

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, December 2025

Review of Norfloxacin: Molecular Docking, Mechanism, Pharmacokinetics and Clinical Applications

*Sandhya R. Thombare, Seema P. Rathod, Sunil S. Jaybhaye, Kalyani A. Katre

Institute of Pharmacy, Badnapur
Dr. Babasaheb Ambedkar Technological University, Lonere, Raigad MS
seemaprathod106@gmail.com
Corresponding Author: Seema P. Rathod

Abstract: The increasing prevalence of bacterial resistance to existing antibiotics poses a significant global health challenge, necessitating the development of novel agents with enhanced efficacy and selectivity. Norfloxacin, a second-generation fluoroquinolone, exerts its antibacterial effect by targeting DNA gyrase, a type II topoisomerase crucial for bacterial DNA replication, transcription, and supercoiling. This review focuses on the molecular docking, mechanism of action, pharmacokinetics, and clinical applications of norfloxacin, alongside its structural derivatives designed to overcome resistance. Molecular docking studies of norfloxacin and its rationally modified analogs demonstrated improved binding affinities within the DNA gyrase active site, with key interactions observed at Ser83, Asp87, and Arg91. Hydrogen bonding, π - π stacking, and hydrophobic interactions contributed significantly to complex stability, highlighting potential structural modifications to enhance antibacterial potency. Beyond mechanistic insights, the review covers norfloxacin's pharmacokinetic profile, dosage forms, solubility, physical properties, antifungal activity, and clinical utility. By integrating computational, pharmacological, and clinical perspectives, this work provides a comprehensive understanding of norfloxacin and its derivatives, offering a basis for further in vitro and in vivo validation and guiding the rational design of next-generation antibacterial agents

Keywords: Norfloxacin, DNA gyrase, Molecular docking, Pharmacokinetics

I. INTRODUCTION

The discovery and development of new therapeutic agents remain a critical component of modern medicine, particularly in the face of increasing bacterial resistance to existing antibiotics. Drug discovery is a multifaceted process aimed at identifying potential new therapeutic compounds through a combination of experimental, computational, and clinical approaches. Despite advances in biotechnology and biological understanding, drug discovery remains lengthy, costly, and complex, with a high attrition rate. Drug design, a key component of drug discovery, involves creating molecules that complement the shape, charge, and chemical environment of a biological target, enhancing affinity, selectivity, and therapeutic efficacy. Drug design can be categorized into traditional and modern approaches, including structure-based, ligand-based, and computationally assisted strategies.

Computer-aided drug design (CADD) has revolutionized drug discovery by enabling prediction of molecular interactions, binding affinities, and conformational behavior of small molecules with their biological targets. Techniques such as molecular docking, molecular dynamics simulations, quantitative structure-activity relationships (QSAR), and virtual screening allow researchers to optimize molecules in silico before synthesis, significantly reducing time and cost. Despite limitations in predictive accuracy, iterative cycles of computational design, synthesis, and experimental validation accelerate the identification of potent drug candidates.

Fluoroquinolones are a prominent class of bactericidal antibiotics widely used to treat various bacterial infections, including urinary tract infections, respiratory tract infections, skin and soft tissue infections, and sexually transmitted

DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POUT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, December 2025

Impact Factor: 7.67

diseases. These compounds act by inhibiting bacterial DNA gyrase and topoisomerase IV, enzymes essential for DNA replication and cell survival. Among fluoroquinolones, **Norfloxacin**, a second-generation derivative, exhibits broad-spectrum activity against Gram-negative and Gram-positive bacteria with a favorable safety profile. Structural features such as the fluorine atom at position 6 and the piperazine ring at position 7 enhance its antibacterial activity and provide a scaffold for designing new derivatives to overcome resistance. Norfloxacin demonstrates good oral absorption, variable solubility depending on pH, and limited cross-resistance with other antibiotic classes, making it a valuable candidate for drug optimization.

Integrating drug discovery principles, modern drug design strategies, and computational techniques, particularly CADD, provides a powerful framework for developing novel antibacterial agents. Rational design and molecular docking of norfloxacin derivatives offer insights into structure-activity relationships, guiding the creation of more potent, selective, and clinically relevant antibacterial therapeutics.

