu, T. Synthesis, Characterization, Crystal Structure and Anitibacterial Activity of Copper(II) Complexes with a Thiosemicarbazone Derived from 3-Formyl-6-Methylchromone. Polyhedron2014, 81 (Ii), 123–131. https://doi.org/10.1016/j.poly.2014.05.074.
- [12]. Qi, J.; Wang, X.; Liu, T.; Kandawa-Schulz, M.; Wang, Y.; Zheng, X. Synthesis, Antiproliferative Activity and Mechanism of Copper(II)-Thiosemicarbazone Complexes as Potential Anticancer and Antibacterial Agents. J. Coord. Chem.2020, 73 (7), 1208–1221. https://doi.org/10.1080/00958972.2020.1768378.
- [13]. Kasuga, N. C.; Sekino, K.; Koumo, C.; Shimada, N.; Ishikawa, M.; Nomiya, K. Synthesis, Structural Characterization and Anitibacterial Activities of 4- and 6-Coordinate Nickel(II) Complexes with Three Thiosemicarbazones and Semicarbazone Ligands. J. Inorg. Biochem.2001, 84 (1–2), 55–65. https://doi.org/10.1016/S0162-0134(00)00221-X.
- [14]. Dehno Khalaji, A.; Shahsavani, E.; Feizi, N.; Kucerakova, M.; Dusek, M.; Mazandarani, R. Silver(I) Thiosemicarbazone Complex [Ag(Catsc)(PPh3)2]NO3: Synthesis, Characterization, Crystal Structure, and Antibacterial Study. Comptes Rendus Chim.2017, 20 (5), 534–539. https://doi.org/10.1016/j.crci.2016.09.001.
- [15]. Kolhe Nitin, H.; Jadhav Shridhar, S.; Shaikh Sajid, H.; Takate Sushama, J.; Aware Dinkar, V. Nanocrystalline Mixed Ligand Complexes of Cu (II), Ni (II), Co(II) with N, O Donor Ligands: Synthesis, Characterization, and Anitibacterial Activity. Orient. J. Chem.2016, 32 (6), 2999–3013. https://doi.org/10.13005/ojc/320620.
- [16]. Lathe, A.; Palve, A. M. Reduced Graphene Oxide-Decorated CdS/ZnO Nanocomposites for Photoreduction of Hexavalent Chromium and Photodegradation of Methylene Blue. Dalt. Trans.2021, 50 (40), 14163–14175. https://doi.org/10.1039/D1DT02192C.
- [17]. Palve, A. M.; Kokil, D. N. One-Pot Synthesis of ZnS-RGO Nanocomposites Using Single-Source Molecular Precursor for Photodegradation of Methylene Blue and Reduction towards Toxic Cr(VI) under Solar Light. Mater. Res. Express2019, 6 (10), 105536. https://doi.org/10.1088/2053-1591/ab408f.