(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact ‘ga; 7.67
Combining Quick Sort and Merge Sort for

Improved Average-Case Performance

Lucky Gupta and Apoorv Chaudhary
Students, Computer Science and Application
Sharda School of Engineering & Technology, Sharda University, Greater Noida

Abstract: This paper proposes and describes QuickMerge, a hybrid sorting algorithm -- that
incorporates a fast in-place partitioning strategy (which is implemented by the classic Quick Sort
algorithm) and a stable, cache-friendly merging strategy (which is implemented by the efficient and
widely known Merge Sort algorithm) -- to improve the average case performance on a wide range of
practical inputs. We present the algorithm design and pseudo-code, provide formal analysis of
complexity (time, space, stability) and present a conceptual and empirical (based on published
experimental results as well as trends reported in the literature) comparison of the performance between
QuickMerge and that of classical and modern sorting algorithms, namely Quick Sort, Merge Sort, Intro
Sort, Tim Sort, Radix/Counting sorts and recent hybrid/adaptive sorting algorithm proposals. Results
indicate that a carefully designed QuickMerge - a hybrid where the constituent of Quick Sort partitions is
used, but the constituent of Merge Sort merges (also referred to as balanced runs) is combined with a
merge stage for large sized partitions - is able to combine the low overhead of the Quick Sort algorithm
on the unspecialized data with Merge Sorts better steadiness on the adversarial or partially ordered
input to improve the average wall clock times in many realistic workloads.

Keywords. Quick Sort, Merge Sort, Heap Sort, Intro Sort

L. INTRODUCTION

Sorting is one of the primitive functions of computer science and computer systems with applications in database
processes, search indices, analytics pipelines and almost all high level algorithms, and making even small
improvements to the time it takes to sort an array can make massive gains to the system at scale [1]. Classic sorting by
comparison (Quick Sort, Merge Sort, Heap Sort) Differentiate Constants Stability Space requirement Sensitivity to
input distribution Modern production methods usually use hybrid algorithms (Intro Sort in C++, Tim Sort in
Python/Java) that can share desirable properties of many algorithms [2]. Some recent research have focused on the most
recent years 2024-2025 on adaptivity, hybidization and hardware-aware implementations to extract further practical
performance from sorting . This review presents QuickMerge, a hybrid algorithm that combines the efficient
partitioning adopted by the well-known algorithm Quick Sort and the merging algorithm Merge Sort (the latter one
features more predictable characteristics) and discusses its theoretical properties in addition to placing it within the
context of recent hybrid and adaptive algorithms described in the literature .

II. MOTIVATION AND RELATED WORK

A. Why Need of Hybridizing Quick Sort and Merge Sort?

Quick Sort is highly popular for being a simple algorithm with low constants and an in-place operation, but Quick Sort
suffers from a problem of having a worst-case O(n2) performance unless "hardened" by randomization and
introspection (i.e. changing to Heap Sort when the depth of recursion grows). [2][3] Merge Sort, which guaranteed O (n
log n) behaviour and stability comes with extra memory and potentially much higher allocation overhead . Hybrid
approaches try to offer the best of both worlds; the speed of Quick Sort on random data and the predictable behaviour
and better locality of a merge-based strategy when necessary [3].

Copyright to IJARSCT 598

[m] 353 =] DOI: 10.48175/IJARSCT-30076
www.ijarsct.co.in y

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

.(I IJARSCT

Xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

B. Previous Hybrids and Inspirations

* Intro Sort uses Quick Sort as the primary initial algorithm and failed in the bad case, so it will change to Heap Sort as
a worse case, but this is a standard style implemented in the industrial function: std::sort .

* Tim Sort (merge/insertion hybrid, adaptive) is an algorithm that is very efficient on real-world inputs that are partially
ordered, using run detection and merging runs using cost-aware operations .

« Several papers present alternative merge strategies, various Merge Sort variants, and/or hybrid algorithms that alter
how and when they partition or merge data to take advantage of data existing runs and/or how the data cache behaves
[4].

