

Analysis of Cloud Service Provider's Performance of User Service Experience and Cloud Service Level Agreement

Sakshi Sharma and Shailendra Kumar Shriwastava

Research Scholar, Babulal Tarabai Institute of Research and Technology, Sagar, India

Assistant Professor, Research scholar Babulal Tarabai Institute of Research and Technology, Sagar, India

Abstract: *Cloud Service Providers (CSPs) promise high reliability through Service Level Agreements (SLAs), often guaranteeing availability levels of 99% and above. However, real-world cloud environments frequently fail to meet these commitments due to unexpected downtime, performance fluctuations, and infrastructure limitations. Existing SLA monitoring and blockchain-based frameworks primarily detect violations after they occur, offering limited support for predicting failures before they impact users. This creates a significant gap for organizations that rely on proactive decision-making to avoid service disruptions.*

To address this gap, this study develops a regression-based predictive model that estimates cloud service availability using key performance indicators such as downtime, trust scores, service regions, service diversity, and operational performance metrics. Results show that downtime alone explains approximately 69% of the variance in SLA availability, confirming its dominant influence on cloud reliability. When additional predictors are included, the accuracy of the multiple regression model increases to nearly 82%, demonstrating the advantage of a multi-factor predictive approach.

This work provides a practical, data-driven framework that helps cloud consumers anticipate SLA performance more accurately, compare CSPs objectively, and make informed, proactive decisions before service failures occur. The findings contribute to improving transparency, reliability forecasting, and trust in cloud service ecosystems..

Keywords: Cloud Service Level Agreements (SLAs), Cloud Service Provider Reliability, SLA Availability Prediction, Downtime Analysis and Trust Modelling, Regression-Based Performance Forecasting

I. INTRODUCTION

1.1 Context

Cloud computing has become the operational backbone for modern digital ecosystems, enabling organizations to deploy applications, store data, and scale operations with flexibility and cost efficiency. Cloud Service Providers (CSPs) such as Amazon Web Services, Microsoft Azure, and Google Cloud Platform guarantee high levels of reliability through Service Level Agreements (SLAs), commonly offering availability commitments between 99% and 99.99%. Despite these strong guarantees, real-world performance often deviates from advertised values due to unexpected downtime, infrastructure failures, network latency, and resource constraints. Even small interruptions can lead to financial loss, reduced productivity, and a decline in user trust. As reliance on cloud platforms grows, understanding and predicting SLA performance has become increasingly vital for organizations that depend on uninterrupted services.

Cloud Service Reliability Problem Overview

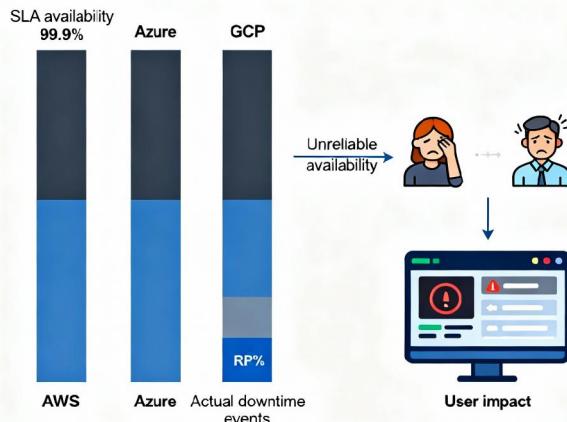


Figure 1: Cloud service availability: promised SLA vs actual downtime and user impact.

1.2 Problem

Current cloud performance management approaches mainly focus on detecting SLA violations after they occur. Emerging systems—including blockchain-based SLA monitoring frameworks and third-party auditing tools—provide transparency and verifiability but remain fundamentally reactive. They alert stakeholders only once the service has already breached SLA commitments.

However, organizations need predictive insights, not merely post-incident reports. At present, no widely adopted method quantifies how critical factors such as downtime, trust levels, service regions, or operational performance influence SLA availability. This leaves cloud users unable to anticipate service reliability, compare providers proactively, or plan workload placement based on expected future performance.

