(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Is5N: 2561.9429 Volume 5, Issue 5, November 2025 impactFactor: 7.67
‘ReinFog’:A Deep Reinforcement Learning
Empowered Framework for Resource
Management in Edge and Cloud Computing

Environments

Kartik Kapse', Rohit Chayal’, Rohit Ghallal®, Prof. S. S. Medhe*
Students, Department of Computer Engineering' **
Professor, Department of Computer Engineering’
Adsul Technical Campus, Chas, Ahilyanagar, Maharashtra, India

Abstract: The growing IoT landscape requires effective server deployment strategies to meet
demands including real-time processing and energy efficiency. This is complicated by
heterogeneous, dynamic applications and servers. To address these challenges, we propose
ReinFog, a modular distributed software empowered with Deep Reinforcement Learning (DRL) for
adaptive resource management across edge/fog and cloud environments. ReinFog enables the
practical development/deployment of various centralized and distributed DRL techniques for
resource management in edge/fog and cloud computing environments. It also supports integrating
native and library-based DRL techniques for diverse IoT application scheduling objectives.
Additionally, ReinFog allows for customizing deployment configurations for different DRL
techniques, including the number and placement of DRL Learners and DRL Workers in large-scale
distributed systems. Besides, we propose a novel Memetic Algorithm for DRL Component (e.g., DRL
Learners and DRL Workers) Placement in ReinFog named MADCP, which combines the strengths
of Genetic Algorithm, Firefly Algorithm, and Particle Swarm Optimization. Experiments reveal that
the DRL mechanisms developed within ReinFog have significantly enhanced both centralized and
distributed DRL techniques implementation. These advancements have resulted in notable
improvements in loT application performance, reducing response time by 45%, energy consumption
by 39%, and weighted cost by 37%, while maintaining minimal scheduling overhead. Additionally,
ReinFog exhibits remarkable scalability, with a rise in DRL Workers from 1 to 30 causing only a
0.3-second increase in startup time and around 2 MB more RAM per Worker. The proposed
MADCEP for DRL component placement further accelerates the convergence rate of DRL techniques
by up to 38%.

Keywords: Internet of Things Edge computing Fog computing Cloud computing Distributed
software systems Deep Reinforcement Learning

I. INTRODUCTION
The evolution of computing paradigms has led to the emergence of edge/fog and cloud computing as complementary
approaches to address the growing demands of modern applications (Jamil et al., 2022). Edge/fog computing refers to
the deployment of computational resources closer to data sources, such as [oT devices, sensors, and gateways, to reduce
latency and improve real-time processing capa-bilities (Meruje Ferreira et al., 2024). This distributed network of nodes
performs data processing, storage, and decision-making near the data origin, minimizing the need to send large volumes
of data to distant servers. By processing tasks locally or in proximity, edge/fog computing helps to reduce latency and
enhance the responsiveness of time-sensitive applications. In contrast, cloud computing offers cen-tralized resources in

Copyright to IJARSCT
www.ijarsct.co.in

DOI: 10.48175/IJARSCT-30062 461

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology w\

IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor. 7.67

remote data centers, providing vast storage and processing capabilities ideal for handling large-scale data and com-plex
computations, albeit with potentially higher latency for real-time applications (Mansouri and Babar, 2021).

The synergy between edge/fog and cloud computing creates a pow-erful infrastructure capable of supporting various
applications with varying requirements. This integrated approach allows critical applica-tions to be processed closer to
the data source for faster response times, while less time-sensitive and resource-intensive applications can be offloaded
to the cloud. Such a hybrid model is particularly crucial in the context of the Internet of Things (IoT), where
applications are growing at an unprecedented rate (Jeyaraj et al., 2023). This has led to a signifi-cant increase in data
generation and processing demands, necessitating efficient deployment strategies that can effectively leverage the
compu-tational capabilities across edge/fog and cloud environments (Jin et al., 2023).

As IoT applications continue to evolve and expand, they present unique challenges for resource management and
scheduling (Goudarzi et al., 2022). The heterogeneity of IoT devices and edge/fog and cloud environments, ranging
from resource-constrained sensors to pow-erful cloud servers, is characterized by varying hardware capabili-ties (e.g.,
processing power, memory, and energy constraints), net-work conditions (e.g., latency, bandwidth, and reliability), and
applica-tion requirements (e.g., real-time processing versus compute-intensive tasks) (Buyya et al., 2023). This diverse
landscape makes rule-based resource scheduling strategies ineffective (Goudarzi et al., 2024). More-over, the dynamic
nature of IoT workloads and network conditions requires adaptive resource management solutions capable of respond-
ing to rapid and unpredictable changes (Sharif et al., 2024). The exponential growth in the number of IoT devices and
applications further compounds these issues, demanding highly scalable manage-ment approaches. Additionally, IoT
applications often have conflict-ing requirements, such as minimizing latency while maximizing en-ergy efficiency (Ali
et al., 2023), necessitating complex multi-objective optimization strategies.

Traditional heuristic or rule-based approaches to resource manage-ment often rely on static optimization or pre-defined
rules, which can be effective in predictable environments but fall short in adapting to the rapidly changing conditions of
IoT ecosystems (Chen et al., 2021). These methods struggle to optimize multiple objectives such as minimizing
response time and reducing energy consumption (Wang et al., 2024), particularly as the complexity of decision-making
in-creases exponentially with the scale of the system (Huang et al., 2024). For instance, in real-time video processing
applications deployed across edge/fog and cloud nodes, the system must continuously adapt to fluc-tuating bandwidth,
latency, and processing power (Wang et al., 2022). Heuristic methods may struggle to balance these dynamic trade-offs,
often resulting in suboptimal resource scheduling and increased system latency. In contrast, Deep Reinforcement
Learning (DRL) techniques of-fer a more adaptive and scalable solution by continuously learning and optimizing
resource management decisions based on real-time feedback from the environment (Zhou et al., 2022). This enables
DRL-based approaches to dynamically schedule IoT applications, predict future workloads, and efficiently utilize
available resources, outperforming traditional methods in complex and unpredictable IoT environments.

While DRL techniques demonstrate significant potential in address-ing dynamic resource management challenges, to
the best of our knowl-edge, there is currently no framework that comprehensively integrates both centralized and
distributed DRL techniques for IoT application scheduling in edge/fog and cloud computing environments. Existing
frameworks primarily rely on rule-based and heuristic methods. This critical gap is reflected in two key aspects. First,
current solutions do not provide mechanisms to simultaneously accommodate centralized and distributed DRL.
techniques, which is essential for efficient resource management across dynamic and stochastic edge/fog and cloud en-
vironments. Second, existing frameworks cannot support both native DRL technique implementations and external
DRL library integrations, limiting the flexibility and adaptability of DRL-based solutions in het-erogeneous computing
environments. These limitations highlight the urgent need for a unified framework that can effectively leverage various
DRL techniques for IoT application scheduling in edge/fog and cloud computing environments.