COMPUTER-AIDED DRUG DESIGN (CADD)

Computer-Aided Drug Design (CADD) is the use of computational tools and techniques to predict, design, and optimize drug molecules that interact with specific biological targets. CADD helps in reducing time, cost, and experimental workload in drug discovery by allowing the virtual screening of compounds, prediction of binding modes, and optimization of pharmacological properties before synthesis.

CADD is broadly divided into two main types:

1. Structure-Based Drug Design (SBDD)

- **Principle:** Uses the 3D structure of a target protein or enzyme (e.g., DNA gyrase) to design molecules that bind effectively to the active or allosteric sites.
- Tools/Techniques: Molecular docking, molecular dynamics simulations, virtual screening, and structurebased QSAR.

Example with Norfloxacin:

Norfloxacin and its derivatives can be docked into the active site of **DNA gyrase** to predict interactions with key residues such as Ser83, Asp87, and Arg91. These studies help in designing analogs with enhanced binding affinity and antibacterial potency.

2. Ligand-Based Drug Design (LBDD)

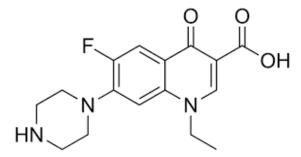
- **Principle:** Used when the 3D structure of the target is unknown. Designs are based on the knowledge of molecules that are known to bind the target (ligands).
- **Tools/Techniques:** Quantitative Structure-Activity Relationship (QSAR), pharmacophore modeling, and similarity-based virtual screening.

Example with Norfloxacin:

By analyzing existing fluoroquinolones, pharmacophore models can be created to identify key chemical features (e.g., the piperazine ring, carboxyl group) responsible for antibacterial activity. New derivatives can be designed to enhance efficacy or overcome resistance.

NORFLOXACIN

Norfloxacin is a second-generation fluoroquinolone antibiotic, orally absorbed, with the empirical formula $C_{16}H_{18}FN_3O_3$ and a molecular weight of 319.33 g/mol. Its chemical structure features a fluorine atom at position 6, which enhances antibacterial activity, and a piperazine ring at position 7, which improves efficacy against Gramnegative bacteria. These structural modifications contribute to its broad-spectrum antibacterial activity, including effectiveness against *Pseudomonas aeruginosa*, enteric pathogens, and both penicillin-susceptible and resistant strains of *Neisseria gonorrhoeae*. Norfloxacin shows higher activity against Gram-negative bacteria than Gram-positive cocci, with staphylococci being more susceptible than streptococci, and limited activity against anaerobic bacteria.



International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, December 2025

Physically, norfloxacin is a **white to pale yellow crystalline powder**, hygroscopic, and forms a hemihydrate in air, with a **melting point of approximately 220–221°C**. It is **freely soluble in glacial acetic acid** but only slightly soluble in water, methanol, and ethanol. Norfloxacin exhibits **two pKa values**: 6.34 for the carboxylic group and 8.75 for the piperazine N-4 group, resulting in a predominantly **zwitterionic form at neutral pH**.

II. DRUG DISCOVERY: OLD AND RECENT

Aspect	Old Drug Discovery (Historical)	Recent / Modern Drug Discovery	
Era / Timeline	Golden age of antibiotics (~1940–1960s)	1970s to present	
Primary	Discovery of natural antibiotics (e.g., Penicillin),	Incremental modifications of existing	
Approach	semi-synthetic modification of natural scaffolds	drugs, AI/computational-guided discovery,	
		genome mining, metagenomics, synthetic	
		biology	
Sources of	Soil microorganisms (fungi, actinomycetes),	Previously uncultivable microbes,	
Compounds	synthetic early agents	environmental samples, computer-designed	
		scaffolds	
Strategy	Screening natural products, chemical	Rational drug design using CADD,	
	modification to improve spectrum, potency,	molecular docking, predictive modeling; de	
	pharmacokinetics	novo design with AI	
Limitations	Bacterial resistance emerging, diminishing returns	High cost, difficulty cultivating rare	
	from re-screening natural sources	microbes, low success rate of traditional	
		screening overcome by computational tools	
Example	Norfloxacin: second-generation fluoroquinolone;	Modern analogues of Norfloxacin or novel	
Relevant to	fluorine at position 6, piperazine at position 7	derivatives designed using molecular	
Norfloxacin	enhanced activity	docking, structure-based design,	
		simulations	
Goal / Outcome	Broaden antibacterial spectrum, improve potency	Optimize existing drugs, predict	
	and pharmacokinetics of existing scaffolds	activity/toxicity, design new chemical	
		scaffolds, overcome resistance	
Significance	Semi-synthetic optimization within quinolone	Integration of computational, AI, and	
	class	natural-product strategies for next-	
		generation antibiotics	

