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Abstract: Distributed machine learning systems have become essential for training increasingly complex 

models on massive datasets. As data volumes continue to grow, scheduling emerges as a bottleneck 

affecting model accuracy, training efficiency, and resource utilization. This review paper provides a 

comprehensive analysis of advanced scheduling techniques designed for distributed ML environments, 

including cluster-aware scheduling, adaptive resource allocation, heterogeneity-aware scheduling, task-

parallel models, reinforcement learning–based schedulers, and energy-efficient scheduling. The paper 

discusses challenges, performance trade-offs, and emerging trends shaping the future of DML 

scheduling. 
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I. INTRODUCTION 

The explosion of big data and deep learning has necessitated the adoption of distributed machine learning systems that 

leverage clusters of GPUs, TPUs, and edge devices. Effective scheduling in such systems is crucial because it 

influences the balance between computational load, communication overhead, and training time. Traditional schedulers 

designed for general distributed systems are insufficient for ML workloads, which require fine-grained task 

partitioning, synchronization, and dynamic resource management. As ML models grow deeper and training data more 

complex, efficient scheduling techniques determine the feasibility of large-scale ML operations (Li et al., 2020). The 

increasing heterogeneity of computer platforms further complicates scheduling decisions, requiring approaches that 

consider device capability, memory constraints, and network topology (Zaharia et al., 2016). This review evaluates 

prominent and emerging scheduling methods optimized for distributed ML. 

 

CLUSTER-AWARE SCHEDULING TECHNIQUES 

Cluster-aware scheduling focuses on topology, network latency, and resource availability during allocation. 

Frameworks such as Spark, TensorFlow, and Horovod implement locality-aware placement to reduce data transfer costs 

and improve synchronization efficiency (Dean & Ghemawat, 2018). Advanced cluster schedulers use hierarchical 

scheduling to optimize task grouping and device allocation, improving parallelism on multi-GPU systems. Topology-

aware scheduling becomes more critical in multi-node deployments with high communication cost, particularly for all-

reduce and parameter-server architectures. 

 

ADAPTIVE AND DYNAMIC RESOURCE SCHEDULING 

Adaptive scheduling involves real-time monitoring of resource utilization and adjusting resource assignments to 

prevent bottlenecks. Techniques such as elastic training dynamically scale GPU or CPU resources based on workload 

complexity (Renggli et al., 2019). Dynamic batch sizing, memory-aware task allocation, and runtime re-balancing 

significantly reduce straggler effects. These systems use feedback loops to adjust scheduling decisions and improve 

convergence time. 

Adaptive and dynamic resource scheduling has become a foundational requirement for efficient distributed machine 

learning as modern training workloads exhibit high variability in computation demands, memory usage, and 
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communication intensity. Unlike static scheduling approaches, which allocate fixed resources throughout the training 

cycle, adaptive systems continuously monitor cluster performance and resource utilization in real time, making 

intelligent adjustments that minimize bottlenecks and enhance training throughput.  

One of the central motivations for adopting dynamic scheduling is the presence of stragglers slow-running nodes that 

delay synchronous training due to hardware heterogeneity, network congestion, or thermal throttling. Adaptive 

schedulers mitigate these issues by redistributing tasks, adjusting batch sizes, or reallocating computational blocks to 

faster nodes, thereby improving synchronization efficiency and reducing overall training time.  

Elastic training frameworks exemplify this approach by enabling models to expand or contract their use of compute 

resources depending on workload intensity, which optimizes cluster utilization during both peak and idle periods. For 

instance, during the early training stages when batch sizes are large and computational demands peak, schedulers may 

allocate additional GPUs or CPU cores, while in later stages, when gradients stabilize and computation becomes lighter, 

resources can be scaled down to reduce overhead without sacrificing accuracy. 

Another key dimension of adaptive scheduling is runtime profiling, where systems continuously analyze performance 

metrics such as execution time, memory consumption, bandwidth usage, and GPU temperature. These metrics enable 

schedulers to detect anomalies or prediction errors and reconfigure the resource distribution accordingly. This process is 

particularly helpful for deep neural networks with varying layer complexities, where some layers such as convolutional 

layers require significantly more computation than others.  