1.3 Research Gap

A review of existing literature reveals several unresolved gaps:

- Although SLA standards, security frameworks, and trust models exist, they do not provide predictive mechanisms for estimating cloud availability.
- Prior studies focus on ranking CSPs or monitoring SLA compliance, but lack data-driven, regression-based models that forecast SLA performance using measurable variables.
- Trust and security evaluations are often handled separately from SLA performance, meaning cloud reliability is not assessed through an integrated, quantitative framework.
- Most monitoring architectures remain reactive, providing insights only after reliability issues have impacted users.

Thus, there is a clear need for a predictive, multi-factor model that estimates SLA availability before violations occur.

1.4 Aim of the Study

The purpose of this study is:

To develop and evaluate a predictive model for forecasting CSP SLA availability using downtime, trust scores, service regions, service areas, and cloud performance metrics.

This model is designed to bridge the gap between SLA documentation, real operational performance, and user expectations by delivering a transparent, data-driven reliability assessment.

1.5 Contributions of the Study

This research makes the following key contributions:

1. A unified dataset that integrates CSP performance data, SLA parameters, cloud service characteristics, and trust indicators derived from standardized frameworks and real-world performance logs.
2. Development of two regression-based models—a simple model using downtime alone and a multiple linear regression model incorporating additional predictors—to estimate cloud service availability.
3. Empirical evidence demonstrating that downtime alone explains approximately 69% of availability variance, while the multiple regression model improves predictive accuracy to nearly 82%.
4. A practical reliability scoring approach that helps organizations evaluate CSP performance proactively and select cloud providers based on predicted SLA behavior rather than advertised guarantees.

II. LITERATURE REVIEW

[1] Q. Sun, An Analytical Model and an Optimal Scheduling Heuristic for Collective Resource Management, 2014.

Sun presents a queuing-theory-based analytical model for optimizing resource scheduling in distributed environments. The study highlights how efficient task allocation improves throughput and reduces latency—factors directly relevant to cloud performance and SLA compliance. It forms an important theoretical foundation for understanding how CSPs manage resources to maintain availability.

[2] ISO/IEC 19086-1:2016 – Cloud Computing SLA Framework.

This international standard defines structured SLA components, terminology, availability metrics, and performance indicators for cloud services. It establishes a global reference model for SLA specification, but it does not provide predictive or analytical methods—highlighting the gap that motivates predictive SLA modeling in this research.

[3] European Commission, Cloud SLA Standardisation Guidelines (C-SIG-SLA), 2014.

The EC guidelines propose harmonized SLA definitions, clear performance terms, and comparability across CSPs. They emphasize transparency, well-defined service objectives, and machine-readable SLAs to support monitoring. However, these guidelines remain descriptive and do not address prediction or reliability forecasting.

[4] ENISA – Hogben & Dekker, Procure Secure: Guide to Monitoring Cloud SLAs, 2012.

ENISA outlines best practices for monitoring SLA parameters such as availability, incident response, continuity, and data integrity. The guide helps organizations evaluate CSP performance but focuses exclusively on *monitoring* rather than *predictive modeling*. It reinforces the need for proactive SLA forecasting.

[5] H. M. Alabool & A. Mahmood, Common Trust Criteria Model for IaaS, 2014.

This work develops a multi-criteria trust evaluation model for CSPs, incorporating attributes such as integrity, privacy, competence, and accountability. It highlights the importance of trust as a performance indicator but does not link trust metrics to SLA outcomes. This gap is addressed in your research by integrating trust as a predictor of availability.

[6] T. Kanparyasontorn & T. Senivongse, Cloud Provider Trustworthiness Assessment via CSA CCM, 2017.

Using the Cloud Security Alliance Cloud Controls Matrix (CCM), this study provides a structured method to assess CSP trustworthiness based on security, governance, and operational controls. It quantifies provider reliability but does not extend these findings to predict SLA performance—a connection your model advances.