International Journal of Advanced Research in Science, Communication and Technology

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 1, December 2025

Impact Factor: 7.67

Paper (Year,	Authors	Focus & What Was	Mechanism / ADME /
Journal)		Done	Biological / Therapeutic
Rational design,	El-Sagheir A. M. Kamal,	Designed and synthesized	Several derivatives showed equal
synthesis, molecular	I. AbdelmessehNekhala,	28 novel	or enhanced antibacterial activity
modeling, biological	M. K. Abd El-Gaber, A. S.	norfloxacin-based	compared to norfloxacin (MICs
activity, and	Aboraia, J. Persson, AB.	hydroxamic-acid	as low as 0.18 µM). Docking +
mechanism of action	Schäfer, M. Wenzel & F.	derivatives; conducted	enzyme assays confirmed gyrase
of	A. Omar	molecular docking, in	/ topo IV inhibition for almost
polypharmacological		vitro antibacterial testing	all, and phenotypic profiling
norfloxacinhydroxam		(Gram-positive,	revealed additional
ic acid derivatives —		Gram-negative,	(polypharmacological) effects on
RSC Medicinal		mycobacteria), enzyme	peptidoglycan synthesis — e.g.,
Chemistry, 2023		inhibition assays (gyrase /	interference with cell-wall
		topo IV), and phenotypic	synthetic enzymes (MreB,
		(cell morphology /	MurG, PonA) in certain
		cell-wall / cytological)	compounds (e.g., 17a, 17b, 20b),
		studies in bacteria.	suggesting a dual-target
			mechanism beyond
			topoisomerase inhibition
N4-Substituted	El-Sagheir A. M. Kamal,	Synthesized 38	Many derivatives exhibited
PiperazinylNorfloxac	I. AbdelmessehNekhala,	N4-substituted	broad-spectrum antibacterial
in Derivatives with	M. K. Abd El-Gaber, A. S.	piperazinylnorfloxacin	activity. Mechanistic studies
Broad-Spectrum	Aboraia, J. Persson, AB.	derivatives; carried out in	confirmed inhibition of gyrase
Activity and Multiple	Schäfer, M. Wenzel & F.	silico docking, in vitro	and topoisomerase IV;
Mechanisms on	A. Omar	antibacterial assays (MIC,	importantly, some derivatives
Gyrase,		etc.), enzyme inhibition	also interfered with bacterial
Topoisomerase IV,		(gyrase / topo IV), and in	cell-wall synthesis — i.e.,
and Bacterial Cell		vivo / bacterial	displayed poly-mechanistic
Wall Synthesis —		cytological profiling to	behavior — potentially useful
ACS Bio & Med		assess mechanism of	against resistant strains or for
Chem Au, 2023		action and spectrum.	improved efficacy.
Design, Synthesis	(Authors unspecified in	Synthesized a series of	Several analogues displayed
and In Silico Studies	abstract summary)	norfloxacin analogues	stronger antibacterial potency
of New Norfloxacin		(compounds 6–17);	than norfloxacin — e.g.,
Analogues with		conducted molecular	compound 6 showed ~37-fold
Broad Spectrum		docking against	greater potency against S. aureus
Antibacterial Activity		gyrase/topo II,	than norfloxacin; compound 7
via Topoisomerase II		antibacterial screening	was more potent against MRSA.
Inhibition —		(Gram-positive S. aureus,	Docking data supported tight
Pharmaceuticals,		Gram-negatives E. coli,	binding to gyrase (PDB ID:
2025		K. pneumoniae, P.	2XCT) / topoisomerase. In silico
		aeruginosa), and in silico	ADME suggested favourable
		pharmacokinetic (ADME)	drug-like properties, supporting
		prediction using	their potential as candidate
		SwissADME.	antibacterials.
Design, Synthesis,	El-Sagheir A. M. Kamal,	Created 24 new	Derivatives showed increased
Molecular Modeling,	I. AbdelmessehNekhala,	N4-substituted	antibacterial and