Dynamic schedulers can assign heavier operations to high-performance devices while delegating lighter tasks to less 

capable units, creating a balanced workload that maximizes parallelism and minimizes idle time. Additionally, 

memory-aware adaptive scheduling ensures that tasks requiring larger memory footprints are placed on nodes equipped 

with sufficient GPU memory, preventing crashes and unnecessary checkpoints that slow down training. This is even 

more crucial for models like transformers, where attention mechanisms generate fluctuating memory loads depending 

on input token lengths. 

Adaptive scheduling also addresses communication overhead, a common limitation in distributed ML environments. In 

synchronized gradient updates, especially in all-reduce architectures, communication cost increases proportionally with 

the number of participating nodes. Dynamic schedulers respond by modifying synchronization frequency, enabling 

asynchronous or semi-synchronous updates, or temporarily reducing the number of active training workers to limit 

communication delays.  

These interventions help preserve training stability while reducing communication bottlenecks. Moreover, systems 

employing reinforcement learning–based dynamic scheduling can learn optimal resource allocation patterns by 

interacting with the cluster environment, exploring policies that minimize job completion time and maximize resource 

efficiency. Such intelligent schedulers outperform heuristic-based methods in rapidly changing environments, such as 

cloud platforms where VM performance varies over time. 

Energy efficiency is another domain benefitting from adaptive scheduling. By aligning resource usage with real-time 

needs, dynamic schedulers reduce power consumption through workload consolidation and the strategic use of low-

power compute nodes. This approach is environmentally beneficial and lowers operational costs for data centers 

handling large DML workloads. As distributed ML continues to integrate more heterogeneous devices, including edge 

units and custom accelerators, adaptive and dynamic scheduling will become even more indispensable. Its ability to 

respond to environmental variability, optimize resource allocation, and maintain robust system performance positions it 

as a critical component in future high-performance ML infrastructures. 

 

HETEROGENEITY-AWARE SCHEDULING 

Modern distributed ML systems often run across devices with different capacities such as GPUs, TPUs, FPGAs, and 

edge units. Heterogeneity-aware scheduling allocates tasks based on computational speed, memory bandwidth, and 

energy profiles of each device. Approaches such as weighted partitioning where faster devices perform more 

computation have proven effective in reducing training delays (Chen et al., 2018). Workload splitting is also optimized 

using profiling mechanisms that predict performance across heterogeneous clusters. 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology 

                          International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 3, December 2025 

 Copyright to IJARSCT DOI: 10.48175/568   912 

   www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 
Heterogeneity-aware scheduling has emerged as a crucial strategy in distributed machine learning environments, where 

training tasks span multiple types of hardware with varying computational capabilities, memory sizes, architectures, 

and energy characteristics. Modern ML clusters frequently combine GPUs, TPUs, CPUs, FPGAs, and even edge 

devices, each possessing distinct strengths and limitations. Traditional homogeneous scheduling approaches assume 

uniform performance across nodes, but such assumptions lead to severe inefficiencies when deployed in heterogeneous 

clusters. Heterogeneity-aware scheduling overcomes this challenge by intelligently assigning workloads based on the 

performance profile of each device, thereby reducing training time, minimizing resource waste, and maintaining stable 

convergence behavior.  

At its core, this scheduling method recognizes that devices process tasks at different speeds and that model layers or 

even micro-operations exhibit diverse computational intensities. For example, convolutional layers often require high 

parallel processing power suited for GPUs, whereas linear algebra tasks may run efficiently on TPUs. Scheduling 

mechanisms that exploit this heterogeneity can assign tasks to the best-fitting device type, achieving both speed and 

energy efficiency. 

A major advantage of heterogeneity-aware scheduling is its ability to handle straggler effects, which occur when slower 

nodes delay synchronous training iterations. In heterogeneous setups, stragglers are common, especially when 

combining older-generation GPUs with newer accelerators or when integrating edge devices with cloud servers. 

Advanced scheduling algorithms mitigate these delays through weighted task partitioning, wherein faster devices are 

allocated proportionally larger workloads while slower devices handle smaller, more manageable portions.  