To address these challenges, we propose ReinFog, a novel frame-work that harnesses the power of DRL for adaptive
resource man-agement in edge/fog and cloud computing environments. To the best of our knowledge, ReinFog is the
first framework that comprehen-sively integrates mechanisms for the integration of both centralized and distributed
DRL techniques for IoT application scheduling, while supporting both native DRL implementations and external DRL
li-brary integrations through a modular and extensible design. To address the dynamic nature of IoT ecosystems,
ReinFog incorporates mul-tiple DRL techniques, both centralized and distributed, to adapt torapidly changing
Copyright to IJARSCT : DOI: 10.48175/IJARSCT-30062 = 462
www.ijarsct.co.in

(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology w\

IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor. 7.67

workloads and network conditions, enabling real-time, intelligent IoT application scheduling decisions that optimize
multiple objectives simultaneously. ReinFog supports native DRL tech-nique implementations, enabling researchers to
design and develop centralized and distributed DRL techniques, specifically designed for edge/fog and cloud
computing environments. Also, recognizing that each DRL library incorporates a set of specific DRL techniques,
ReinFog offers mechanisms to seamlessly integrate external DRL libraries. This dual capability enhances the flexibility
and adaptability of DRL-based solutions in heterogeneous computing environments, allowing users to leverage familiar
tools and accelerate their development processes. Accordingly, to facilitate the implementation of both native and
library-based DRL techniques, ReinFog adopts a modular design that supports easy extension and customization. This
design separates DRL compo-nents into DRL Workers for environment interaction and DRL Learners for policy
optimization. To accommodate the diverse requirements of large-scale distributed systems, ReinFog supports
customizable de-ployment configurations for DRL techniques. This design allows for flexible configuration of DRL
Learners and DRL Workers, enabling users to tailor deployments according to specific system architectures and
performance needs. Such flexibility is crucial for effectively managing resources and ensuring optimal performance in
complex IoT environ-ments with varying scales and topologies. Moreover, as the efficient execution of different DRL
techniques requires interaction among mul-tiple DRL-related components, it is crucial to place these components on
appropriate nodes. To optimize the DRL component placement, we propose a novel Memetic Algorithm for DRL
Component Placement in ReinFog, named MADCP. MADCP combines the Genetic Algorithm (GA)’s robust
exploration capabilities, Firefly Algorithm (FA)’s ability to fine-tune local search, and Particle Swarm Optimization
(PSO)’s efficient global optimization to efficiently place DRL components across heterogeneous computing nodes. This
algorithm enhances ReinFog’s ability to quickly adapt to changing environmental conditions and optimize resource
utilization before the start of DRL training processes.

The key contributions of our paper are as follows:

» We propose ReinFog, a containerized and modular framework for DRL-based resource management in edge/fog and
cloud envi-ronments. It offers mechanisms to support both centralized and distributed DRL techniques. Also, it enables
the integration of both native DRL techniques and external DRL libraries.

* We design customizable deployment configurations for DRL tech-niques in ReinFog, allowing flexible configuration
of DRL Learn-ers and DRL Workers in large-scale distributed systems.

* We propose a novel Memetic Algorithm for DRL Component Placement in ReinFog, named MADCP, combining
GA, FA, and PSO for efficient DRL component placement.

* We conduct extensive practical experiments evaluating ReinFog’s performance across various aspects. It
demonstrates that Rein-Fog is a lightweight and scalable framework capable of effec-tively scheduling IoT applications
under diverse optimization objectives.

II. RELATED WORK

IoT application scheduling and resource management in edge, fog, and cloud environments have attracted significant
research attention. Existing approaches can be broadly categorized into two groups: (i) algorithmic techniques that
focus on optimizing scheduling decisions using heuristics, meta-heuristics, or DRL, and (ii) system-level soft-ware
frameworks that aim to support the practical deployment and management of IoT applications. In this section, we first
review algo-rithmic techniques, including both heuristic/meta-heuristic and DRL-based methods. Then, we summarize
relevant software frameworks and highlight their limitations in handling dynamic, large-scale, and het-erogeneous
environments. Finally, we provide a comparative analysis to clearly position the originality and technical contributions
of our proposed ReinFog framework.

2.1. Algorithmic techniques for IoT scheduling

A wide range of algorithmic techniques have been proposed to address the challenges of scheduling and resource
management in loT-enabled edge, fog, and cloud environments. These techniques can be broadly classified into
heuristic/meta-heuristic methods and ma-chine learning-based techniques. In terms of heuristic techniques, Wu et al.
(2018) modeled IoT application scheduhng in edge and fog environments as a Directed Acychc Graph (DAG), using
Copyright to IJARSCT DOI: 10.48175/IJARSCT-30062 = 463
www.ijarsct.co.in

(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology w\

IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor. 7.67

EDA and partitioning to queue IoT applications and assign servers. Ali et al. (2020) proposed an NSGA2-based
technique for minimizing the to-tal computation time and system cost of IoT application scheduling in heterogeneous
fog cloud computing environments.

Hoseiny et al. (2021) proposed a GA-based technique to minimize computation time and energy consumption in
heterogeneous fog-cloud IoT application scheduling. While these heuristic methods perform well in specific scenarios,
they often lack adaptability to dynamic environments. In re-cent years, machine learning techniques, particularly DRL,
have gained significant attention for resource management in edge/fog and cloud computing environments, owing to
their adaptability and capacity for continuous learning in dynamic scenarios. Huang et al. (2019) applied a Deep Q-
Network (DQN)-based approach to address resource allocation problems within edge computing environments. Zheng
et al. (2022) proposed a Soft Actor-Critic (SAC)-based technique to solve the opti-mization problem of computational
offloading and resource allocation in collaborative vehicle networks. Siyadatzadeh et al. (2023) proposed ReLIEF,
which employs Q-Learning to manage resources in fog-based IoT systems. Wang et al. (2024) proposed DRLIS, which
leverages Proximal Policy Optimization (PPO) to optimize system load balancing and response time in edge and fog
computing environments. Zou et al. (2020) proposed A3C-DO, which utilizes the Asynchronous Advantage Actor-
Critic (A3C) technique to manage resources in edge computing environments. Liu et al. (2023) proposed an A3C-based
approach for edge computing in the smart vehicles domain. Wang et al. (2025) pro-posed TF-DDRL, which is based on
Importance Weighted Actor-Learner Architectures (IMPALA) to schedule IoT applications under three opti-mization
objectives. Table 1 presents a qualitative analysis of existing techniques proposed for IoT application scheduling. While
prior stud-ies focus on DRL-based scheduling, none provide a unified software framework that facilitates the
implementation of both centralized and distributed DRL techniques, which is essential for experimental and practical
deployment. These limitations are overcome by our proposed ReinFog software framework.

2.2. Frameworks for resource management

Building upon these techniques, researchers have developed several frameworks for resource management in edge/fog
and cloud computing environments. Many of these frameworks employ heuristic or meta-heuristic techniques for
making resource management decisions. For instance, Yigitoglu et al. (2017) developed Foggy, a container-enabled
framework supporting policy and rule-based scheduling of container-ized IoT applications with dependent tasks.
Similarly, Merlino et al. (2019) proposed a framework allowing policy-driven vertical and hor-izontal task offloading.
Yousefpour et al. (2019) introduced FogPlan, which employs greedy algorithms to minimize IoT application response
time, while Ghosh et al. (2019) developed Mobi-IoST, using a prob-abilistic approach for IoT application scheduling.
Deng et al. (2021) created FogBus2, introducing a GA-based IoT application scheduling technique, and Pallewatta et al.
(2024) proposed MicroFog, integrating multiple heuristic algorithms to enhance IoT application scheduling flexibility.
In recent years, some frameworks have started to incorporate reinforcement learning techniques. N. Toosi et al. (2022)
developed GreenFog, which combines linear programming optimization with the Multi-Armed Bandit approach for
energy consumption reduction. Sim-ilarly, Nkenyereye et al. (2023) proposed CEIF, which adopted Deep Q-Learning
for resource management in edge computing environments.

2.3. Summary and technical comparison with existing frameworks

Table 2 identifies the main properties of the related frameworks and compares them with ReinFog. Environment
Support indicates the com-puting environments supported by each framework. DRL-Integrated Framework indicates
whether the framework is comprehensively inte-grated with DRL capabilities, encompassing multiple DRL techniques
and providing support for extensibility. The DRL Capabilities section is a specific contribution of ReinFog. These
capabilities enable more adaptive and intelligent resource management by leveraging DRL to dynamically optimize [oT
application scheduling in real time. It is further divided into three sub-categories. Mechanism indicates whether the
framework supports the integration of native DRL techniques or importing external libraries. Architecture shows
whether the frame-work supports centralized and distributed DRL techniques. Finally, DRL Component Placement
shows whether the framework can auto-matically optimize the placement of DRL components. The Generic

Capabilities section represents general requirements for frameworks in edge/fog or cloud computlng environments.
Copyright to IJARSCT ; DOI: 10.48175/IJARSCT-30062 = 464
www.ijarsct.co.in

(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology w\

IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor. 7.67

These are commonly expected features that any robust framework should provide to ensure flexibility, adaptability, and
ease of integration across various platforms and environments, especially in addressing the challenges posed by
heterogeneous systems. It is further divided into five sub-categories. Multi-platform Support shows whether the
framework can operate across diverse heterogeneous hardware and software platforms. Con-tainer Support refers to the
ability to use containerization technologies. Scalability, Configurability, and Extensibility assess the framework’s
ability to be scaled, customized, and incorporate new features.