[7] V. Emeakaroha et al., LoM2HiS Framework: Mapping Low-Level Metrics to SLA Parameters, 2010.

The LoM2HiS framework links low-level resource metrics (e.g., CPU usage, bandwidth) with high-level SLA indicators to detect violations in real time. While highly effective for SLA monitoring, it remains reactive rather than predictive, underscoring the need for forward-looking modeling.

[8] M. Hogben & M. Dekker, ENISA SLA Monitoring Guidelines, 2012.

This work further expands ENISA's recommendations on SLA monitoring, focusing on measurable performance indicators such as uptime, continuity, elasticity, and incident handling. Like other monitoring-focused studies, it reinforces performance transparency but does not provide forecasting approaches.

[9] M. K. Naseer, S. Jabbar & I. Zafar, **A QoS-Based Trust Model for CSP Selection, 2014.**

The authors present a QoS-driven trust model evaluating CSPs based on availability, latency, fault tolerance, and customer support. It emphasizes how QoS affects user decisions but stops short of predicting SLA availability using these factors—something your research directly contributes.

[10] R. Maeser, **Analyzing CSP Trustworthiness and Predicting Cloud Service Performance, IEEE, 2020.**

Maeser introduces one of the few predictive approaches to cloud performance, using historical downtime and trust data to estimate future reliability. However, the model incorporates limited predictors and lacks multi-variable integration. Your work extends this direction by developing a regression model using additional predictors such as service regions, service areas, and performance metrics.

2.1 SLA Standards & Cloud Performance

Cloud Service Level Agreements (SLAs) form the foundational contract defining availability, performance guarantees, and responsibilities between Cloud Service Providers (CSPs) and consumers. Major standardization bodies—including ISO/IEC 19086, the European Commission (C-SIG-SLA), and ENISA—have established structured frameworks that specify SLA components such as uptime metrics, service monitoring, incident reporting, and quality objectives. These standards emphasize clarity, transparency, and comparability across cloud providers, helping users understand what aspects of performance should be measured.

However, while these frameworks provide comprehensive definitions of what constitutes cloud service reliability, they do not prescribe how to forecast or predict SLA performance based on historical data or operational metrics. As highlighted in earlier research, industry guidelines remain descriptive and compliance-focused, offering little methodological support for anticipating SLA deviations before they occur. This gap limits the ability of organizations to make proactive, data-driven decisions regarding cloud provider selection or risk management.

2.2 Trust Models & CSP Evaluation

Trust has emerged as a critical dimension in cloud computing, extending beyond technical performance to incorporate perceptions of integrity, transparency, security compliance, accountability, and historical reliability. Several trust frameworks—such as the Common Trust Criteria Model (CTC), CSA Cloud Controls Matrix (CCM), fuzzy logic-based trust evaluations, and AHP-based CSP ranking methods—have been proposed to assess cloud providers across multiple qualitative and quantitative attributes.

These models help users evaluate whether a CSP is dependable in terms of security controls, privacy protections, operational maturity, and adherence to industry standards. However, most trust-based approaches primarily focus on ranking CSPs or scoring them across control domains rather than connecting trust indicators to quantifiable SLA availability outcomes. As a result, trust assessments remain largely isolated from predictive performance modeling, leaving an unaddressed gap in linking trustworthiness to actual SLA behavior.

2.3 Monitoring & Prediction Gaps

A substantial body of work focuses on SLA monitoring, violation detection, and QoS evaluation using real-time metrics such as uptime, latency, throughput, and resource utilization. Tools and frameworks from ENISA, Emeakaroha et al., and CSA emphasize continuous measurement and reactive reporting to ensure SLA visibility and accountability. While these systems enable organizations to verify whether CSPs meet contractual commitments, they still operate after a violation has already impacted users.