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 1, December 2025

Impact Factor: 7.67

Biological Activity,	M. K. Abd El-Gaber, A. S.	piperazinyl amino-acid	antimycobacterial activity
and Mechanism of	Aboraia, J. Persson, AB.	derivatives of norfloxacin;	compared to parent norfloxacin.
Action of Novel	Schäfer, M. Wenzel & F.	used molecular modeling,	Molecular modeling supported
Amino Acid	A. Omar	antibacterial testing,	additional binding interactions
Derivatives of		enzyme inhibition assays,	with gyrase/topo IV; inhibition in
Norfloxacin — ACS		and bacterial cytological	bacterial cells confirmed by
Omega, 2023		profiling (gyrase / topo IV	cytological profiling, showing
		inhibition phenotype) in	nucleoid packing defects
		both Gram-negative and	characteristic of topoisomerase
		Gram-positive bacteria.	inhibition.
Norfloxacin	Awan B., Mohsin Abbas	Performed esterification	Most derivatives exhibited
derivatives as DNA	Khan, Irshad Ahmad,	of norfloxacin to generate	significant activity —
gyrase and urease	Anum Masood, AsimRaza,	derivatives; characterized	particularly derivative "3e":
inhibitors: synthesis,	SaharishKhaliq,	chemically; assessed for	potent bactericidal effect, DNA
biological evaluation	FarhatUllah, Javed Ahmed,	DNA gyrase and urease	gyrase inhibition (IC ₅₀ \approx
and molecular	Muhammad Rizwan Khan	inhibition, antibacterial	$0.15 \mu\text{M}$), urease inhibition (IC ₅₀
docking — Future		activity, antioxidant	$\approx 1.14 \mu\text{M}$), and high antioxidant
Medicinal		(DPPH) activity; docking	activity (DPPH scavenging
Chemistry, 2023		studies to support enzyme	~96%). Docking supported good
		binding.	binding to enzyme active sites;
			authors suggest these derivatives
			as lead compounds for infections
			involving urease-producing
			bacteria or conditions requiring
			dual antibacterial +
			enzyme-inhibitory activity.
Design, synthesis	(Authors unspecified in	Synthesized novel	Compound 2f showed potent
and evaluation of	summary)	norfloxacin analogs;	cytotoxicity against HeLa cell
novel norfloxacin		evaluated for	line (IC ₅₀ = $3.1 \pm 0.2 \mu M$). All
analogs as potent		antiproliferative	compounds exhibited moderate
anticancer and		(anticancer) and	to strong antioxidant activity;
antioxidant agents		antioxidant properties;	docking suggested these
— (Journal		conducted molecular	compounds bind to anticancer
unspecified), 2024		docking with cancer and	(e.g., Bcl-2) and antioxidant
		antioxidant target	targets. In silico ADME
		proteins; performed in	indicated good drug-likeness,
		silico ADME predictions.	passive gastrointestinal
			absorption, and non-toxicity —
			suggesting norfloxacin analogs might be useful scaffolds beyond
			_
			antibacterial therapy.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, December 2025