ReinFog offers significant advantages over related frameworks across multiple dimensions. Many existing frameworks
rely on tradi-tional heuristic (Yigitoglu et al., 2017; Merlino et al., 2019; Yousefpour et al., 2019; Ghosh et al., 2019;
Pallewatta et al., 2024) or meta-heuristic (Deng et al., 2021) techniques for IoT application scheduling, which often lack
adaptability to manage dynamic and complex comput-ing environments. Although some recent frameworks have
started in-corporating basic and single reinforcement learning techniques, such as Multi-Armed Bandit (N. Toosi et al.,
2022) or Deep Q-Learning (Nkeny-ereye et al., 2023), these frameworks do not offer mechanisms for in-
tegration/development of centralized and distributed DRL techniques. Accordingly, these frameworks struggle with the
implementation of ef-ficient and scalable DRL techniques for large-scale deployments. To the best of our knowledge,
ReinFog is the first resource management frame-work that enables the integration of both centralized and distributed
DRL mechanisms for IoT application scheduling across edge/fog and cloud environments. These mechanisms enable
the integration/devel-opment of a wide range of centralized and distributed techniques such as PPO (Schulman et al.,
2017) and IMPALA (Espeholt et al., 2018). Besides, ReinFog offers interfaces for the integration of both native and
library-based DRL techniques. Notably, ReinFog introduces DRL component placement, a novel feature to customize
and optimize the placement of DRL components using multiple meta-heuristic algorithms and proposed MADCP.
These comprehensive features and capabilities make ReinFog a versatile platform for researchers, enabling them to
either utilize built-in DRL techniques or extend its mechanisms for various resource management scenarios in edge/fog
and cloud computing environments. In terms of generic capabilities, ReinFog also offers multi-platform support, a
feature lacking in several frameworks (e.g., Yousefpour et al. (2019), Ghosh et al. (2019) and N. Toosi et al. (2022)).
Besides, ReinFog is designed with scalability, configurability, and extensibility in mind, addressing limitations found in
many existing frameworks (Yigitoglu et al., 2017; Merlino et al., 2019; Yousefpour et al., 2019; Ghosh et al., 2019; N.
Toosi et al., 2022; Nkenyereye et al., 2023).

III. REINFOG FRAMEWORK ARCHITECTURE
This section introduces the ReinFog framework, outlining its hard-ware environment and software architecture. We
propose a multi-layered structure that supports heterogeneous IoT, edge/fog, and cloud environments, and detail the
overall architecture of our framework.

3.1. Hardware environment

ReinFog is designed to operate across a heterogeneous multi-layered hardware environment, as illustrated in Fig. 1.
This environment en-compasses three primary layers: Cloud, Edge/Fog, and IoT, each with distinct characteristics and
roles in the overall system.

3.1.1. Cloud layer

The Cloud Layer represents the highest tier of computing resources in the ReinFog hardware environment. It consists of
high-performance servers provided by different cloud service providers such as Amazon Web Services (AWS),
Microsoft Azure, and Nectar. These cloud en-vironments offer scalable computing power and storage capabilities, high
reliability and availability, and advanced services for data ana-lytics and machine learning. The cloud layer supports
containerization for consistent deployment of ReinFog components and typically han-dles computationally intensive
tasks, large-scale data processing, and long-term data storage.

3.1.2. Edge/fog layer
The Edge/Fog Layer serves as an intermediate computing tier be-tween the cloud and IoT devices. This layer comprises

various com-puting devices, including laptops, desktops with varying computational capablhtles and single-board
Copyright to IJARSCT ; DOI: 10.48175/IJARSCT-30062 = 465
www.ijarsct.co.in

(/ | IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology l\
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

computers (e.g., Raspberry Pi). These devices are strategically positioned closer to the data source, enabling reduced
latency for time-sensitive applications, local data processing and filtering, and improved privacy and security by
keeping sensitive data local. The Edge/Fog layer connects to the Cloud layer via Internet connections, allowing for
seamless data transfer and task offloading when needed. It also supports containerization for flexible deployment of
ReinFog software components, playing a crucial role in facilitating real-time applications and reducing the
computational burden on both the cloud and IoT devices.

Cloud Layer
Cloud Provider 1 Cloud Provider 2 Cloud Provider 3
7 B 10T - Cloud Connection
Gagdi A
docker docker oa:w; encw; gocker docker doc m; gocker docker
Egde/Fog - Cloud Connection D 3
Edge/Fog Layer
Laptop 1 Raspberry Pi Laptop 2 Laptop H
/= i ~ al]
. - e
- @ - - % < &
docker docker docker docker docker docker docker
loT - Edge/Fog Connection -‘ ((EG)) @
loT Layer

3.1.3. IoT layer

The IoT Layer comprises the various end devices and sensors that collect data and interact with the physical
environment. This layer in-cludes smart home devices (e.g., thermostats, security cameras), wear-able devices,
industrial sensors and actuators, connected vehicles, and environmental monitoring sensors. These devices are
characterized by limited computational resources and power constraints, with direct interaction with the physical world
through sensing and actuation. For connectivity, these IoT devices employ various short-range communi-cation
protocols (e.g., WiFi, Bluetooth, Zigbee, 5G) to connect with the Edge/Fog layer, while Internet-based connections
facilitate communi-cation with the Cloud layer. The IoT layer is the primary source of data in the ReinFog ecosystem,
driving the need for efficient resource management and IoT application scheduling. We assume each IoT application in
this layer can consist of one or multiple interdependent IoT tasks that need to be efficiently scheduled.

3.2. Software architecture

The software architecture of ReinFog is designed to efficiently man-age and schedule IoT tasks in heterogeneous
edge/fog and cloud en-vironments. As illustrated in Fig. 2, the framework consists of two primary subsystems, along
with user interfaces for IoT application submission.

Copyright to IJARSCT
www.ijarsct.co.in

[m] 353 =] DOI: 10.48175/IJARSCT-30062 466

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

(/ \
o ® International Journal of Advanced Research in Science, Communication and Technology l\
IJ ARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

Task Execution Subsystem

) &)

Intelligent Task Scheduling
Subsystem

User #1

User #2

e o

Fig. 2. High-level software architecture of ReinFog

3.2.1. Task execution subsystem

This subsystem forms the operational core of ReinFog, which is responsible for managing the execution of IoT
applications across the distributed environment. It comprises:

Master: Acting as the central coordinator, the Master manages overall system operations. It receives loT application
requests, an-alyzes task dependencies, and constructs directed acyclic graphs (DAGs) to represent application
structures. The Master inter-acts with the Intelligent Task Scheduling Subsystem for optimal scheduling decisions,
considering both task dependencies and resource availability. It oversees execution, ensuring correct task

order. The architecture supports multiple Master instances for scalability and fault tolerance.

Actor: Distributed across various nodes in the system, Actors are responsible for executing assigned tasks and
managing local resources. They implement the actual task execution, monitor local system performance, and handle
data transfer between tasks when necessary. Actors continuously report resource utilization, task progress, and
completion status back to their associated Master. This real-time feedback enables dynamic resource man-agement and
adaptive IoT task scheduling, allowing the system to respond efficiently to changing workloads and environmental
conditions.

The Task Execution Subsystem handles critical functions such as application analysis, task distribution, execution
monitoring, and result aggregation, ensuring efficient utilization of available resources across the heterogeneous
computing environment.

