

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

r 2025 Impact Factor: 7.67

Volume 5, Issue 5, November 2025

Power Converters for Three Phase Electric Locomotives

Dr. H. Suresh, D. B. Abhishek, Rahul Chidanand Kumbar, Shivani, Devika. M. R

Associate Professor, EEE Department Students, EEE Department Bangalore Institute of Technology, Bengaluru, India.

Abstract: Modern electric locomotives rely on robust and efficient power conversion stages to supply regulated energy to their auxiliary subsystems. These auxiliary loads—such as cooling pumps, compressors, blowers, and control equipment—demand a stable and high-quality three-phase supply, even when the locomotive operates under varying electrical and mechanical conditions. This paper presents a simulation based study of auxiliary converter design for a standard 6000 HP electric locomotive. The proposed model converts the single-phase high-voltage AC obtained from the overhead traction line into a regulated DC output using a closed-loop rectifier, followed by a DC–AC inverter stage that generates a balanced three-phase 50 Hz supply. The complete system is implemented and analyzed in MATLAB/Simulink, enabling detailed observation of converter behaviour, switching performance, and output waveform quality. Simulation results demonstrate effective voltage regulation, reduced harmonic distortion using SPWM control, and reliable operation suitable for traction auxiliary applications. The study high lights that simulation provides a powerful platform for validating converter performance prior to hardware integration, ultimately improving efficiency, reliability, and maintainability in electric locomotive systems.

Keywords: Auxiliary converters, electric locomotives, AC–DCrectifier, DC–AC inverter, sinusoidal pulse width modulation (SPWM), voltage regulation, three-phase power con version, traction systems.

I. INTRODUCTION

Electric locomotives have emerged as a vital component of modern railway transportation due to their superior efficiency, reduced emissions, and enhanced reliability when compared to conventional diesel locomotives. Their operation depends not only on traction drive systems but also on a wide range of auxiliary loads such as cooling fans, compressors, blowers, pumps, and control circuitry. These auxiliary subsystems ensure thermal stability, proper ventilation, and seamless functioning of critical equipment within the locomotive. As the overall performance of a locomotive significantly depends on the quality and reliability of power supplied to these auxiliary loads, the design of an efficient auxiliary converter system becomes essential.

Electric locomotives draw high-voltage single-phase AC power from overhead catenary lines through pantographs. However, this input voltage is often subject to considerable fluctuations caused by variations in line impedance, traction load dynamics, and the operating environment. Therefore, the auxiliary power conversion system must be capable of converting this unstable AC supply into a regulated DC link voltage, followed by the generation of a balanced three-phase AC output required for auxiliary motors and onboard equipment.

Advancements in power electronics have enabled the development of compact, high-efficiency auxiliary converters based on semiconductor devices such as Insulated Gate Bipolar Transistors (IGBTs). These converters typically employ a full-bridge rectifier for AC–DC conversion, a closed-loop voltage regulator to maintain a stable DC link, and a three phase voltage source inverter controlled using Sinusoidal Pulse Width Modulation (SPWM). The SPWM technique provides improved harmonic performance and superior controllability, resulting in high-quality AC waveforms suitable for a wide range of locomotive auxiliary applications.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 5, November 2025

Impact Factor: 7.67

Simulation tools such as MATLAB/Simulink provide an effective platform for analyzing these converter systems under varying operating conditions. By modeling the rectifier, DC link control, and inverter stages, engineers can evaluate sys -tem behavior, waveform quality, switching characteristics, and dynamic performance before hardware implementation. This paper presents a comprehensive simulation study of auxiliary converters for three-phase electric locomotives, emphasizing robust AC–DC–AC conversion, voltage stability, and suitability for real-time locomotive requirements.

II. SIGNIFICANCE OF THE SYSTEM

The proposed system plays a crucial role in ensuring reliable auxiliary power supply for three-phase electric locomotives, where uninterrupted operation of cooling pumps, blowers, compressors, lighting circuits, battery chargers, and control electronics is essential for safe and efficient locomotive performance. Since the overhead single-phase AC drawn from the catenary is highly susceptible to variations due to load changes, traction disturbances, and network impedance, the need for a robust and stable auxiliary power conversion system becomes fundamental.