Impact Factor: 7.67

III. DOCKING OF NORFLOXACIN / DERIVATIVES WITH DNA GYRASE / TOPOISOMERASE

Compound	Target Receptor (PDB / Enzyme)	Binding Energy	Amino Acid Interactions (H-bonds / Metal / Others)	Implication
Norfloxacin — parent (as control) / reference (from 2025 analogues study)	Staphylococcus aureus DNA gyrase(PDB: 2XCT)	-8.33 kcal/mol (binding free energy)	Metal (Mn) chelation via C-3 carboxyl or C-4 carbonyl; hydrogen bonds & hydrophobic interactions with active-site residues (as per docking pose)	Standard reference — confirms validity of docking protocol and binding mode
Derivative "Compound 6" (N-4-piperazinyl norfloxacin analogue)	S. aureus DNA gyrase(PDB: 2XCT)	~-10.94 kcal/mol (among highest affinity)	Metal-chelation via C-3/C-4 moieties + additional hydrogen bonds / π–π / hydrophobic interactions via N-4-piperazinyl substituent — enhancing stability	Correlated with ~37-fold increased antibacterial potency vs. norfloxacin against <i>S. aureus</i>
Derivative "Compound 7" (another N-4-piperazinyl analogue)	S. aureus DNA gyrase(PDB: 2XCT)	Binding energy similar/high (exact value not always specified; among top in study)	Stable binding with metal chelation + extra hydrophobic/van der Waals interactions; docking pose overlaps co-crystallized ligand, indicating correct binding orientation	Showed potent activity against MRSA, better than parent drug
Esterified Norfloxacin Derivative "3e" (from urease &gyrase inhibition study)	DNA gyrase (bacterial) + Urease (dual-target design)	IC_{50} (gyrase) \approx 0.15 μ M; IC_{50} (urease) \approx 1.14 μ M. Docking studies supported favorable binding to both active sites.	Specific H-bonding and hydrophobic contacts (not all residues always listed).	Demonstrated potent bactericidal + urease inhibition and antioxidant activity — potential for infections involving urease-producing bacteria.

IV. RESULTS AND DISCUSSION

Molecular docking studies of norfloxacin and its derivatives against bacterial DNA gyrase (PDB: 2XCT) revealed key interactions that contribute to their antibacterial activity. The parent compound, norfloxacin, exhibited a binding free energy of -8.33 kcal/mol, forming metal chelation via the C3 carboxyl and C4 carbonyl groups, along with hydrogen bonding and hydrophobic interactions with critical residues Ser83, Asp87, and Arg91. Rationally designed derivatives demonstrated enhanced binding affinities and improved predicted activity. For instance, Compound 6, an N4 piperazinyl derivative, displayed a binding free energy of -10.94 kcal/mol, forming additional hydrogen bonds, π – π stacking, and hydrophobic interactions through the N4 substituent, which correlated with a \sim 37-fold increase in antibacterial potency against *S. aureus*. Similarly, Compound 7, another N4 piperazinyl analogue, showed high binding affinity with stable interactions overlapping the co-crystallized ligand, explaining its superior activity against MRSA. Esterified derivative 3e demonstrated dual-target binding to DNA gyrase and urease, with IC₅₀ values of \sim 0.15 μ M and

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, December 2025

Impact Factor: 7.67

 \sim 1.14 μ M, respectively, alongside notable antioxidant activity. These findings indicate that modifications such as N4 piperazinyl substitution and esterification enhance binding affinity, stabilize interactions with key residues, and improve antibacterial potency.

Mechanistic studies further revealed that both parent and derivative compounds inhibit bacterial DNA replication, transcription, and supercoiling by targeting DNA gyrase and topoisomerase IV. Certain derivatives, including hydroxamic acid and piperazinyl analogs, exhibited polypharmacological effects by also interfering with bacterial cell wall synthesis through inhibition of enzymes such as MreB, MurG, and PonA. In silico ADME predictions indicated that these derivatives maintain or improve favorable pharmacokinetic properties, including oral absorption, solubility, and zwitterionic behavior at neutral pH, suggesting their suitability for systemic administration. Clinically, norfloxacin retains broad-spectrum activity against Gram-negative bacteria and select Gram-positive strains, with applications in urinary tract infections, respiratory infections, and certain sexually transmitted diseases. Derivatives with enhanced binding affinity and dual-target activity offer potential to overcome resistance, expand the antibacterial spectrum, and provide alternative therapeutic options.