QuickMerge follows these empirical and theoretical background, as its design use Quick Sort style (divide and square
root) to transform the sure run time on random data sets, and when it suffer from unbalanced structure and too many
subproblems, classic theory of analysis than it is to merge phase, which just use merge to merge their runs together until
all the runs become balanced, and the merging run over a long distance i.e., in linear face i.e.e have an but reasonable
mixing, fly Bhasha stable i.e.in real face, so that pathological case can be bounded and feedback existence i.e little i.e in
fact face.

III. QUICKMERGE: ALGORITHM DESIGN
A. High-level idea
QuickMerge combines the partition step of Quick Sort and a controlled merge step:
1. Partitioning rounds: Use Quick Sort partitioning recursively until there is a fixed threshold split in the size of the
subarray being partitioned or in case there is an imbalance between the player measured by an elaborate heuristic (e.g.
recurrence depth dmax, etc). Partitioning (median-of-three, or random pivot in order to reduce degeneration).
2. Run formation: Is the partition stopped (due to the fact that partitions are small OR balanced) Treat the each
resulting subarray as run (sorted by recursive partition stage / explicitly sorting small runs with InsertionSort)
3. Balanced k-way merging: Implement a balancing algorithm that merges the runs with an optimized k-way merge
strategy (pairwise merging / multi-way buffered merging), that is inspired by optimized Merge Sort/Tim Sort merge
algorithms; this has the advantage of low additional allocations and a high degree of cache locality.
4. Fallbacks : Although, if partitioning shows the adversarial patterns (deep recursion or unbalanced splits) it turns to
merge dominant mode (aggressive run merging) or to worst case modes safe (e.g. Intro Sort/Heap Sort) to ensure O(n *
log(n)) worst case.
This design tries to allow the Quick Sort to perform "easy" portions of the input as reductions in the input data using the
substantial parallelism of the OpenGL Engine to light-weight aid some of the intermediate OpenGL commands and
then re-assembles steadily in an efficient merge operation -- so the final non-dominating blended shall be O(n log n)
merges (leaving low constants) as shall be seen as the partitioning has already performed much or all the work for you.

B. Pseudo-code

Python

(arr, low, high,
depth_limit):
low >= high:

size = high - low +
size <= INSERTION_CUTOFF:
insertion_sort(arr, low, high)

depth_limit <=
merge_sort(arr, low, high)

ptionally compute imbalance or feature
pivot = partition(arr, low, high)
hybrid_merge_quick_sort(arr, low, pivot -
, depth_limit - 1)
hybrid_merge_quick_sort(arr, pivot +
high, depth_limit - 1)

Copyright to IJARSCT 599

[m] 353 =] DOI: 10.48175/IJARSCT-30076
www.ijarsct.co.in y

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

({ IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

Design notes: Pivot choice, THRESHSMALL and MAXDEPTH all Title tune-able parameters; these should be
adjusted through profiling or auto-tuning of a target platform and dataset distribution [5].

C. Variants

* QuickMerge-Eager: Merge small neighboring runs that will be partitioned immediately, in order to reduce total
number of runs.

* QuickMerge-Lazy: Postpone large merges; Laziness uses final k-way merge; Less STO but may be larger peak.

* Parallel QuickMerge Partitioning and per run sorts are performed simultaneously final k-way merge is parallel merge
tree (use on multicore and GPU). A number of existing parallel hybrid designs have blueprints for efficient concurrency
and balancing .

IV. THEORETICAL ANALYSIS
A. Time complexity
Let n be input size. QuickMerge has time equal to sum of (1) partitioning cost and (2) merging cost.
* Partitioning cost If partitioning results in balanced subproblems for many steps then the cost is similar to the expected
O(nlogn) of Quick Sort with lower constants due to the in-place moves .
* Merging cost: Merging r runs of 3 total size 10 n run time is O(nlqu) pairwise merge and with k-way optimized
merging (heap or tournament tree, when n is large) is O(nlqu) with constant ¢ suggestion of the merge and good locality
» Combined: In typical inputs for which partitioning shrinks the runs (r [?] n), total expected time happens to approach
O(n log n) with maybe smaller constant factors than Brenda Victory Merge Sort or Quick Sort it out. In worst cases
adversarial inputs, QuickMerge changes to merge-dominant or worst case safe path and achieve O(nlog(n)) worst case
using Intro Sort fall back thus avoiding Quick Sort worst case of O(n"2) path..
As such, QuickMerge has an O(nlogn) kill time complexity, both in the expected and worst-case simulations (with
mean-case constants in many realistic job chunks more optimal than traditional implementations) [6].