This work highlights the importance of maintaining a constant and regulated DC-link voltage, which directly affects the quality of the three-phase output used to feed auxiliary equipment. By implementing closed-loop voltage regulation and a reliable conversion architecture, the system enhances the stability, efficiency, and lifespan of locomotive subsystems. The significance further extends to its contribution in improving power quality, minimizing harmonics, and reducing stresses on auxiliary motors, thereby lowering maintenance requirements and operational downtime. Through MATLAB/Simulink-based modelling, the system's performance under real-time variations can be predicted accurately, enabling safer design decisions and preventing costly trial-and-error in hardware.

III. LITERATURE SURVEY

Several prior studies have investigated modelling, control strategies and simulation techniques for auxiliary power converters used in electric traction systems. An article in *Asian Journal of Convergence in Technology* presents a MATLAB/Simulink simulation of auxiliary converters for 6000 HP locomotives; it proposes a two-stage AC–DC (closed-loop rectifier) and DC–AC (SPWM inverter) architecture to maintain a 700 V DC link and synthesize a 415 V, 50 Hz three-phase output despite 10–15% input fluctuations. The study demonstrates the utility of closed-loop regulation and SPWM in reducing ripple and improving waveform quality.

A proceedings paper from the 2016 IEEE/SICE International Symposium on System Integration models voltage unbalance in AC railway systems and uses the Voltage Unbalance Factor (VUF) to quantify three-phase distortion in substations. That work highlights how asymmetric loading and multi-train operation affect system voltages and the importance of accurate simulation for system planning and protection design.

Research published in the *International Journal for Technological Research in Engineering* (2015) evaluates SPWM-based three-phase inverters, comparing THD with and without output filters and demonstrating that filtered SPWM outputs significantly reduce harmonic content. The paper also applies SPWM inverter control to V/f speed regulation of induction motors and reports satisfactory THD and dynamic performance in simulation and prototype tests.

Other surveyed works emphasize device- and control-level improvements: studies report advantages of IGBT-based inverters for high-power traction due to low on-state losses and good switching performance, while reviewers recommend advanced modulation strategies (e.g., SVPWM) and wide-bandgap devices (SiC/GaN) to reduce switching losses and improve thermal performance. Several papers also underline the benefit of Hardware-in-the-Loop (HIL) and real-time validation for verifying control algorithms under realistic transients.

Collectively, these studies justify the two-stage AC-DC-AC architecture used in this project, the choice of SPWM for initial implementation (with SVPWM as a recommended upgrade), and the emphasis on MATLAB/Simulink as an efficient platform for waveform, THD and VUF analysis prior to hardware implementation. The surveyed literature also motivates future work on advanced modulation, SiC/GaN devices, and real-time HIL validation to raise efficiency and reliability in locomotive auxiliary systems.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 5, November 2025

Impact Factor: 7.67

IV. SYSTEM DESIGN AND METHODOLOGY

The proposed Auxiliary Power Conversion System for Three-Phase Electric Locomotives is designed to deliver stable and regulated power to all non-traction loads of the loco motive. These loads include cooling pumps, radiator blowers, compressors, lighting circuits, and control electronics. The primary goal of the system is to convert the fluctuating single-phase AC supply obtained from the overhead catenary into a controlled and balanced three-phase AC output suitable for auxiliary equipment. The overall design integrates rectification, DC voltage stabilization, and SPWM-based inverter stages within a compact and efficient power electronic architecture.

A) Overall System Description

The auxiliary converter consists of three major subsystems:

- a single-phase full-bridge rectifier for AC/DC conversion
- a closed-loop DC voltage regulation stage
- a three-phase voltage source inverter (VSI) controlled using Sinusoidal Pulse Width Modulation (SPWM).