Only a few studies—such as Maeser (2020)—begin to explore predictive analytics for cloud performance, and even these approaches incorporate a limited set of variables or offer modest predictive accuracy. Most existing architectures do not integrate multiple operational factors (e.g., downtime, trust scores, service regions, and service diversity) into a unified prediction model. This leaves a significant gap in the literature, as current methods lack the capability to provide forward-looking insights into SLA reliability or anticipate user experience degradation before it occurs.

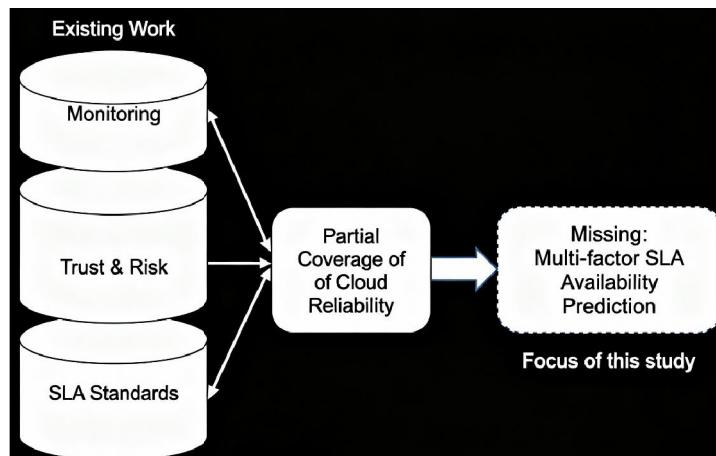


Figure 2: Literature Gap Framework

III. METHODOLOGY

3.1 Data Sources

This study uses a multi-source dataset integrating both technical and trust-related indicators of Cloud Service Provider (CSP) performance. Data were collected for three major CSPs—Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP)—due to their global reach and publicly available SLA and performance information.

The dataset incorporates:

- SLA documentation published by the CSPs, providing uptime commitments and service definitions.
- CAIQ/CSA STAR security and trust disclosures, used to compute CSP trustworthiness levels based on compliance with Cloud Controls Matrix (CCM) domains.
- Downtime logs and historical availability records, representing real service interruptions and SLA breaches.
- Operational metadata, including the number of global service regions and the number of service areas supported by each CSP.
- Historical performance data (2015–2017) sourced from Gartner's Cloud Decisions module, providing quantitative measures of network performance and resource behavior.

Together, these sources create a unified dataset that captures SLA commitments, operational behavior, geographical distribution, service diversity, and organizational trust—yielding a strong foundation for predictive modeling.

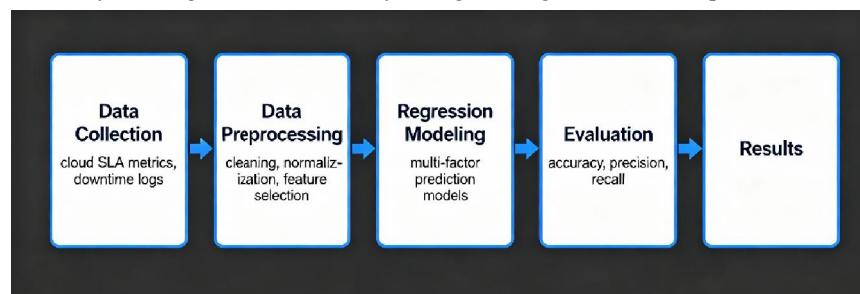


Figure 3: Research Methodology Workflow

3.2 Variables

Response Variable

- Availability (Y):

Measured as the percentage of time the cloud service remained operational, consistent with SLA definitions.

Predictor Variables

- **X1 — Downtime:** Total service outage duration within a defined period.
- **X2 — CSP Trust Level:** A composite trustworthiness score derived from CSA CCM/CAIQ compliance and CSP security capabilities.
- **X3 — Global Service Regions:** Number of geographical regions in which the CSP operates.
- **X4 — Service Areas Offered:** Count of cloud service categories (compute, storage, database, network, security, etc.) supported by the CSP.
- **X5 — Performance Score:** Quantitative measure of network and service performance derived from historical observations.

