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Abstract: An extremely common neurodegenerative disease is Parkinson's disease (PD), which impacts
motor functions, with tremor being one of its most debilitating symptoms. Accurate detection and
classification of tremors are crucial for diagnosis, treatment monitoring, and rehabilitation. Traditional
assessment methods—clinical observations and patient self-reports—are subjective, prone to bias, and
lack real-time applicability. To overcome these limitations, this study proposes an intelligent tremor
detection system leveraging wearable sensors and artificial intelligence.

Recorded tremor-related motion signals (accelerometer and gyroscope) were preprocessed and
segmented for extracting time-resolved information. Time- and frequency-based wavelet features were
computed from which both deep learning models and machine learning models were trained. the
TPCNNs and MLP for the comparative analysis networks, novelNameRandom Forest, Support Vector
Machine (SVM), Naive Bayes, ConvolutionalNeural Networks (CNN) and Long Short Term Memory
(LSTM).

The experimental results showed that LSTM obtained the best classification accuracy which was
attributed to its excellent performance in temporal dependency learning for biomedical signals. Random
Forest also performed well with good interpretability, followed by relatively modest CNNs and MLPs.
The conclusions are verified and it can be observed that deep learning-based models such as LSTM can
offer reliable, real-time tremor detection which is eligible for using in wearable healthcare devices.

The proposed system provides a feasible answer to the need for continuous, objective monitoring of
tremor that is between subjective clinical assessments and automatic intelligent systems. It offers hope
for provident medical care over the lifetime, targeted curative treatments and successful remote
healthcare monitoring..

Keywords: Parkinson’s disease, tremor detection, wearable sensors, accelerometer, gyroscope Deep
learning, machine learning, and random Forest, Long Short-Term Memory (LSTM), Convolutional
Neural Network (CNN), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), biomedical
signal processing, healthcare monitoring, [oMT stands for Internet of Medical Things

L. INTRODUCTION

The progressive neurodegenerative condition known as Parkinson's disease (PD) mainly affects motor functions due to
the degeneration of dopamine-producing neurons in the brain. Among the cardinal motor symptoms, tremors are one
among the earliest and most prominent indicators, often serving as a clinical marker for diagnosis. Tremors can
manifest during rest, voluntary movement, or in high-intensity episodes, with varying frequency and amplitude across
patients and disease stages. These involuntary oscillatory movements significantly impair daily living, making their
accurate detection and classification essential for monitoring disease progression and evaluating treatment
effectiveness.

Traditional assessment methods, such as clinical rating scales like the Unified Parkinson’s Disease Rating Scale
(UPDRS), rely heavily on neurologists’ subjective evaluations. Although these techniques offer useful diagnostic
insights, they are inherently limited by observer bias, inter-rater variability, and the inability to capture continuous data
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outside clinical settings. Patient self-reports further add variability, as they are often inconsistent and may fail to reflect
real-time conditions. As a result, conventional approaches are not well-suited for objective, scalable, and continuous
tremor monitoring.

The advent of wearable sensor New opportunities have been brought about by technology. for addressing these
limitations. Modern devices embedded with inertial measurement units, for example, gyroscopes and accelerometers,
can continuously capture high-resolution motion signals in real-world environments. These sensors enable real-time
monitoring of tremors during daily activities, moving beyond the constraints of hospital- based examinations. Such
continuous, non-invasive monitoring holds promise for early intervention, treatment adjustment, and improved quality
of life for patients.

Parallel to advancements in hardware, artificial intelligence (AI)—particularly machine learning and also deep learning
(DL)—has demonstrated remarkable potential in biomedical signal analysis. Classical ML methods such as Support
Vector Machine and Random Forest(SVM), and Naive Bayes, provide robust classification and interpretability. On the
other hand, DL models such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM)
networks excel at capturing complex temporal and spatial dependencies in sequential data. The fusion of wearable
sensors with Al- based classification techniques therefore represents a powerful solution for automated tremor
detection.