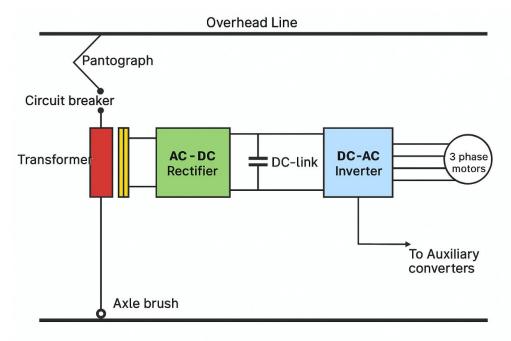


Fig1.Block Diagram of the Auxiliary Converter System in Electric Locomotives

The single-phase 1000 V AC obtained from the locomotive transformer is first passed through the rectifier, which gener-ates an unregulated DC voltage. Due to the inherent fluctuations in overhead supply (10–15% variation), a closed-loop voltage controller stabilizes the DC link to maintain a constant 700 V DC output. This regulated DC feeds the three-phase inverter, which synthesizes a balanced 415 V AC output using IGBT-based switching devices and SPWM control.

The inverter output powers various auxiliary loads such as traction motor cooling fans, compressor motors, and control electronics. The use of IGBTs ensures high switching efficiency, low conduction losses, and reliable operation under variable loading conditions.

B) Design Methodology

A systematic design methodology was followed to ensure the reliability, robustness, and efficiency of the converter system. The major design stages are outlined below:

1. Input Requirement Analysis: A detailed study of locomotive auxiliary load requirements, including blower ratings, pump specifications, and control power needs, was performed. The analysis identified the requirement for a stable 415 V three-phase output derived from fluctuating overhead AC inputs.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

SULTANA CONTRACTOR OF THE SULTANA CONTRACTOR CONTRACTOR

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 5, November 2025

Impact Factor: 7.67

- **2. Rectifier and Controller Selection:** A full-bridge rectifier topology was selected for its high efficiency and ability to utilize both halves of the AC waveform. A feedback-based closed-loop controller was incorporated to regulate the DC link voltage at 700 V under supply variations and load disturbances.
- **3. Inverter Design and Switching Strategy:** A three phase VSI using IGBT switches was implemented. SPWM was chosen due to its low harmonic distortion and ease of controlling magnitude and frequency. A sinusoidal reference was compared with a high-frequency triangular carrier to generate gate pulses.
- **4. Simulation and Waveform Analysis:** MAT LAB/Simulink was used to model each subsystem. Voltage, current waveforms, THD levels, and switching transitions were analyzed to verify steady-state and transient performance.

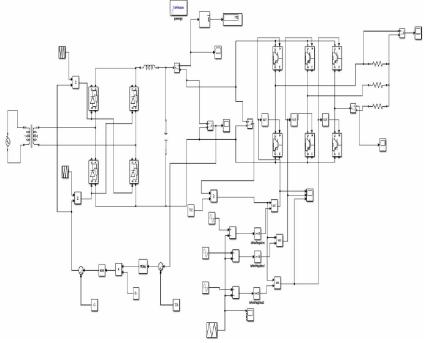


Fig 2: Simulink Model of the Auxiliary Converter System

- **5. TransformerInterface and Load Integration:** The inverter output was connected to a transformer subsystem to step down or isolate the auxiliary loads. Load behavior, such as starting torque of motors and transient currents, was evaluated. Figure 2: Simulink Model of the Auxiliary Converter System.
- **6. Regulation and Protection:** Over-voltage, under voltage, and overcurrent protections were integrated using feedback sensors and gating logic. IGBT thermal characteristics and safe operating area (SOA) were considered during design.
- **7. Result Validation:** The DC link voltage stability, SPWM gating pattern, rectifier ripple characteristics, and final three-phase AC generation were validated under different input conditions.
- **8.Performance Considerations:** The total auxiliary power requirement (Paux) is expressed as:

$$P_{\text{aux}} = P_{\text{cooling}} + P_{\text{compressor}} + P_{\text{control}} + P_{\text{misc}}$$

Where each term represents the contribution of individual subsystems such as cooling pumps, blowers, control electron -ics, and other auxiliary loads. The converter maintains a constant 700 V DC link with less than 3% ripple and produces a stable 415 V three-phase AC output with low harmonic distortion using SPWM.