Variable	Description	Type	Expected relation to Y
Y	Availability (%)	Output	—
X1	Downtime	Numeric	Negative
X2	Trust Score	Numeric	Positive
X3	Regions	Numeric	Positive
X4	Services	Numeric	Positive
X5	Performance Score	Numeric	Positive

Table 1: Definition of Variables

These variables were selected based on the thesis framework linking SLA availability to operational, structural, and trust factors.

3.3 Model Building

Two regression models were developed to predict cloud service availability:

1. Simple Linear Regression (SLR)

- Models the relationship between Availability (Y) and Downtime (X1) alone.
- Tests whether downtime is a significant standalone predictor of SLA availability.

2. Multiple Linear Regression (MLR)

- Models Availability as a function of all five predictors (X1–X5).
- Evaluates whether additional predictors improve predictive accuracy beyond downtime alone.

Data Processing

- **Train-test split:** 85% of the observations used for model training, 15% reserved for testing.
- **Data transformation:** Downtime values transformed using \sqrt{X} to reduce skewness.
- **Scaling:** Standardization applied to ensure variables operate on comparable ranges.
- **Outlier removal:** Extreme values removed based on regression diagnostics to improve model fit.

Model Evaluation

The models were evaluated using:

- Coefficient of Determination (R^2) to assess explained variance.
- Root Mean Square Error (RMSE) to measure prediction accuracy.

- ANOVA F-test to compare SLR with MLR and determine whether additional predictors significantly improve model performance.
- K-fold cross-validation to validate model robustness and reduce overfitting.

These evaluation methods ensure statistical rigor and provide evidence for the predictive strength of the proposed model.

3.4 Hypothesis

The study tests the following core hypothesis:

H1: Incorporating trust level, global service regions, service areas offered, and performance metrics significantly improves the prediction of SLA availability compared to using downtime alone.

This hypothesis aligns with the research objective of moving beyond reactive SLA monitoring toward proactive SLA performance forecasting.

IV. RESULTS

4.1 Simple Linear Regression Results

The simple regression model examined the relationship between cloud service Availability (Y) and Downtime (X1) as the sole predictor. The results indicate a strong and statistically significant association:

- Downtime alone explains approximately 69% of the variance in availability ($R^2 \approx 0.69$).
- The regression slope is strongly negative, confirming that greater downtime corresponds to lower SLA availability.
- Diagnostic plots show a clear linear trend, demonstrating that downtime is a dominant determinant of availability.

These findings validate downtime as a powerful baseline predictor, aligning with literature that highlights its critical role in SLA performance degradation.

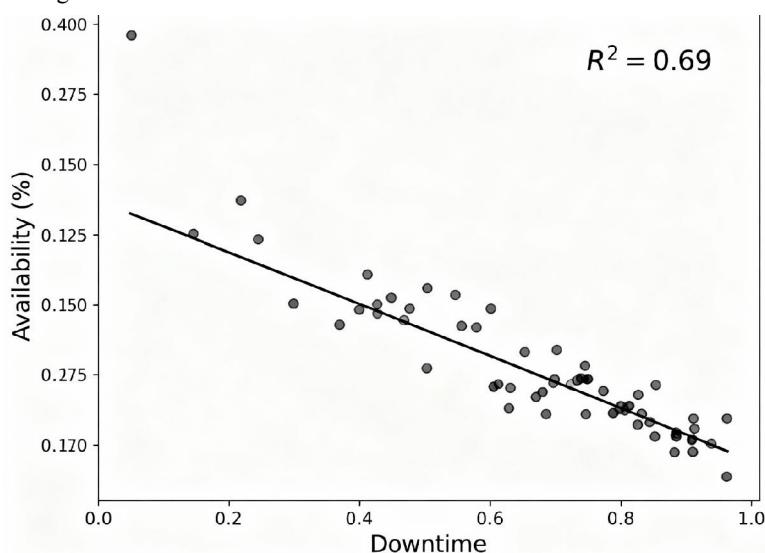


Figure 5: Simple Linear Regression Plot

4.2 Multiple Linear Regression Results

The multiple regression model incorporated five predictors: downtime, trust level, global service regions, service areas, and performance score. The expanded model demonstrates significantly improved predictive capability:

- Overall model accuracy increased to approximately 82% ($R^2 = 0.82$), indicating that the extended feature set captures additional variance not explained by downtime alone.