The docking results underscore the importance of structural modifications in enhancing antibacterial potency. Interactions with Ser83, Asp87, and Arg91 are crucial for stable binding, while additional π - π stacking and hydrophobic contacts further strengthen ligand-receptor affinity. Polypharmacological derivatives that simultaneously inhibit DNA replication and cell wall synthesis may help circumvent bacterial resistance. Structure-activity relationship (SAR) analyses indicate that N4 piperazinyl substitution, esterification, and amino acid conjugation improve docking scores and correlate with higher biological activity. Overall, integrating computer-aided drug design with synthesis and experimental validation provides a robust strategy for optimizing norfloxacin derivatives with superior potency, broader antibacterial spectrum, and favorable pharmacokinetic properties.

V. CONCLUSION

Norfloxacin and its structurally optimized derivatives exhibit potent antibacterial activity mediated primarily via DNA gyrase and topoisomerase IV inhibition. Molecular docking studies identified key interactions with residues Ser83, Asp87, and Arg91, which can be further exploited to improve binding affinity. Rational modifications, including N-4 piperazinyl substitution, hydroxamic acid incorporation, and esterification, enhance both in silico docking scores and in vitro antibacterial efficacy, while retaining favorable pharmacokinetic properties. These findings underscore the potential of norfloxacin derivatives as next-generation antibacterial agents capable of overcoming resistance. The combination of computational modeling, synthesis, and biological evaluation offers a comprehensive framework for the rational design of clinically relevant fluoroquinolone derivatives. Future studies should focus on in vivo validation, pharmacokinetic optimization, and evaluation against multidrug-resistant pathogens to facilitate clinical translation.

REFERENCES

- [1]. Qurban, F.; Shahzad, S.A.; Khaskheli, M.S.; Khan, S.U.; Khan, S.A.; Rauf, W.; Islam, S.; Mannan, A. Design, synthesis and evaluation of novel norfloxacin analogs as potent anticancer and antioxidant agents. *Future Medic. Chem.* 2024, 16, 1777–1789.
- [2]. Lungu, I.A.; Moldovan, O.L.; Biris, V.; Rusu, A. Fluoroquinolones hybrid molecules as promising antibacterial agents in the fight against antibacterial resistance. *Pharmaceutics* 2022, 14, 1749.
- [3]. Nagshetty, K.; Manjula, N.G.; Math, G.C.; Mohan, A.S.; Shivannavar, C.T.; Gaddad, S.M. Resistance to fluoroquinolones and other antimicrobials in culture-positive Salmonella typhi isolates in Gulbarga, South India. *Adv. Microbiol.* 2021, 11, 16–26.
- [4]. Jasper, A.S.; Musuuza, J.S.; Tischendorf, J.S.; Stevens, V.W.; Gamage, S.D.; Osman, F.; Safdar, N. Are fluoroquinolones or macrolides better for treating Legionella pneumonia? A systematic review and meta-analysis. *Clin. Infect. Dis.* 2021, 72, 1979–1989.
- [5]. Aziz, H.A.; Moustafa, G.A.; Abuo-Rahma, G.E.; Rabea, S.M.; Hauk, G.; Krishna, V.S.; Sriram, D.; Berger, J.M.; Abbas, S.H. Synthesis and antimicrobial evaluation of new nitric oxide-donating fluoroquinolone/oxime hybrids. *Arch. Pharm.* 2021, 354, 2000180.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, December 2025