9. Advantages: The auxiliary converter system offers the following advantages:

High efficiency due to IGBT-based switching.

Stable output despite overhead line fluctuations.

Lowharmonic distortion using SPWM control.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 5, November 2025

Compact design with reduced maintenance.

Reliable performance for all locomotive auxiliary loads.

10. Summary of Key Technical Points:

Table 1: Key Technical Parameters of the Auxiliary Converter System

Parameter	Value / Description
Input AC Voltage	1000 V single-phase
DC Link Voltage	700 V regulated
Inverter Output	415 V, three-phase, 50 Hz
Switching Device	IGBT
Control Strategy	Sinusoidal PWM
Voltage Variation Han-	10–15% input fluctuation
dling	
Simulation Tool	MATLAB/Simulink
Rectifier Type	Full-Bridge Diode Rectifier

V. EXPERIMENTAL RESULTS AND DISCUSSION

Rectifier Output: The single-phase AC input is converted into an unregulated DCvoltage using a full-bridge rectifier. The simulated output (Fig. 3) exhibits a pulsating DC waveform with the expected ripple profile. This confirms proper diode conduction and correct AC–DC conversion behaviour.

Aclosed-loop controller was employed to stabilize the DC link voltage despite input fluctuations. The simulation results show that the DC link remains regulated at approximately 700 V with a ripple factor below 3%. This stable DC voltage ensures reliable inverter performance and continuous supply to the auxiliary loads.

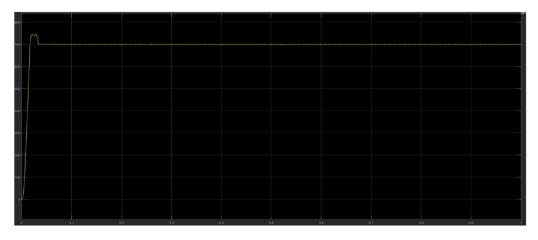


Fig 3: Rectifier Output Waveform

Inverter Output Characteristics: The SPWM-based voltage source inverter converts the regulated DC voltage into a balanced three-phase AC output. The waveform in Fig. 4 shows clear 120° phase displacement and sinusoidal envelope, validating the effectiveness of the SPWM strategy. Harmonics introduced due to switching action remain within acceptable limits for auxiliary motor operation.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 5, November 2025

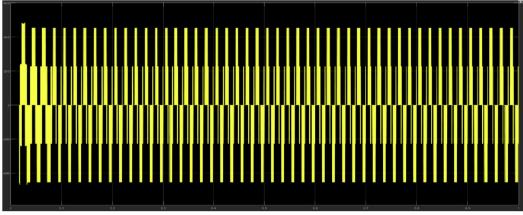


Fig 4:Inverter Output Waveform

Transformer Output: The inverter output is fed to a transformer for isolation and appropriate voltage conditioning. The waveform shown in Fig. 5 demonstrates that the transformer output maintains phase integrity and produces a clean sinusoidal waveform suit able for locomotive auxiliary equipment.

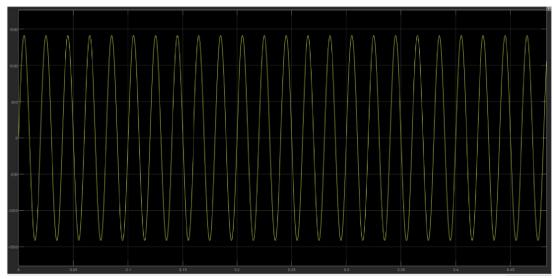


Fig 5:Transformer Output Waveform

SPWMGatingPattern: The PWMgatepulsepattern (Fig. 6) illustrates the comparison between the sinusoidal modulating signal and the high frequency triangular carrier. The uniform pulse distribution confirms proper switching of IGBT devices and stable modulation index selection.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 5, November 2025

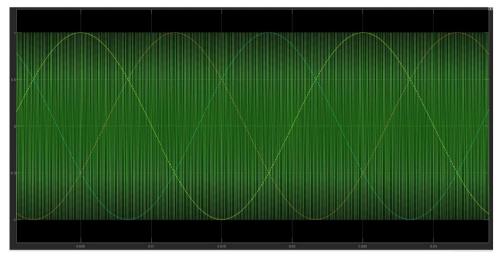


Fig 6: SPWM Gating Pattern

Overall System Performance: The overall performance analysis of the auxiliary converter system highlights the following key points:

Reliable AC-DC-AC conversion with efficient rectifier and inverter stages.