B. Space complexity

* Partitioning stage-in-place (recursion stack O(log n)).

* The last k way merge, in the minimum case, requires auxiliary space of the order of n (temporary buffer), but multi
buffered or in place merging methods allow an extra peak memory to be reduced at the expense of the complexity .

* A memory conscious QuickMerge variant employs smaller merge buffers and merges the runs in streaming manner to
reduce foremost auxiliary memory to O (B) where B is operation buffer size and this compacts the operating system
memory at the expense of extra number of passes .

C. Stability

QuickMerge is not stable by default Quick Sort partitioning shuffles while equal keys as which unstable but spec merge
stage maintains if run within the original order, then elements within runs This requires a deposit large stable Mercedes
(it already stable partition factor) and stable small run sorts to employ at stable - maintain relative order. Stability
decision is implementation decision as per the application needs [7].

V.IMPLEMENTATION CONSIDERATIONS
To design a high-performance QuickMerge we have to care about micro-optimizations and platform behaviour:
* Pivot selection: use median of three or sampling strategy in order to avoid skew and the expense of randomization.
* Thresholds: tune THRESH SMALL (often 16-64) -- change to InsertionSort for microarrays [less overheads] .
* Run detection: Detect ascending Descending runs, and collapse descending run (Tim Sort style) and then merge (to
take advantage of already existing order, resulting in less merge work).
* Memory pooling: Let use one temporary buffer for reuse and merge (so that there is not a frequent allocation) .

Copyright to IJARSCT
www.ijarsct.co.in

600

7 1ssN W)
| 2581-9429 |}

[m] 353 =] DOI: 10.48175/IJARSCT-30076

&\ IJARSCT ¥
Q

(X
O%
IJARSCT

ISSN: 2581-9429

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

IJARSCT

Volume 5, Issue 5, November 2025

Impact Factor: 7.67

* Parallelization: Partitioning and merging, using work-stealing or fixed thread pools. parallelization of partitioning and
joining (using blocking partitioning , making floating record[clear=yes] block data more contentious) Limited cache-
aware blocking partitioning and computing locality .

* Fallback selection: keep track of depth of param tree and imbalance of tree and invoke Intro Sort or fully-stable merge
if one is needed .

These techniques are backed up by the latest studies in the importance of the run detection, buffer reuse and adaptive
thresholds in practical performance .

VI. COMPARATIVE EVALUATION
In view of the full experimental benchmarking costs of implementation and platform runs, we perform a set of synthesis
reviews of expected performance from (a) theoretical reasoning and (b) trends and experimental results in the latest
literature on the related hybrid, merge and adaptive selector. The cases where papers have reported measured speedups
for hybrid or optimized merges we calculate conflicts between those findings and the expected behaviour of
QuickMerge.

A. Comparative table
Table 1 — Algorithmic summary

Algorithm Avg time Worst time Extra Stability Practical notes
space
Quick Sort O(n log O(n?) O(log n) No Fast constants for random data;
n) sensitive to pivots.
Merge Sort O(n log O(n log n) O(n) Yes Stable, predictable; extra
n) memory cost.
Intro Sort O(n log O(n log n) O(log n) No Quick Sort+Heap Sort hybrid to
n) avoid worst-case.
Tim Sort O(n log O(n log n) O(n) Yes Detects runs; very fast on
n) partially sorted data.
Radix/Counti O(n + k) O(n + k) O(n + Yes Best for integer keys, not
ng k) comparison-based.
QuickMerge O(nlogn) O(nlogn) O(n) Optional Combines fast partitioning with
(proposed) expected (fallback) (merge merging; better constants on mixed
buffer) inputs.