3.2.2. Intelligent task scheduling subsystem

This subsystem represents ReinFog’s core innovation, leveraging DRL to make intelligent IoT scheduling decisions. It
consists of:

Worker: Workers gather system state information from the Task Execution Subsystem and generate IoT task scheduling
decisions based on the learned policy. They communicate these decisions back to the Task Execution Subsystem for
implementation. Work-ers continuously refine their decision-making process, adapting to the system’s dynamic nature
through distributed learning.

Copyright to IJARSCT 467

EL b E| DOI: 10.48175/IJARSCT-30062
www.ijarsct.co.in -y

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

({ IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

Learner: Centrally located, the Learner aggregates experiences or gradients from Workers and optimizes the global
DRL technique. The Learner periodically distributes the refined policy to all Work-ers, ensuring system-wide
improvement in decision-making. This continuous optimization enables ReinFog to adapt to changing conditions and
enhance overall [oT task scheduling efficiency.

The Intelligent Task Scheduling Subsystem continuously learns from the system’s performance, adapting to changing
conditions over time. This adaptive approach allows ReinFog to efficiently handle the dy-namic nature of IoT
workloads and the heterogeneity of computing resources.

3.2.3. ReinFog operation workflow

In the ReinFog framework, the workflow begins when users submit IoT applications through dedicated interfaces.
These applications typi-cally comprise multiple interdependent tasks that require coordinated execution. Upon
receiving user submissions, the Master in the Task Execution Subsystem serves as the first point of contact, processing
the applications by analyzing task dependencies and constructing DAGs to represent the execution structure. The
Master then forwards scheduling requests to the Worker in the Intelligent Task Scheduling Subsystem, along with the
system states and task characteristics. Based on this real-time information, the Worker generates IoT task scheduling
decisions using DRL policies and sends these decisions back to the Master. Upon receiving these decisions, the Master
coordinates its managed Actors to execute the specific tasks, with Actors handling the actual task execution and
providing status feedback. Throughout this process, the Learner in the Intelligent Task Scheduling Subsystem works in
parallel to optimize the DRL policies globally based on execution results and system states, continuously distributing
improved policies to all Workers to enhance the system’s scheduling efficiency and adaptability.

This architecture allows ReinFog to balance the load across avail-able resources and optimize overall system
performance. By integrat-ing DRL-based decision-making with traditional task execution mech-anisms, ReinFog can
effectively adapt to the complex and dynamic nature of modern IoT, edge/fog and cloud computing environments,
providing a robust and efficient solution for resource management and IoT application scheduling.

IV. REINFOG DESIGN AND IMPLEMENTATION
To achieve adaptive resource management in edge/fog and cloud environments, we implement the ReinFog framework
by extending the core components of the FogBus2 framework and implementing and integrating the new Intelligent
Task Scheduling Subsystem. We chose FogBus2 as the foundation for ReinFog because it already imple-ments many of
the basic functionalities required in our Task Execution Subsystem.
FogBus2 is a lightweight and distributed container-based framework for integrating heterogeneous IoT systems with
edge/fog and cloud environments. It comprises five main components that align well with our Task Execution
Subsystem requirements:
* User: handles environmental data collection and actuation con-trol, similar to our user interface for IoT application
submission.
* Master: manages [oT applications and scheduling, which forms the basis of our Master component in the Task
Execution Subsys-tem.
* Actor: performs host resource profiling, aligning with our Actor component’s responsibilities.
* Task Executor: executes submitted IoT applications, fitting di-rectly into our execution model.
* Remote Logger: provides persistent log storage, supporting our system’s monitoring and analysis needs.
By leveraging FogBus2, we are able to focus our efforts on de-veloping our DRL-based scheduling subsystem to handle
complex, dependency-aware IoT applications. This approach allowed us to build upon a proven foundation while
integrating our novel Intelligent Task Scheduling Subsystem with its DRL capabilities. The overall design of ReinFog,
showing both the extended FogBus2 components and our new DRL components, is illustrated in Fig. 3.

Copyright to IJARSCT 468

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

[m] 353 =] DOI: 10.48175/IJARSCT-30062

&\ IJARSCT ¥
Q

({ IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

4.1. ReinFog DRL components

In this section, we present the design and organization of our DRL components: the DRL Learner and the DRL Worker.
Each compo-nent is modularly designed and encompasses several sub-components and modules, which interact through
well-defined APIs and internal messages. The overall design is depicted in Fig. 4.

4.1.1. DRL learner

The DRL Learner component is responsible for training the DRL techniques and managing the learning process. It
comprises the follow-ing sub-components:

Learner DRL core: The Learner DRL Core is central to policy learning and optimization. It includes the following
modules:

1. Exploration Engine: This module implements and manages exploration strategies during the training process to
balance exploration and exploitation. It incorporates established meth-ods such as e-greedy and Ornstein—Uhlenbeck
process noise, while also providing an extensible mechanism for integrating additional exploration algorithms. The
Exploration Engine ex-poses a well-defined AP, allowing other components to interact with it efficiently. Through this
API, it dynamically interacts with the Network Architecture Hub and the DRL Technique Repository via the DRL
Policy Constructor, enabling it to access and utilize current technique states and network architectures. This API-driven
design enhances modularity and facilitates easy integration of new exploration strategies.

2. Network Architecture Hub: This module manages and main-tains base neural networks for various DRL techniques.
It sup-ports a wide range of architectures including:

* Deep Neural Networks (DNNs)

* Recurrent Neural Networks (RNNs)

* Long Short-Term Memory Networks (LSTMs)

* Transformers

These diverse architectures enable the hub to accommodate different types of tasks. The module exposes APIs for
querying and updating network architectures, facilitating seamless inte-gration and dynamic adaptability. Designed with
extensibility in mind, it allows for easy incorporation of new neural network architectures and policy optimization
methods in the future.

3. DRL Technique Repository: This module efficiently manages and maintains various DRL techniques. It is divided
into Cen-tralized Techniques and Distributed Techniques sub-modules, accommodating different user requirements and
computational architectures. The repository provides two integration mecha-nisms. The native integration mechanism
enables direct imple-mentation of DRL techniques within the framework, offering optimal performance and full
customization flexibility. ReinFog already includes native implementations of several representa-tive DRL techniques,
such as DQN, PPO, A3C, and IMPALA. In parallel, the library-based integration mechanism enables seam-less
incorporation of external DRL libraries through standardized interfaces. ReinFog has already integrated techniques
including SAC and R2D2 via the Ray library. This dual-mechanism design allows developers to either build custom
DRL techniques within the framework or directly leverage existing implementations, en-suring flexibility,
maintainability, and performance consistency across heterogeneous computing environments.

4. DRL Policy Constructor: This module is central to building and optimizing DRL policies. It orchestrates interactions
with multiple modules through well-defined APIs to create and refine effective DRL strategies. The Constructor
leverages the Net-work Architecture Hub’s API for base network construction and accesses the DRL Technique
Repository via API for policy de-velopment. It interacts with the Exploration Engine through its API to balance
exploration and exploitation during the learning process. For policy persistence, the Constructor integrates with the
Policy Manager, enabling saving and loading of policies. To enhance learning efficiency, it collaborates with the
Replay Buffer for experience sampling. The DRL Policy Constructor also coordinates parallel learning processes via
the Worker Ses-sion Manager and ensures policy synchronization through the Synchronizer.