Stable 700 V DC-link voltage maintained under input variations.

Balanced 415 V, 50 Hz three-phase AC output suitable for cooling fans, pumps, and compressor motors.

Low harmonic distortion due to SPWM-based modulation.

Consistent operation under fluctuating supply conditions typical in locomotive environments.

The simulation results validate that the designed converter system meets the voltage, waveform quality, and reliability requirements essential for auxiliary loads in modern electric locomotives.

VI. CONCLUSION AND FUTURE WORK

Conclusion

The auxiliary power converter for three-phase electric loco motives was successfully modeled and analyzed using MAT LAB/Simulink. The simulation results confirm that the proposed AC–DC–AC conversion architecture, consisting of a full-bridge rectifier, regulated DC-link stage, and SPWM based inverter, provides stable and high-quality electrical power to locomotive auxiliary systems. The rectifier output exhibits the expected pulsating DC characteristics, while the closed-loop DC-link controller maintains a regulated voltage of approximately 700 V under varying input and load conditions. The inverter generates a balanced three-phase 415 V, 50 Hz output with low harmonic distortion, demonstrating the effectiveness of the SPWM control. Overall, the system meets the operational requirements for auxiliary loads such as cooling fans, compressors, pumps, and control equipment in mod ern electric locomotives.

Future Work

Although the proposed system performs efficiently, several enhancements can be incorporated in future work. Advanced modulation strategies such as Space Vector Pulse Width Modulation (SVPWM) may be implemented to improve harmonic performance and inverter efficiency. The use of Wide Bandgap semiconductor devices like SiC and GaN can further reduce switching losses and thermal stress. Real-time validation through Hardware-in-the-Loop (HIL) testing can provide deeper insights into control behaviour under dynamic locomotive conditions. Integration of predictive maintenance, fault tolerant control techniques, and intelligent monitoring systems can significantly enhance reliability. Future research may also explore renewable energy-assisted auxiliary systems or on board energy storage to improve efficiency and sustainability in upcoming locomotive technologies.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 5, November 2025

REFERENCES

- [1]. S. Kumar and R. Gupta, "Design and analysis of auxiliary power converters for electric locomotives," International Journal of Power Electronics and Drive Systems, vol. 12, no. 3, pp. 1558–1566, 2021.
- [2]. B. Singh and V. Bist, "Power quality improvement in railway traction systems using modern converter topologies," IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3793–3803, May 2019.
- [3]. M. P. Kazmierkowski and H. Tunia, Automatic Control of Converter-Fed Drives. Elsevier, 2012.
- [4]. P. Vas, Vector Control of AC Machines. Oxford University Press, 1990.
- [5]. Ghosh and G. Ledwich, Power Quality Enhancement Using Custom Power Devices. Springer, 2002.
- [6]. S. R. Dorle and S. N. Thombre, "Modeling and simulation of PWM inverter fed induction motor drive using MATLAB/Simulink," International Journal of Engineering Trends and Technology, vol. 4, no. 5, pp. 1902– 1907, 2013.
- [7]. Indian Railways, Electric Locomotive Maintenance Manual. Govt. of India, 2018.
- [8]. J. Holtz, "Pulsewidth modulation for electronic power conversion," Proceedings of the IEEE, vol. 82, no. 8, pp. 1194-1214, Aug. 1994.
- [9]. H. Akagi, "Modern power electronics for railway traction systems," IEEE Power Electronics Magazine, vol. 3, no. 2, pp. 30-40, 2016