This balancing technique not only accelerates overall training time but also helps maintain fairness by preventing fast 

devices from remaining idle. Profiling-based scheduling deepens this efficiency by continuously monitoring device 

performance metrics such as FLOPs throughput, memory bandwidth, temperature, and real-time load conditions. Such 

profiling enables predictive modeling to estimate how different devices will perform under specific tasks, allowing 

schedulers to pre-emptively allocate work in an optimal manner. 

Another central element of heterogeneity-aware scheduling is memory-aware allocation. Deep learning models impose 

wide-ranging memory demands, particularly models like transformers or diffusion networks, where batch sizes and 

sequence lengths dynamically influence memory usage. Devices with larger VRAM can be assigned memory-intensive 

tasks, while smaller-GPU nodes handle lighter operations. This prevents training crashes, out-of-memory errors, and 

inefficient fallback behaviors such as checkpointing.  

Furthermore, heterogeneity-aware schedulers often incorporate communication-aware strategies to reduce data transfer 

overhead in environments where bandwidth variability exists. For instance, tasks requiring heavy peer-to-peer 

communication are placed on devices connected via high-speed links, while independent or loosely coupled tasks may 

be assigned to remote or lower-bandwidth nodes. This reduces communication bottlenecks and ensures more consistent 

training iteration times. 

Beyond computational and memory differences, heterogeneity-aware scheduling also optimizes for energy constraints. 

Devices vary significantly in energy efficiency; for example, ARM-based edge devices consume far less power than 

power-hungry GPUs. Energy-aware heterogeneous schedulers dynamically shift workloads to energy-efficient devices 

during low-demand periods, or when approximate training suffices, thus reducing total power consumption without 

compromising model quality. With the rapid rise of federated learning and edge–cloud hybrid ML systems, 

heterogeneity-aware scheduling has become indispensable.  

Edge devices differ not only in hardware but also in connectivity, battery life, and reliability, demanding schedulers that 

can handle uncertain participation and inconsistent communication. As ML ecosystems continue expanding across 

cloud, on-premise, and edge domains, heterogeneity-aware scheduling will play an increasingly central role in 

optimizing distributed training efficiency, ensuring scalability, and balancing performance with cost and energy 

considerations. 

 

TASK-PARALLEL AND GRAPH-BASED SCHEDULING MODELS 

Most distributed ML frameworks represent computations as Directed Acyclic Graphs. Graph-based scheduling enables 

parallel execution of independent tasks and pipelining of neural network operations. Systems such as TensorFlow 
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leverage graph execution for parallelizable layers, while pipeline parallelism distributes different layers of a network 

across devices to minimize idle time (Harlap et al., 2016). Task-parallel scheduling improves throughput, reduces 

communication overhead, and enhances training scalability. 

Task-parallel and graph-based scheduling models play a critical role in improving the efficiency, scalability, and 

performance of distributed machine learning systems by structuring computation into fine-grained tasks and 

orchestrating them across diverse hardware resources. At the heart of these scheduling models lies the representation of 

ML workloads as Directed Acyclic Graphs, where nodes represent computational operations such as matrix 

multiplications, convolutions, or data preprocessing steps and edges capture dependencies that specify the sequence in 

which tasks must be executed.  

This DAG abstraction enables schedulers to identify independent tasks that can be executed concurrently, significantly 

reducing idle time and improving the utilization of GPUs, TPUs, and CPUs distributed across a cluster. Task-

parallelism becomes especially important in modern deep learning architectures with complex layer structures, where 

certain layers or blocks can be parallelized both intra-layer and inter-layer. For example, convolutional neural networks 

often contain multiple parallelizable operations, while transformer models exhibit attention mechanisms that can be 

segmented and processed in parallel. By identifying these parallelization opportunities through graph analysis, 

schedulers ensure faster runtime and improved throughput. 

Graph-based scheduling also supports the division of neural network training across multiple devices using pipeline and 

model parallelism. In pipeline parallelism, layers of a model are split across devices in a linear or multi-stage pipeline, 

allowing different micro-batches to be processed simultaneously at various pipeline stages. This reduces idle time 

typically caused by sequential layer-by-layer execution and enables more efficient use of multi-GPU infrastructures. 