Copyright to IJARSCT 469

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

[m] 353 =] DOI: 10.48175/IJARSCT-30062

&\ IJARSCT ¥
Q

e

e ®
IJARSCT

ISSN: 2581-9429

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology \

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 5, November 2025

i : — 35
H DRL Learner E DRL Worker 1 External Message
I Leamer DRL Coro | | Worker DRL Core. | g oo > Internal Message
: x x ; 3 : x x = :
_‘1 ¥ ¥ : i : ¥ ¢ E Initialization
¢ Worker Session |‘ ,I | : | | | ‘
: = Synchronizer 1 : M
i foploy Bufler | Ma:ger , : H Trajectory Aggregator : DRL Related Component
: v N v H i
H | Meswaltdyn | : i I Moessaga Handion | 3 DRL Sub-component
Extended Sub-component

for DRL Functions

Remote Logger

e /W‘ — — [—— i Base FogBus2 Companent
Resources | | Sys. Perl | [Images -
N ! L ¥
Y U v l:] Base FogBus2 Sub-component

‘ Load Manger ‘

Message | ¢ ; !

Handl : :

aneaer H } Message Handler ‘
{ S

Message Handler
S

Ml Lo)(-o{ Executor | i
i | Logger E

Task Executor

A

Profiler

i | TaskExecutor |« @ |
! Initiator H
> Masler nitiator

Fig. 3. ReinFog design overview.
5. Policy Manager: This module is responsible for comprehensive DRL policy administration. It consists of two key

sub-modules: the Saver and the Loader. The Saver sub-module ensures version-controlled, persistent storage of
optimized policies in the Trained Policy Repository. The Loader sub-module, on the other hand, retrieves policies from
the Repository as needed for further refinement or evaluation. The Policy Manager interfaces directly

with the DRL Policy Constructor, enabling seamless integra-tion of policy persistence operations within the overall
learning process.

6. Trained Policy Repository: This module functions as a cen-tralized storage for optimized and validated DRL policies.
It interfaces directly with the Policy Manager’s Saver and Loader sub-modules, enabling efficient storage and retrieval
of policies.

External Message

DRL Learner

Message Handler

Learner DRL Core Worker DRL Core |5 s » Internal Message
Exploration Engine Network Architecture Hub : Exploration Engine Network Architecture Hub. : * DRL Component
o o e m o7 :
: i [] oRusubcomponent
DRL Technique Repository Policy Manager DRL Technique Repository Policy Manager
i Trained || ; 1
Centralized | | Distrouted e 1 Polioy || : Contralized | | Distributed Ohypoly | -17]_Saver yraied Poiicy| | : [oncmocue
Techniques | | Techniques Repository|| * Techniques | | Techniques Repository || :
. : - I:I DRL Sub-module
‘ : Environment Engine —— : - DRL Moduls AP
Replay Buffer ; ; e :
Work : E Action },. 3 __{ Reward
lorker E 3 Converter Generator i
: . 1 : i Tr:
Replay Buffer, _| Replay Buffer Session [+~ Synchronizer | : : Synchronizer ajectory]
Warehouse Constructor Manager i Contaliar ri Aggregator | :
- : State » Reward :
: Processor Model

Fig. 4. Distributed DRL components design
The Repository maintains a structured archive of policies, sup-porting version control and rapid access for DRL
experiments. It enhances the overall efficiency and effectiveness of policy management in the ReinFog framework.

Copyright to IJARSCT
www.ijarsct.co.in

470

({ IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology

IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

Replay buffer: The Replay Buffer enhances learning efficiency and stability by storing and reusing experiences. It
consists of two key modules:

1. Replay Buffer Warehouse: This module stores agent-environ-ment interaction experiences. It features both random
and reser-voir sampling buffers. Random sampling helps break temporal correlations in the data, while reservoir
sampling maintains a fixed-size buffer suitable for streaming or unbounded data. The Warehouse also supports flexible
integration of additional sampling algorithms.

2. Replay Buffer Constructor: This module manages the creation, maintenance, and updating of buffers. It interfaces
with the Re-play Buffer Warehouse through its API to facilitate the storage, retrieval, and sampling of experiences. It
also interacts directly with the DRL Policy Constructor, supporting efficient experience utilization in the learning
process.

Worker session manager: The Worker Session Manager is responsible for managing communication across multiple
DRL Workers in a distributed environment. It handles thread creation, maintenance, and DRL Worker communication,
ensuring fast and reliable transmission of data and instructions. This sub-component plays a crucial role in coordinat-
ing parallel learning processes and maintaining efficient distributed operations within the ReinFog framework.
Synchronizer: The Synchronizer is tasked with synchronizing train-ing across the distributed learning environment. It
coordinates pol-icy updates, gradients, and parameters between the DRL Learner and DRL Workers, maintaining a
unified learning environment. Through close collaboration with the Worker Session Manager, the Synchro-nizer
ensures consistency in the learning process, facilitating effective distributed learning in ReinFog.

Message handler: The Message Handler manages inter-component com-munications within the ReinFog framework. It
receives and processes incoming messages, efficiently routing them to the appropriate internal sub-components. It
serves as a central communication hub, facilitating effective information exchange between various components of the
ReinFog framework. By ensuring smooth and organized message flow, the Message Handler maintains system
coherence and optimizes overall operational efficiency.

4.1.2. DRL worker

The DRL Worker component is responsible for interacting with the environment, collecting and processing data to
support policy learning and optimization within the ReinFog framework. It shares core functionalities with the DRL
Learner, with the Worker DRL Core mirroring the architecture of the Learner DRL Core to ensure consis-tent
functionality and coordination. Despite these similarities, the DRL Worker incorporates several unique sub-
components: an Environment Engine for direct interaction with the learning environment, a Trajec-tory Aggregator for
efficient collection and processing of experience data, and a Synchronizer adapted for DRL Worker-specific
synchroniza-tion tasks, functioning differently from the Synchronizer in the DRL Learner. In centralized learning
scenarios, the DRL Worker can assume the role of the DRL Learner, enabling direct policy updates for DRL
techniques. This comprehensive design enables flexible deployment of the DRL Worker in both centralized and
distributed learning con-texts, enhancing the overall adaptability and efficiency of the ReinFog framework.
Environment engine: The Environment Engine manages interactions be-tween the learning components and the
environment through several key modules:

1. State Processor: This module transforms raw environmental data into a format suitable for decision-making and
learning processes.

2. Action Converter: This module translates generated actions into environment-specific commands, ensuring proper
execution of decisions.

3. Reward Generator: This module processes reward parameters and utilizes the Reward Model’s API to calculate
rewards.

4. Reward Model: This module defines reward calculation meth-ods, maintains consistency in reward generation, and
supports the extension of additional reward functions.

5. Environment Controller: This module oversees the overall in-teraction process, managing the flow of actions and
states, and coordinating the integration of other modules.

Copyright to IJARSCT
www.ijarsct.co.in

[m] 353 =] DOI: 10.48175/IJARSCT-30062 471

:((IJARSCT

Xx International Journal of Advanced Research in Science, Communication and Technology \\

IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

This modular design ensures a smooth and continuous interaction cycle, facilitating efficient learning and adaptation
within the ReinFog framework.

Trajectory aggregator: The Trajectory Aggregator is responsible for col-lecting and processing trajectories generated
from interactions with the environment. These trajectories, consisting of sequences of states, actions, and rewards,
encapsulate experiential data over time. The ag-gregator maintains a well-structured and accessible repository of these
experiences for training and evaluation purposes. In specific techniques such as A3C, where gradients are calculated
within DRL Workers, the Trajectory Aggregator collects and transmits these gradients to the DRL Learner for updating
the global policy. Moreover, in centralized learning scenarios where policies are optimized within the DRL Worker
component, the Trajectory Aggregator can adapt to function as a Replay Buffer, storing and sampling trajectory data to
support policy training and updates. This versatile design enables the Trajectory Aggregator to support various learning
paradigms and techniques within the ReinFog framework, enhancing flexibility and efficiency in different operational
contexts.

Synchronizer: The Synchronizer in the DRL Worker maintains consis-tency between local and global policies in
distributed learning scenar-ios. It periodically obtains the latest policy parameters from the DRL Learner and updates
the local policies accordingly. This mechanism facilitates efficient knowledge sharing, allowing DRL Workers to make
decisions based on up-to-date global knowledge while contributing to the overall learning process. The Synchronizer is
essential for bal-ancing local exploration and global exploitation within the ReinFog framework.