QuickMerge is dedicated to achieving matching performance to the better performance of Quick Sort for random inputs
(by preventing the heavy cost of merging) and to fix better behaviour for adversarial or partially ordered inputs by using
controlled merging and fallbacks[8].

B. Empirical evidence from recent literature

* Papers that optimize Merge Sort's strategies, minimizing Merge Sort's merge strategies [circular, balanced, optimal,
scores, Hammers] , [often, often focus on, substitute premature splits, circular] [Quick Sort] Papers that focus on
speeding up Merge Sort's merge strategies [run-optimized, not unpair, determined, by] [Abrahamsson, n 2024 Merge
Sort's optimized merges arXiv 2025] papers report speedups when merge strategies are run-specific to merge cross-
optimized [9][scoring, merge amend,

* Studies of hybrid algorithms and MBISort/OptiFlexSort 20250n preprints show that the use of several techniques
(block merging + insertion sort for small runs) enables better wall-clock time vs pure reference implementations in
many work load which is consistent with the use of optimized thresholds and merging policies by QuickMerge .

Copyright to IJARSCT 601

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

[m] 353 =] DOI: 10.48175/IJARSCT-30076

&\ IJARSCT ¥
Q

(} IJARSCT

N
y/
xx International Journal of Advanced Research in Science, Communication and Technology l\

IJ ARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 16D (O
ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

* Research about adaptive selectors and Al-driven dispatch (2025) suggests that there is a throughput gain for dynamic
choice between radix, merge and quick families overall; we see. QuickMerge fit in such a framework as a candidate
hybrid choice[10].
* Parallel QuickMerge like algorithms and QuickMerge changes for parallel sorting literature such as Camargo 2024
proves that the use of partitiontmerge hybrid algorithms can work great load balancing and scalability when careful
implemented .
Taken together, such studies have led to the conclusion that a Phillipe Scheuque-now called a well-architecture or
optimised QuickMerge-should perform better than Naive Quick Sort and be as fast or better than Merge Sort for many
practical datasets, particularly, when combined with run detection and buffer re-use.

VIL. FIGURES AND TABLES

QuickMerge

Partitioning
Phases

Partition

"
Ilj |

I) [| 1 k-way Merge
) (D) | .

Partitioning

FIGURE 1 — QUICKMERGE FLOW DIAGRAM

QuickMerge

Partitioning

l

G
Partitioning Merging Intro Sort

\ 4

Time

FIGURE 2 — PSEUDOCODE TIMELINE.

Copyright to IJARSCT 602

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

[m] 353 =] DOI: 10.48175/IJARSCT-30076

&\ IJARSCT ¥
Q

:((IJARSCT

Xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

Table 2 — Representative expected runtimes (qualitative)

Input type Small (1k) Medium (100k) Large (10M) Notes
QuickMerge =|| QuickMerge <|| QuickMerge < Radix(for|| Partitioning
Random
Quick Sort Quick Sort ints) dominates early
Partially QuickMerge <|| QuickMerge <|| QuickMerge competitive .
. . o R hel
sorted Quick Sort Tim Sort? (depends) ||with Tim Sort Ul merging he'ps
QuickMerge Dbetter|| QuickMerge safe . Fallback prevents
R M t
everse than naive Quick via fallback erge stage wins O(n?)
VIIIL. DISCUSSION

Strengths

* Balanced behaviour: Its Quick Sort speed and Merge Sort stability are combined giving generally improved
pathological cases.

* Flexibility: Variation of the thresholds, run detection and fallback policies allow variation of workload plataforms.

* Parallel Friendliness Partition stage and run merges are inherently parallelizable.

Limitations

* Memory tradeoffs: Final merge stage usually demands additional buffer space (however, streaming merges allow to
shrink peak).

* Implementation complexity More moving parts than single strategy sorts Correctness and buffer management are
more complex.

* Tuning sensitivity: Sensitivity Can be achieved by well selection of parameters (thresholds, pivot policy) and platform
specific tuning always improves performance. [11]

Practical Advice

* You should do Test default by: (THRESHSMALL = 32, median of three, pivot (MAXDEPTH = 2log2(n)) Start
profile on representative data and modify.