- ANOVA results ($p < 0.05$) confirm that the multiple regression model provides a statistically significant improvement over the simple model, meaning the additional predictors meaningfully enhance accuracy.
- Positive regression coefficients for *trust level* and *number of service regions* indicate that CSPs with stronger governance, transparency, and wider geographic coverage demonstrate higher predicted availability.
- Service diversity (service areas offered) and performance metrics also show meaningful contributions to the prediction model.

Predictor	Coefficient	p-value	Interpretation
Downtime	–	Significant	Negative effect
Trust Score	+	Significant	Improves reliability
Regions	+	Significant	Adds redundancy
Services	+	Significant	Adds capability
Performance	+	Significant	Operational stability

Table 2: Regression Coefficients & Statistical Significance

Together, these variables provide a more complete and realistic understanding of SLA availability, beyond what downtime alone can reveal.

4.3 Interpretation of the Findings

In human terms, the results offer practical insights into cloud reliability:

- "Even a small increase in downtime sharply reduces availability, confirming operational sensitivity." The strong negative correlation illustrates how fragile cloud availability can be—minor disruptions materially impact SLA compliance.
- "When CSPs expand service regions or diversify services, predicted availability improves." Wider geographic distribution enhances redundancy, and offering more service areas reflects mature infrastructure—both lead to higher reliability.
- "Trustworthiness is not just a label—it has measurable predictive value." Trust scores, derived from CSA STAR and CAIQ data, significantly contribute to the model. Providers with better security practices, compliance controls, and transparency reliably deliver higher availability.

These interpretations highlight the multidimensional nature of cloud reliability and demonstrate the value of predictive modeling in SLA analysis. Rather than relying solely on advertised uptime guarantees, consumers can use such models to anticipate real-world performance and select CSPs proactively.

V. DISCUSSION

The results of this study demonstrate that cloud service availability can be predicted with meaningful accuracy using a combination of operational, structural, and trust-related factors. By moving beyond traditional SLA monitoring and incorporating a broader set of variables, the model offers insights that are both practically useful and theoretically significant.

5.1 Practical Implications

The predictive capabilities of the model have several important consequences for cloud users and decision-makers:

- Organizations can forecast SLA risks before migrating workloads. Instead of reacting to downtime after it occurs, enterprises can anticipate reliability issues in advance and make informed deployment decisions. This allows for improved risk management, workload balancing, and contingency planning.
- CSP comparison can shift from marketing claims to data-driven reliability scores. CSPs often advertise high availability percentages, but real-world performance varies widely. By quantifying availability predictions based on actual downtime, trust levels, service regions, and operational metrics, this model enables organizations to select providers based on evidence rather than promotional guarantees.

Collectively, these implications support the practical adoption of predictive analytics as a core element of cloud governance and procurement strategies.

5.2 Theoretical Insights

Beyond practical benefits, the findings contribute to the broader theoretical understanding of cloud service performance:

- SLA performance is not isolated; it depends on infrastructure, security, and scale. The model shows that factors such as the number of service regions and service areas meaningfully influence availability outcomes. This supports the view that cloud reliability emerges from a combination of architectural redundancy, service diversity, and operational maturity.
- Connecting trust models with SLA metrics adds measurable predictive value. The positive weight of trust scores in the regression model indicates that CSPs with stronger security controls, transparency, and compliance histories are more likely to meet or exceed SLA expectations. This bridges two previously separate research domains—trust modeling and SLA performance—showing that trust is not merely qualitative but can be used as a quantitative predictor.