4.2. Extended FogBus2 sub-components
To enable FogBus2 to work seamlessly with DRL capabilities, we have extended several of its sub-components. This
section introduces these extended sub-components, as illustrated in Fig. 3.

4.2.1. Extended scheduler & scaler

The Scheduler & Scaler sub-component has been extended to in-corporate DRL capabilities, with the primary focus on
enhancing the Scheduler Module. This extension enables coordination with the newly introduced DRL components.
Fig. 5 illustrates the detailed structure of the Extended Scheduler Module within the Scheduler & Scaler sub-

comp onent.
Mater : : DRL Loarnat > External Message
Profiler Learner DRL Core | P e d Intermal Message
4 - 3
Scheduler & Scaler | F———'ﬁ v ® Iniialization
| Worker Sessmn "
H Synchronizer
. Replay Buffer Manger .|
Extended smeuulm Module : = 2 DAL Rewiad Componant
; I Message Handler I : DRL Related Sub-component
Scall : - T : Extended Sub-component
cae i : § fur DAL Functiuns
“ :
{ Module i Task DRL G nt . DRLG t : :
H Decision Generator Placement Engine Placement Controller E : DRL Worker
H : i : Exiended Scheduler Module
B - : Worker DRL Core I :
; HNE 7 x z 3 Exiended Schaduer Sub-modula
x A A : H Y 3
v,,,,,,,,,,,,,,,_' '; ; E f | I L I ‘TrajactoryAggvsgatov é . """"':
Registry ‘ ‘ Message Handler : 3 x x ——] j BesaFogBus2 Component
E : g ¥ 3

‘ Message Handler I ; Base FogBus2 Sub-component

Base FogBus2 Scaler Module

Fig. 5. Extended FogBus2 scheduler module.
DRL component placement engine: The DRL Component Placement En-gine generates strategies for placing DRL
Learners and DRL Workers. It incorporates several algorithms:
* GA: Inspired by natural selection, GA evolves a population of potential solutions over generations.
* FA: Based on the flashing behavior of fireflies, FA uses attraction and movement towards brighter solutions.
* PSO: Mimicking the social behavior of bird flocking, PSO updates solutions based on personal and global best
experiences.

Copyright to IJARSCT 472

www.ijarsct.co.in

DOI: 10.48175/IJARSCT-30062

(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology w\

IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor. 7.67

* MADCP: Our proposed algorithm that combines GA, FA, and PSO to leverage their respective strengths for more
efficient DRL component placement.

In addition, the Engine supports the integration of additional algo-rithms to address diverse DRL component placement
requirements and optimization objectives.

DRL component placement controller: The DRL Component Placement Controller retrieves placement strategies from
the DRL Component Placement Engine and applies them to place DRL Learners and DRL Workers. This sub-module
ensures that the DRL components are prop-erly set up according to the generated strategies, facilitating the effi-cient
start of the learning process.

Task scheduling decision generator: The Task Scheduling Decision Gen-erator communicates with DRL components to
obtain [oT task schedul-ing decisions. It then manages the deployment of these tasks based on the received decisions.
This sub-module bridges the gap between DRL components and practical task execution within the ReinFog frame-
work.

4.2.2. Extended profiler

The Profiler has been extended in both the Master and Actor com-ponents to provide more comprehensive system
monitoring. In the Master, the extended Profiler now collects and analyzes system-wide performance metrics, providing
a holistic view of the entire distributed environment. This includes monitoring resource utilization patterns, network
latencies, and overall system throughput. In the Actor, the Profiler has been augmented to gather more detailed node-
specific information, such as CPU and memory usage, task execution times, and local network conditions. These
enhancements enable more accurate modeling of the system state, which is crucial for the DRL components to make
informed IoT task scheduling decisions.

4.2.3. Extended user’s sensor and actuator

The User component’s Sensor and Actuator have been extended to enhance data collection and performance monitoring
capabilities, supporting the integration of DRL in ReinFog. These extensions focus on gathering more detailed
information about IoT device operations and application performance. Key enhancements include the ability to mon-
itor detailed energy consumption patterns of IoT devices, fine-grained operational timing such as task execution and
completion times, as well as device-specific characteristics like processing capabilities and storage capacity.
Additionally, the extensions provide real-time data on network conditions and connectivity status of IoT devices.

4.3. Centralized and distributed deployment

ReinFog supports both centralized and distributed deployment for DRL techniques. This section details how ReinFog
components are utilized in these two deployment patterns, with specific examples to illustrate the implementation of
each deployment.

4.3.1. Centralized DRL techniques deployment

Centralized DRL techniques deployment is essential in ReinFog for scenarios where the environment complexity is
moderate and the sys-tem can benefit from simplified architecture and reduced communica-tion overhead. In
centralized deployment, a single DRL Worker handles both learning and decision-making processes, suitable for
scenarios with relatively stable workload patterns or when system resources are limited.

Centralized DRL deployment scheme in ReinFog: In centralized deploy-ment, the learning process is conducted
directly within the DRL Worker, eliminating the need for a separate DRL Learner. The Environment Engine collects
environmental data from the ReinFog Master and processes them for training. The Trajectory Aggregator will assume
the role of the Replay Buffer, which stores and samples experiences for policy optimization. The Worker DRL Core
contains all the necessary modules for both learning and decision-making. This design centralizes all environmental
data collection and policy updating within the DRL Worker, creating a self-contained unit that operates independently.
Sample illustration: To demonstrate the centralized deployment, we utilize DQN (Mnih et al., 2015) as an example.
DOQN is a widely applied DRL techmque that combines Q-learning with DNNs, employing a prlmary network for action
Copyright to IJARSCT DOI: 10.48175/IJARSCT-30062 = 473
www.ijarsct.co.in

(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

selection and a separate target network for value estimation to stabilize training and improve learning effi-ciency in
sequential decision-making problems (Arulkumaran et al., 2017). In our implementation, the DRL Worker’s
Environment Engine receives environmental data from the ReinFog Master as a scheduling request and processes them
into suitable formats for DQN utilization.

The Worker DRL Core maintains two neural networks: the primary network for action selection and the target network
for stable Q-value estimation. Actions are selected based on the current Q-values and sent to the Master for IoT task
scheduling. The scheduling results and rewards are processed by the Environment Engine and stored in the Trajectory
Aggregator. The Worker DRL Core then samples mini-batches of experiences directly from the Trajectory Aggregator
and performs Q-learning updates.

4.3.2. Distributed DRL techniques deployment

Distributed DRL techniques deployment is essential in ReinFog for addressing complex, large-scale environments
where centralized ap-proaches may be inefficient. This deployment pattern can harness the computational capabilities
of heterogeneous edge/fog and cloud resources through multiple DRL Workers collaborating with a single or multiple
DRL Learners, enabling parallel training and distributed learning to deal with dynamic workloads that demand rapid
adaptation.

Distributed DRL deployment scheme in ReinFog: In distributed deploy-ment, ReinFog employs multiple DRL Workers
collaborating with a single or multiple DRL Learners to enable parallel training and decision-making. Each DRL
Worker operates independently, with its Environ-ment Engine collecting and processing environmental data from the
Master and its DRL Core generating local decisions based on the cur-rent policy. The Trajectory Aggregator in each
DRL Worker collects and processes local experiences for transmission. The Worker Session Manager coordinates the
communication flow, enabling DRL Workers to transmit their processed experiences to the central DRL Learner. The
DRL Learner stores these experiences in its Replay Buffer. The Learner DRL Core then performs global policy
optimization using experiences stored and sampled from the Replay Buffer. After policy updates, the Synchronizer
ensures policy consistency by distributing the latest global policy to all DRL Workers. This distributed architecture
enables scalable learning across multiple nodes while maintaining policy coherence.