* Use run detection to take advantage of ordered inputs -- it pays large dividends on real datasets.

* For int keys on massive arrays though, still have to evaluate Radix/Counting sorts as they have that ability to beat
Comparison hybrids in terms of throughput depending on the memory and properties of the key. [12]

IX. CONCLUSION

This review proposed QuickMerge, a hybrid algorithm that features Quick Sort partitioning and controlled merge stage
and places it among recent research on hybrid and adaptive sorting . The theoretical analysis reveals that we get that
QuickMerge inherits favourable average-case behaviour and with introspection fall back guarantees O(n log n) worst-
case time. Recent literature about optimized merge strategies, run detection, parallel partitiontmerge designs and
adaptive algorithm selectors have provided good evidence that such hybrids can be better than single-strategy sorts in
practice when designed carefully [1][4][5][6][8][12]. Future work includes (1) to implement high quality reference
QuickMerge variants, (2) benchmark multiple representative hardware (CPU, GPU, FPGA), (3) to integrate
QuickMerge into adaptive runtime selection frameworks, (4) to explore the memory-efficient merging methods to
reduce auxiliary space overhead [13].

Copyright to IJARSCT 603
www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

[m] 353 =] DOI: 10.48175/IJARSCT-30076

&\ IJARSCT ¥
Q

.(I IJARSCT

Xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

REFERENCES
[1] S. E. Amrahov, “A new approach to Merge Sort algorithm: Divide smart and ...,” Future Gener. Comput. Syst.
(ScienceDirect abstract), 2024.
[2] K. Bhagat, “Cross-Language Comparative Study and Performance Analysis of Sorting Algorithms,” SSRN
Electronic Journal, 2024.
[3] T. Nguyen and L. Patel, “Quick Sort Variants and Randomized Pivot Strategies: A Comprehensive Survey,” IEEE
Access, 2024. (Survey on pivot strategies and introspective techniques).
[4] J. K. R. Schou et al., “PersiSort: A New Perspective on Adaptive Sorting Based ...,” Univ. Utah technical report /
arXiv (PersiSort), 2024. (Adaptive merge/run strategies).
[5] M. F. R. Wibowo, “Tim Sort: Python and Classical Sorting Methods,” (PDF technical study), 2024. (Run detection
and merging strategies in Tim Sort).
[6] S. Ben-Jmaa et al., “Sorting Algorithms Comparison on FPGA and Intel i7 Architectures,” SciELO, 2024. (Hybrid
and hardware implementations; FPGA designs).
[7] (arXiv) “Improving Merge Sort and Quick Sort Performance by ...” — optimized merge configurations (2025
preprint). (Demonstrates improved merge strategies that inspire QuickMerge merging decisions).
[8] S. A. Balasubramanian, “Adaptive Hybrid Sort: Dynamic Strategy Selection for ...,”” arXiv preprint, 2025. (Adaptive
hybrid sorting and selection paradigms).
[9] R. Patil and V. Singh, “Performance Comparison of Radix and Counting Sort on Large-Scale Data,” IETA
Proceedings, 2024. (Guidance on when non-comparison sorts outperform hybrids).
[10] “Comparison of Insertion, Merge, and Hybrid Sorting Algorithms Using C” (ResearchGate report), 2024.
(Empirical hybridization of insertion+merge ideas).
[11] A. Caizergues et al., “Anytime Sorting Algorithms,” IJCAI Proceedings, 2024. (Anytime behaviour, interruption-
friendly sorting).
[12] E. T. Camargo et al., “Algorithm-based fault-tolerant parallel sorting” (PDF), 2024. (Modified QuickMerge
algorithm variants for parallel systems and load balancing).
[13] “OptiFlexSort: A Hybrid Sorting Algorithm for Efficient Large ...” (JAMCS revised ms), 2025. (Recent hybrid
algorithm with block merges and insertion extents; relevant empirical techniques).

Copyright to IJARSCT 604

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

[m] 353 =] DOI: 10.48175/IJARSCT-30076

&\ IJARSCT ¥
Q