Meanwhile, model parallelism breaks large layers or weight matrices into smaller components distributed across 

devices, an approach that is crucial for training extremely large models that exceed the memory limits of a single GPU. 

Task-parallel scheduling ensures that these components are executed when their dependencies allow, maintaining 

correct order while achieving high concurrency. 

Another advantage of task-parallel and graph-based scheduling lies in optimizing communication overhead. Distributed 

training often suffers from delays due to data transfers or synchronization, especially in all-reduce operations used for 

gradient aggregation. By analyzing the DAG, schedulers can group communication-heavy tasks, overlap computation 

with communication, or place interdependent tasks on devices connected through high-bandwidth links.  

Some systems employ hierarchical or locality-aware graph partitioning to minimize cross-node communication, thereby 

improving training stability and reducing iteration time. Additionally, advanced graph-based schedulers dynamically 

adjust task allocation at runtime, responding to device performance fluctuations, network congestion, or straggler 

nodes. This adaptability is especially beneficial in heterogeneous environments where not all devices perform 

uniformly. 

Task-parallel models align well with modern distributed ML frameworks such as TensorFlow, PyTorch, Ray, and Dask, 

which internally manage computation graphs and automatically identify parallel execution opportunities. These 

frameworks leverage graph optimizers that reorder operations, fuse compatible tasks, and prune unnecessary 

computations to further accelerate training. Moreover, emerging techniques integrate reinforcement learning or 

heuristic-based optimization to discover optimal graph partitions and scheduling strategies based on historical execution 

patterns.  

As ML models grow in size and complexity, especially with the rise of foundation models and multi-modal 

architectures, task-parallel and graph-based scheduling will remain essential. They not only support scalable training 

but also provide the structural flexibility required to exploit diverse hardware ecosystems, making them indispensable 

for the next generation of distributed AI systems. 

 

REINFORCEMENT LEARNING–BASED SCHEDULING 

Recent advancements apply reinforcement learning to automate scheduling decisions. RL-based schedulers learn 

optimal allocation strategies by observing cluster behavior, predicting runtime, and minimizing job completion time. 
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These methods adapt to unpredictable workloads better than rule-based schedulers. Studies show that RL scheduling 

reduces training latency and improves resource utilization, especially in cloud ML environments (Mao et al., 2019). 

 

ENERGY-EFFICIENT SCHEDULING APPROACHES 

Energy consumption is a critical concern in large-scale ML clusters. Energy-efficient schedulers attempt to reduce 

power usage while maintaining model accuracy and speed. Techniques include workload consolidation, DVFS, and 

scheduling compute-intensive tasks on energy-efficient hardware modules (Xu et al., 2020). Some algorithms balance 

performance and energy use by predicting power consumption of various training configurations. 

Energy-efficient scheduling approaches have become essential in distributed machine learning systems, as training 

large-scale models demands substantial computational power and contributes significantly to energy consumption. With 

the rapid rise of deep learning architectures such as transformers and large language models data centers face increasing 

pressure to reduce power usage, manage thermal constraints, and maintain cost-effective operations.  

Energy-efficient scheduling aims to minimize the energy footprint of DML workloads while preserving model 

accuracy, training speed, and system reliability. This is achieved through intelligent allocation of tasks to devices based 

on energy profiles, workload characteristics, and performance requirements. One of the foundational strategies in this 

domain is workload consolidation, in which tasks are aggregated onto fewer devices during periods of low demand, 

allowing idle nodes to be powered down or shifted into low-energy states. This reduces unnecessary energy waste 

without affecting training performance, especially in asynchronous learning environments where worker dropout does 

not halt progress. 

Another crucial technique involves Dynamic Voltage and Frequency Scaling, which adjusts a processor’s operating 

frequency and voltage based on real-time workload intensity. When training tasks require less computational power 

such as during backpropagation stages with lighter operations DVFS can reduce frequency levels, thereby lowering 

power consumption without sacrificing computational correctness. Conversely, during peak demand, frequency can be 

increased to maintain performance.  