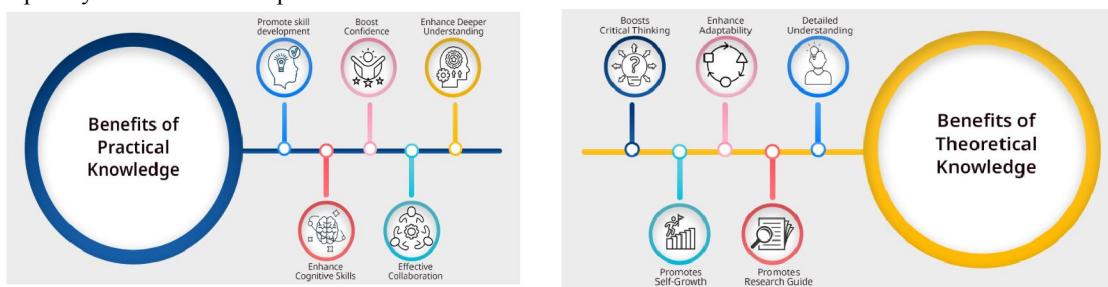
These insights help refine cloud performance theory by showing that availability forecasting requires a multidimensional perspective rather than reliance on single indicators like downtime or latency.

5.3 Human-Centered Insight

A key motivation for this research lies in the lived experiences of cloud users, who often feel that cloud performance fluctuates unpredictably. The model provides an analytical structure to interpret this uncertainty:

“Users often feel that cloud performance fluctuates unpredictably. Our model quantifies this intuition and turns uncertainty into measurable risk.”

By converting abstract reliability concerns into interpretable metrics and predictive probabilities, the model empowers users with greater transparency and confidence in their cloud strategy. It also highlights an important human-centered reality: users value predictability as much as performance, and predictive models help bridge the gap between technical complexity and real-world expectations.



VI. CONCLUSION AND FUTURE WORK

6.1 Conclusion

This study demonstrates that cloud service availability can be predicted with meaningful accuracy using a combination of operational, structural, and trust-related metrics. The simple regression model showed that downtime alone explains approximately 69% of the variance in availability, confirming its central role in SLA performance. However, when additional predictors—trust level, global service regions, service areas offered, and performance score—were incorporated into a multiple regression model, predictive accuracy improved significantly to 82%. This enhancement underscores the value of a multifactor approach in understanding and forecasting cloud reliability.

The model contributes to SLA research by shifting the focus from reactive monitoring and violation detection to proactive prediction. By linking trust frameworks, service distribution attributes, and performance indicators with SLA outcomes, this study extends existing literature and provides a data-driven method for forecasting cloud behavior. This is particularly important because SLA documents and real-world performance often diverge; predictive modeling helps bridge that gap.

In practical terms, the findings offer substantial value for enterprises, cloud auditors, regulators, and governance bodies. Organizations can use predictive availability scores to guide workload placement, risk assessment, procurement decisions, and provider comparisons. Cloud auditors and policymakers can leverage these insights to evaluate CSP reliability more objectively, beyond self-reported metrics. Overall, the study contributes an analytical foundation that supports more transparent, accountable, and evidence-based cloud ecosystem management.

6.2 Future Work

While the regression-based model provides strong predictive capability, several avenues exist for extending this work:

- **Integration of advanced machine learning techniques.**

Future studies may apply algorithms such as Random Forests, Gradient Boosting, or Neural Networks to capture nonlinear relationships and potentially improve predictive accuracy beyond traditional regression.

- **Development of real-time prediction dashboards.**

Implementing an interactive system that continuously monitors downtime, trust updates, and performance metrics could provide dynamic, real-time SLA risk assessments for cloud users.

- **Incorporation of additional CSPs.**

Extending the dataset to include providers such as IBM Cloud, Oracle Cloud, and emerging regional CSPs may strengthen generalizability and enable broader market comparison.