Sample illustration: To illustrate the distributed deployment, we present IMPALA as an example. IMPALA is a highly
scalable distributed DRL technique that efficiently handles large-scale learning by employing multiple actors running in
parallel with a centralized learner, using importance sampling and V-trace off-policy correction to maintain stability in
the learning process. In our implementation of IMPALA, multiple DRL Workers operate in parallel, each with its
Environment Engine processing environmental data received from the ReinFog Mas-ter. The Worker DRL Core
maintains local copies of the actor and critic networks for policy representation. Based on these local networks, the
Worker DRL Core generates actions for [oT task scheduling. The scheduling results and rewards are processed locally
by the Environ-ment Engine, and each DRL Worker’s Trajectory Aggregator collects these experiences. The collected
experiences are then transmitted to the DRL Learner through worker sessions managed by the Worker Session
Manager, and stored in the Replay Buffer. The Learner DRL Core maintains the global actor and critic networks for
policy optimization. It samples experiences from the Replay Buffer, computes importance sampling ratios to address
the discrepancy between behavior and tar-get policies, and employs V-trace for off-policy correction to update these
global networks. The updated global policy parameters are then distributed to all DRL Workers through the
Synchronizer, ensuring consistency across the distributed system.

4.4. Native and library-based integration

ReinFog supports two primary mechanisms for integrating DRL techniques: native integration and library-based
integration. The native integration mechanism enables direct implementation of DRL tech-niques within the
framework, offering optimal performance and cus-tomization capabilities. The library-based integration mechanism al-
lows seamless incorporation of external DRL libraries, providing access to established implementations while
maintaining framework com-patibility. This dual integration approach ensures that ReinFog can accommodate diverse
Copyright to IJARSCT 474
www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

[m] 353 =] DOI: 10.48175/IJARSCT-30062

&\ IJARSCT ¥
Q

(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology

IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

research needs while leveraging existing DRL solutions. In this section, we detail both integration mechanisms and
provide examples of their implementation within ReinFog.

4.4.1. Native DRL techniques integration

The native integration mechanism is essential to ReinFog as it offers substantial advantages in performance,
maintainability, and flexibil-ity. Directly implementing DRL techniques within the framework can optimize
performance, particularly in dynamic edge/fog and cloud en-vironments where real-time responsiveness is crucial. This
mechanism also minimizes dependencies on external libraries, enhancing stability and compatibility across various
deployment scenarios. Furthermore, native integration provides researchers with the flexibility to imple-ment and
integrate their own custom DRL techniques, allowing for tailored solutions to specific research problems.

Native integration mechanism: To support native integration of DRL techniques, ReinFog provides a comprehensive
framework through well-defined interfaces and modular design, to offer maximum flex-ibility while maintaining
consistency and efficiency. The Network Architecture Hub is responsible for neural network architecture def-inition
and management. It maintains a collection of base network architectures (e.g., DNNs, RNNs, LSTMs, Transformers)
and allows researchers to define custom architectures through a consistent inter-face. Building upon these network
architectures, the DRL Technique Repository is responsible for managing DRL techniques, providing an extensible
interface through a base class. This base class defines es-sential abstract methods including policy network
initialization, action selection, loss computation, and parameter updates. These abstrac-tions enable researchers to
implement new DRL techniques. ReinFog’s Exploration Engine supports native integration through a pluggable
exploration strategy interface, offering built-in configurability for com-mon strategies (e.g., e-greedy and Ornstein—
Uhlenbeck process noise) while enabling custom strategy implementation. The Replay Buffer enables custom buffer
implementation through a standard interface. It provides several built-in buffer types (e.g., random sampling and reser-
voir sampling) while allowing researchers to define flexible sampling strategies and integrate specialized buffer types.
Sample illustration: To demonstrate the native integration mechanism, we describe how to implement a customized
version of IMPALA that leverages ReinFog’s advanced features. The Network Architecture Hub is utilized to construct
two Transformer-based neural networks. The ac-tor network processes the input states and outputs action probabilities
for IoT task scheduling decisions, while the critic network evaluates these states to guide the learning process.
IMPALA’s core algorithm is implemented by extending the base class in the DRL Technique Repository, where the V-
trace off-policy correction and importance sampling calculations are defined. The Exploration Engine is configured to
use Ornstein—Uhlenbeck noise for action exploration. The Replay Buffer is set up with reservoir sampling to efficiently
store and man-age experiences. Through these configurations and implementations, IMPALA operates as a fully
functional distributed DRL technique within the ReinFog framework.

4.4.2. Library-based DRL techniques integration

The library-based integration mechanism serves as another cru-cial feature of ReinFog, offering development
efficiency, algorithmic diversity, and research flexibility. By importing well-established DRL libraries, researchers can
leverage proven algorithms without reimple-mentation, significantly reducing development time while ensuring re-
liable performance. This mechanism also enriches ReinFog with diverse DRL techniques, enabling it to handle various
scheduling scenarios in heterogeneous edge/fog and cloud environments. Moreover, it empow-ers researchers to
integrate and experiment with different DRL libraries based on their specific research requirements.

Library-based integration mechanism: To support external DRL libraries integration, ReinFog provides a standardized
interface through the DRL Technique Repository. This interface defines essential methods for bridging external
libraries with ReinFog’s environment. Specifically, the interface allows researchers to implement state preprocessing to
convert ReinFog’s system state representations into formats compatible with external libraries, action translation to map
library-generated actions back to ReinFog’s scheduling decisions, and reward signal adaptation to ensure proper
learning feedback. The DRL Technique Repository manages these transformations, enabling external DRL tech-niques
to operate seamlessly within ReinFog’s resource management framework while maintaining their original

implementations.
Copyright to IJARSCT
www.ijarsct.co.in

[m] 353 =] DOI: 10.48175/IJARSCT-30062 475

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

Sample illustration: To demonstrate the library-based integration mech-anism, we provide an example of integrating
Recurrent Replay Dis-tributed DQN (R2D2) (Kapturowski et al., 2018) from the Ray1 library. Ray library is chosen for
its high-performance distributed computing features and comprehensive DRL techniques suite. R2D2 is a distributed
DRL technique that extends DQN by incorporating RNNs and a replay system to handle partial observability and
temporal dependencies in sequential decision-making problems. Through the interface provided in the DRL Technique
Repository, we implement state preprocessing to convert ReinFog’s scheduling environment states (e.g., node
resources, [oT task characteristics, and network conditions) into R2D2’s required tensor format.

The action translation mechanism transforms R2D2’s output probabilities into concrete scheduling decisions within
ReinFog, effectively guiding the scheduling of IoT tasks across available nodes. For reward signal adaptation, the
implementation processes ReinFog’s performance metrics (e.g., scheduling result, response time, energy consumption)
into a scalar reward value suitable for R2D2’s learning process. These implementations enable R2D2 to effectively
learn and make scheduling decisions within ReinFog while preserving its original recurrent replay-based learning
mechanism.

V.MADCP: A MEMETIC ALGORITHM FOR DRL COMPONENT PLACEMENT

In ReinFog, effective DRL-based IoT application scheduling requires careful placement of various components (e.g.,
DRL Learners and DRL Workers) across different nodes in the heterogeneous computing en-vironment. Poor DRL
component placement decisions can lead to in-creased communication overhead, inefficient resource utilization, and
degraded learning performance. To solve this challenge, ReinFog offers a mechanism for DRL component placement.
While traditional meta-heuristic algorithms could be applied to this placement problem, they show specific limitations.
GA provides robust exploration capabilities but may converge slowly in complex solution spaces (Renders and Flasse,
1996). FA excels at local search refinement but can be trapped in local optima (Wu et al., 2020). PSO offers efficient
global search but may lack fine-tuning abilities in local regions (Moradi and Gholampour, 2016). To address this
critical placement challenge while overcoming these algorithmic limitations, we propose MADCP, a Memetic Algo-
rithm for DRL Component Placement that combines the strengths of GA, FA, and PSO. In ReinFog, MADCP is
integrated into the DRL Component Placement Engine of the extended Scheduler module (see Fig. 5). It is invoked
before DRL training to determine efficient placement of DRL Learners and Workers across nodes.