Many modern GPUs and CPUs support DVFS, making it a practical scheduling mechanism within ML clusters. 

Energy-efficient schedulers also account for hardware heterogeneity, utilizing devices with higher power efficiency for 

less demanding tasks. For example, ARM-based processors, low-power CPUs, or specialized accelerators with 

optimized energy profiles can be assigned lightweight data preprocessing tasks, leaving energy-intensive GPUs for core 

model training. This alignment of task characteristics with hardware capabilities significantly reduces overall energy 

expenditure while maintaining throughput. 

Communication overhead represents another major source of energy consumption in distributed training, particularly 

during gradient synchronization across nodes. Energy-efficient schedulers tackle this by reducing communication 

frequency, adopting gradient accumulation techniques, or enabling semi-synchronous updates that lessen the need for 

constant inter-node communication. Additionally, techniques such as gradient compression, quantization, and 

scarification reduce the volume of data exchanged, lowering both latency and energy costs. Energy-aware placement 

strategies further optimize data locality by assigning interdependent tasks to devices within the same physical rack or 

network zone, minimizing long-distance data transfers that consume substantial power. 

Recent advancements also incorporate reinforcement learning and machine learning–based prediction models to 

improve energy efficiency. RL-driven schedulers learn optimal energy-performance trade-offs by interacting with the 

cluster environment, dynamically adjusting task assignments, device combinations, and operating states. Predictive 

models anticipate workload fluctuations and proactively shift tasks to energy-efficient nodes or activate standby devices 

only when necessary. Moreover, hybrid cloud-edge DML ecosystems have introduced new opportunities for energy 

savings. Edge devices, which often operate with strict energy constraints, benefit from schedulers that offload heavier 

computations to cloud servers while retaining lighter tasks locally, ensuring balanced energy usage across the system. 

As sustainability becomes a major concern for AI deployment worldwide, energy-efficient scheduling is expected to 

play an increasingly vital role. Future approaches will likely integrate multi-objective optimization frameworks that 

consider not only energy and performance but also carbon footprint, hardware wear, and thermal conditions. By 
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harmonizing energy usage with computational needs, energy-efficient scheduling approaches support scalable, 

sustainable, and environmentally responsible development of distributed machine learning systems. 

 

COMMUNICATION-OPTIMIZED SCHEDULING TECHNIQUES 

Training distributed ML models requires significant communication among nodes, especially during gradient 

aggregation. Communication-optimized scheduling reduces these delays through: 

 scheduling tasks to minimize all-reduce communication paths 

 gradient compression 

 asynchronous updates 

 adaptive synchronization control 

These techniques accelerate training without degrading convergence quality (Sergeev & Del Balso, 2018). 

 

USE OF EDGE AND FEDERATED LEARNING SCHEDULING 

With federated learning and AI at the edge, new scheduling problems arise. Edge devices have inconsistent connectivity 

and limited computation. Federated scheduling handles asynchronous updates, client sampling, device dropout, and 

privacy constraints. Techniques such as client-importance-based scheduling improve global model convergence 

(Bonawitz et al., 2019). 

Despite advancements, scheduling in distributed ML faces persistent challenges including model size explosion, cluster 

heterogeneity, dynamic workloads, and energy constraints. Future scheduling systems are expected to integrate hybrid 

cloud-edge models, multi-agent RL schedulers, autonomous cluster management, and quantum-accelerated ML 

workflows. The critical trend is moving from static scheduling policies to self-learning, application-aware scheduling 

that can autonomously adapt to unpredictable workloads and hardware diversity. 

 

II. CONCLUSION 

Advanced scheduling techniques play a vital role in improving the efficiency, scalability, and reliability of distributed 

machine learning systems. From topology-aware and heterogeneity-aware methods to RL-based intelligent schedulers 

and energy-optimized approaches, modern systems aim to reduce training latency, enhance resource utilization, and 

support ultra-large-scale model development. As ML continues to evolve toward distributed and federated paradigms, 

adaptive and intelligent scheduling will become a central component of high-performance AI infrastructure. Continuous 

research is needed to integrate automation, optimize communication, and reduce energy costs while improving 

consistency and fairness of resource allocation. 
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