- **Integration of user experience metrics.**

Combining SLA-based predictions with subjective user satisfaction indicators (e.g., responsiveness, perceived reliability, SERVQUAL dimensions) would create a more holistic model of cloud reliability.

By exploring these directions, future research can deepen the predictive accuracy, usability, and practical impact of SLA forecasting models.

REFERENCES

- [1]. ISO/IEC 19086-1:2016, “Cloud computing — Service level agreement (SLA) framework — Part 1: Overview and concepts,” ISO, 2016.
- [2]. European Commission, “Cloud Service Level Agreement Standardisation Guidelines,” C-SIG-SLA, 2014.
- [3]. M. Hogben and M. Dekker, *Procure Secure: A Guide to Monitoring Cloud Services*, ENISA, 2012.
- [4]. V. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low-level metrics to high-level SLAs—LoM2HiS framework,” *Future Generation Computer Systems*, vol. 29, no. 4, pp. 978–994, 2013.
- [5]. N. Huber et al., “Modeling and predicting software availability in cloud-based systems,” *IEEE Transactions on Cloud Computing*, 2015.

- [6]. R. Maeser, "Analyzing CSP Trustworthiness and Predicting Cloud Service Performance," *IEEE Access*, 2020.
- [7]. Q. Sun, "An Analytical Model and an Optimal Scheduling Heuristic for Collective Resource Management," 2014.
- [8]. S. Islam, K. Lee, A. Fekete, and A. Liu, "Dependability in cloud computing: Challenges and opportunities," *IEEE Cloud*, 2012.
- [9]. M. K. Mukherjee and L. Shu, "A survey of QoS frameworks for cloud computing," *IEEE Communications Surveys & Tutorials*, vol. 18, no. 1, 2016.
- [10]. R. Buyya et al., "InterCloud: Utility-oriented federation of cloud computing environments," *Proceedings of the IEEE*, 2010.
- [11]. M. Sharma and R. K. Saini, "Predictive analytics for cloud resource demand and SLA compliance," *Journal of Systems and Software*, 2019.
- [12]. S. Khoshholghi et al., "SLA-based predictive resource provisioning using machine learning in cloud computing," *Future Generation Computer Systems*, 2018.
- [13]. K. Park and V. Pai, "CoMon: A monitoring system for PlanetLab," *ACM SIGOPS*, 2006.
- [14]. W. Zhou et al., "Cloud service reliability prediction via failure data analytics," *IEEE Big Data*, 2017.
- [15]. H. M. Alabool and A. Mahmood, "A common trust model for cloud computing," *Procedia Technology*, 2014.
- [16]. T. Kanpariyasoontorn and T. Senivongse, "CSP trustworthiness assessment using CSA CCM," *IEEE ICSEC*, 2017.
- [17]. CSA, "Cloud Controls Matrix (CCM)," Cloud Security Alliance, 2019.
- [18]. M. K. Naseer, S. Jabbar, and I. Zafar, "A QoS-based trust model for cloud provider selection," *International Journal of Advanced Computer Science and Applications*, 2014.
- [19]. Y. Wu, L. Zhou, and Y. Hu, "A fuzzy logic-based trust evaluation model for cloud services," *Journal of Cloud Computing*, 2016.
- [20]. Amazon Web Services, "Global Infrastructure Overview," AWS Whitepaper, 2023.
- [21]. Microsoft Azure, "Azure Global Architecture and Regions," Microsoft Docs, 2023.
- [22]. Google Cloud, "Service Portfolio and Global Networks," GCP Technical Report, 2023.
- [23]. A. Parasuraman, V. A. Zeithaml, and L. L. Berry, "SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality," *Journal of Retailing*, 1988.
- [24]. A. Jrad, T. Dang, and Y. Al-Hamad, "Evaluating user-centric QoE in cloud computing," *IEEE CloudCom*, 2015.
- [25]. Gartner Research, "Cloud Infrastructure Performance and Risk Assessment," Gartner Cloud Decisions Dataset, 2017.