In this section, we first define the optimization problem we are addressing along with the MADCP. We also explain
how our proposed MADCP combines the strengths of three methods: GA, FA, and PSO. In addition, we present a
comprehensive analysis of the computa-tional complexity of MADCP, examining its initialization and iterative
optimization phases

5.1. Optimization problem definition

The MADCP is designed to address a complex optimization problem in distributed computing environments. The
primary goal is to effi-ciently place DRL components across heterogeneous computing nodes to optimize overall
system performance.

5.1.1. Problem formulation

Consider a set of DRL components ={C1,C2,:-,Cm} that need to be assigned to a set of heterogeneous computing
nodes ={N1,N2,-:-,Nn}. Each node has different computational capabilities, memory sizes, and energy consumption
rates.

Each component Ci has a computational requirement Ui (e.g., CPU cycles), a memory requirement Mi, and a deadline
or time constraint Di. Similarly, each node Nj is characterized by a computational capac-ityPj, and available memory
4j.

Copyright to IJARSCT 476

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

[m] 353 =] DOI: 10.48175/IJARSCT-30062

&\ IJARSCT ¥
Q

:((IJARSCT

Xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

5.1.2. Objective function

The objective is to find an optimal assignment of DRL components to computing nodes that minimizes the total
operation time and en-ergy consumption while meeting all time and resource constraints. We define the objective
function as:MinimizeF=mXi=1nZj=1xij(w1-0(Ci,Nj)+w2-E(Ci,Nj)),(1)

Here, xij is a binary variable indicating whether component Ci is assigned to node Nj: xij={l,if component Ci is
assigned to node Nj,0,otherwise.(2)0(Ci,Nj) is the operation time of component Ci on node Nj, E(Ci,Nj)is the energy
consumed by node Nj during the operation time O(Ci,Nj), and wl and w2 are weighting factors balancing the
importance of operation time and energy consumption.

5.1.3. Constraints

The optimization problem is subject to the following constraints:

Resource constraints: For each node Nj, the total computational and memory requirements of the assigned components
should not exceed its capacity: mXi=1xijUi<Pj,VNjE ,(3)mIi=1xijMi<Aj VNjE .(4)

Deadline constraints: Each component must complete the operation within its deadline:0(Ci,Nj)<Di,vCi€ ,VNj€E
where xij=1.(5)

Assignment constraints: Each component is assigned to exactly one
node:xij € {0,1},vCi € ,VNj € (6)nZj=1xij=1,VCiE.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed ReinFog, a novel framework leveraging DRL mechanisms and techniques for adaptive resource
management in edge/fog and cloud computing environments. ReinFog addresses the challenge of efficiently scheduling
heterogeneous IoT applications across diverse computing resources through its modular and extensi-ble DRL
components. It offers capabilities to support centralized and distributed DRL techniques and allows integration of both
native and library-based DRL techniques. It features customizable deployment configurations, allowing users to
flexibly configure DRL Learners and Workers based on system requirements. Additionally, it incorporates MADCP, an
efficient DRL component placement algorithm that dy-namically optimizes the allocation of DRL Learners and
Workers, enhancing DRL-based scheduling techniques performance in distributed environments. Our extensive
experiments demonstrate that ReinFog is a lightweight and scalable framework capable of effectively scheduling IoT
applications under diverse optimization objectives.

2400

=
@

2200

2000

=
)

1800

Energy (J)

.
Y

Response Time (ms)
o
-3
=3
s

"
N

1400

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Iteration Iteration Iteration

MADCP GA-—+—FA——PSO -4+ Random J MADCP GA—+—FA—+—PSO—+—Random | MADCP GA—+—FA——PS0O—+—Random |

Fig. 15. Impact of different DRL component placement algorithms on IMPALA’s convergence performance.

Copyright to IJARSCT
www.ijarsct.co.in

477

7 1ssN W)
| 2581-9429 |}

[m] 353 =] DOI: 10.48175/IJARSCT-30062

&\ IJARSCT ¥
Q

(} IJARSCT

N
y/
xx International Journal of Advanced Research in Science, Communication and Technology l\

IJ ARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

20

15

10

Average Scheduling Overhead (ms)

MADCP GA FA PSO Random
Fig. 16. Impact of different DRL component placement algorithms on IMPALA’s average scheduling overhead.

As part of our future work, we will extend ReinFog by integrating security and privacy mechanisms to enable secure
DRL parameter-sharing and experience-sharing approaches. The framework’s modular design allows seamless
integration of security protocols at all levels, ensuring that security features can be embedded for secure communi-
cation and data handling without affecting core functionality or system efficiency. Additionally, we will integrate more
recent DRL techniques into ReinFog, which will allow the framework to remain at the fore-front of cutting-edge
research. This integration will enable researchers to leverage advanced algorithms, providing a flexible platform for
experimenting with and refining novel DRL techniques for diverse research. Furthermore, we plan to investigate
techniques to improve system resilience against hardware and software failures, including fault-tolerant scheduling and
adaptive component redistribution across heterogeneous nodes.

REFERENCES

[1]. Al, E.S., Saeed, R.A., Eltahir, 1.K., Khalifa, 0.0., 2023. A systematic review on energy efficiency in the
internet of underwater things (IoUT): Recent approaches and research gaps. J. Netw. Comput. Appl. 213,
103594.

[2]. Al .M., Sallam, K.M., Moustafa, N., Chakraborty, R., Ryan, M., Choo, K.-K.R., 2020. An automated task
scheduling model using non-dominated sorting genetic algorithm II for fog-cloud systems. IEEE Trans.
Cloud Comput. 10 (4), 2294-2308.

[3]. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A., 2017. Deep reinforcement learning: A
brief survey. IEEE Signal Process. Mag. 34 (6), 26-38.

[4]. Van den Bergh, F., Engelbrecht, A.P., 2006. A study of particle swarm optimization particle trajectories.
Inform. Sci. 176 (8), 937-971.

[5]. Buyya, R., Srirama, S.N., Mahmud, R., Goudarzi, M., Ismail, L., Kostakos, V., 2023. Quality of service
(QoS)-driven edge computing and smart hospitals: a vision, architectural elements, and future directions. In:
International Conference on Communication, Electronics and Digital Technology. Springer, pp. 1-23.

[6]. Chen, W., Qiu, X,, Cai, T., Dai, H.-N., Zheng, Z., Zhang, Y., 2021. Deep reinforcement learning for internet
of things: A comprehensive survey. IEEE Commun. Surv. Tutor. 23 (3), 1659—-1692.

[7]. Deb, K., Jain, H., 2013. An evolutionary many-objective optimization algorithm using reference-point-based
nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18
4), 577-601.

[8]. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans. Evol. Comput. 6 (2), 182—-197.

Copyright to IJARSCT 478

EL b E| DOI: 10.48175/IJARSCT-30062
www.ijarsct.co.in -y

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

(/ | IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology l\
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025 Impact Factor: 7.67

[9]. Deng, Q., Goudarzi, M., Buyya, R., 2021. Fogbus2: a lightweight and distributed container-based framework
for integration of iot-enabled systems with edge and cloud computing. In: Proceedings of the International
Workshop on Big Data in Emergent Distributed Environments. pp. 1-8.

[10]. Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T.,
Dunning, 1., et al., 2018. Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. In: Proceedings of the International Conference on Machine Learning. PMLR, pp. 1407-1416.

[11]. Ghosh, S., Mukherjee, A., Ghosh, S.K., Buyya, R., 2019. Mobi-iost: mobility-aware cloud-fog-edge-iot
collaborative framework for time-critical applications. IEEE Trans. Netw. Sci. Eng. 7 (4), 2271-2285.

Copyright to IJARSCT
www.ijarsct.co.in

479

7 1ssN W)
| 2581-9429 |}

[m] 353 =] DOI: 10.48175/IJARSCT-30062

&\ IJARSCT ¥
Q