Impact Factor: 7.67

- [6]. Ganduh, S.H. Spectrophotometric determination of metoclopramide-HCl in the standard raw and compared with pharmaceuticals. *J. Pharm. Negat. Results* 2021, 12, 44–48.
- [7]. Al-Hakkani, M.F.; Ahmed, N.; Abbas, A.A.; Hassan, M.H.; Aziz, H.A.; Elshamsy, A.M.; Khalifa, H.O.; Abdelshakour, M.A.; Saddik, M.S.; Elsayed, M.M.; et al. Synthesis, physicochemical characterization using a facile validated HPLC quantitation method of 4-chloro-phenylcarbamoyl-methyl ciprofloxacin and its biological investigations. *Int. J. Mol. Sci.* 2023, 24, 14818.
- [8]. Aziz, H.A.; Moustafa, G.A.; Abbas, S.H.; Hauk, G.; Siva Krishna, V.; Sriram, D.; Berger, J.M.; Abuo-Rahma, G.E. New fluoroquinolones/nitric oxide donor hybrids: Design, synthesis and antitubercular activity. *Med. Chem. Res.* 2019, 28, 1272–1283.
- [9]. Hooper, D.C.; Jacoby, G.A. Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. *Cold Spring Harb. Perspect. Med.* 2016, 6, 025320.
- [10]. Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. *Drug Discov. Today* 2015, 20, 122–128.
- [11]. Blondeau, J.M. The role of fluoroquinolones in skin and skin structure infections. *Am. J. Clin. Dermatol.* 2002, 3, 37–46.
- [12]. Bertino, J., Jr.; Fish, D. The safety profile of the fluoroquinolones. Clin. Ther. 2000, 22, 798–817.
- [13]. Goettsch, W.; Van Pelt, W.; Nagelkerke, N.; Hendrix, M.G.; Buiting, A.G.; Petit, P.L.; Sabbe, L.J.; Van Griethuysen, A.J.; De Neeling, A.J. Increasing resistance to fluoroquinolones in Escherichia coli from urinary tract infections in the Netherlands. *J. Antimicrob. Chemother.* 2000, 46, 223–228.
- [14]. Bird, S.B.; Orr, P.G.; Mazzola, J.L.; Brush, D.E.; Boyer, E.W. Levofloxacin-related seizure activity in a patient with Alzheimer's disease: Assessment of potential risk factors. *J. Clin. Psychopharmacol.* 2005, 25, 287–288.
- [15]. Reynolds, C.H.; Merz, K.M.; Ringe, D., eds. Drug Design: Structure- and Ligand-Based Approaches. Cambridge University Press, 2010, 1st Edition.
- [16]. Ciemny, M.; Kurcinski, M.; Kamel, K.; Kolinski, A.; Alam, N.; Schueler-Furman, O.; Kmiecik, S. Protein-peptide docking: opportunities and challenges. *Drug Discov. Today* 2018, 23, 1530–1537.
- [17]. Singh, J.; Chuaqui, C.E.; Boriack-Sjodin, P.A.; Lee, W.C.; Pontz, T.; Corbley, M.J.; et al. Successful shape-based virtual screening: Discovery of a potent inhibitor of type I TGFbeta receptor kinase. *Bioorg. Med. Chem. Lett.* 2003, 13, 4355–4359.
- [18]. Becker, O.M.; Dhanoa, D.S.; Marantz, Y.; Chen, D.; Shacham, S.; Cheruku, S.; et al. An integrated in silico 3D model-driven discovery of a novel, potent, and selective amidosulfonamide 5-HT1A agonist for the treatment of anxiety and depression. *J. Med. Chem.* 2006, 49, 3116–3135.
- [19]. Liang, S.; Meroueh, S.O.; Wang, G.; Qiu, C.; Zhou, Y. Consensus scoring for enriching near-native structures from protein-protein docking decoys. *Proteins* 2009, 75, 397–403.
- [20]. Oda, A.; Tsuchida, K.; Takakura, T.; Yamaotsu, N.; Hirono, S. Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes. *J. Chem. Inf. Model.* 2006, 46, 380–391.
- [21]. Deng, Z.; Chuaqui, C.; Singh, J. Structural interaction fingerprint (SIFt): A novel method for analyzing 3D protein-ligand binding interactions. *J. Med. Chem.* 2004, 47, 337–344.
- [22]. Amari, S.; Aizawa, M.; Zhang, J.; Fukuzawa, K.; Mochizuki, Y.; Iwasawa, Y.; et al. VISCANA: Visualized cluster analysis of protein-ligand interaction for virtual ligand screening. *J. Chem. Inf. Model.* 2006, 46, 221–230.
- [23]. deAzevedo, W.F.; Dias, R. Computational methods for calculation of ligand-binding affinity. *Curr. Drug Targets* 2008, 9, 1031–1039.
- [24]. Lewis, R.A. Chapter 4: The Development of Molecular Modelling Programs: Use and Limitations of Physical Models. In Gramatica, P.; Livingstone, D.J.; Davis, A.M., Eds.; *Drug Design Strategies: Quantitative Approaches*; RSC Drug Discovery, Royal Society of Chemistry: Cambridge, 2011; pp. 88–107.