This project focuses on building a comprehensive pipeline for tremor classification utilizing information gathered from
wearable devices. The workflow involves preprocessing raw signals through normalization and filtering, followed by
extraction of features from time, frequency, and wavelet domains. Multiple classifiers— ranging from traditional ML
models to advanced DL architectures—are trained and evaluated using robust performance metrics, including accuracy,
precision, recall, Fl-score, confusion matrices, and ROC curves. This ensures the reliability and generalizability of the
proposed system.

The study contributes significantly to both research and clinical practice. From a research standpoint, it demonstrates
methods for signal processing that can be effectively combined with state-of-the-art AI models to address real-world
biomedical challenges. From a clinical perspective, the proposed system offers an automated, objective, and scalable
solution for tremor monitoring, reducing dependence on subjective evaluations and periodic hospital visits. Importantly,
it aligns with the broader vision of personalized healthcare systems that deliver continuous, adaptive, and patient-
centered care.

In the long term, integrating such Al-enabled tremor detection frameworks into wearable and mobile health platforms
could transform Parkinson’s management. Beyond tremor classification, the system can be extended to detect other
motor symptoms such as gait abnormalities and bradykinesia, creating a holistic monitoring ecosystem. Ultimately, this
research bridges the gap between conventional clinical assessments and intelligent, real-time healthcare solutions,
paving the way for predictive analytics, adaptive treatment strategies, and improved patient outcomes.

II. LITERATURE SURVEY

Several studies have explored tremor detection in Parkinson’s disease using wearable sensors and artificial intelligence.
This section summarizes ten significant contributions.

[177. Jorge et al. (2024) investigated the use of centralized versus federated learning for tremor detection from wearable
accelerometer and gyroscope data. Centralized learning aggregated all data into a central repository, while federated
learning enabled distributed training without raw data sharing. The findings indicated that federated learning achieved
accuracy close to data- preserving centralized models privacy. However, federated methods introduced communication
overhead and synchronization difficulties. This study is important for highlighting privacy-preserving Al in healthcare
contexts.

[2] S. Hur et al. (2025) proposed an ensemble learning approach for tremor detection in natural, real-world
environments. By combining decision trees, random forests, and gradient boosting classifiers, the system improved
robustness against noise and variability caused by uncontrolled patient movements. The ensemble models
outperformed individual classifiers in terms of accuracy and precision. Nevertheless, high computational requirements
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limited their direct implementation in wearable devices. This work emphasized the balance between precision and
effectiveness of calculation in clinical applications.

[3] E. Kovalenko et al. (2022) introduced a multimodal framework that integrated wearable sensor signals with video
analysis for Parkinson’s detection. Accelerometer and gyroscope data were paired with computer vision techniques to
assess tremor severity. Multimodal learning yielded higher accuracy compared to unimodal methods. However, the
complexity of synchronizing multimodal data, high computational needs, and privacy concerns related to video
recording were major drawbacks. This research validated that combining modalities enhances diagnostic power.

[4] L. Sigcha et al. (2023) presented a systematic review Numerous applications for deep learning in Parkinson’s
diagnosis using wearable sensors. The review found that CNNs, RNNs, and hybrid models effectively captured
temporal and spatial patterns in tremor signals, achieving high detection accuracy. Key issues identified included small
datasets, risk of overfitting, lack of standardized benchmarks, and limited explainability of models. The study stressed
the need for explainable Al frameworks to ensure clinical trust and adoption.

[51 R. San-Segundo et al. (2020) examined tremor detection in uncontrolled, “in-the-wild” environments using
accelerometer-based wearable devices. Unlike lab- based studies, data were collected during real-life activities, making
the results clinically relevant. Strong performance was shown by machine learning models detection accuracy despite
noisy conditions. However, overlapping voluntary movements and subtle tremor episodes reduced performance. This
study confirmed the feasibility of deploying wearable-based monitoring in naturalistic scenarios.

[6] H. Jeon et al. (2017) developed a system for automatic tremor severity classification using wearable devices. Instead
of binary detection, their framework categorized tremor severity levels aligned with clinical scales. The findings
indicated strong agreement with neurologists’ evaluations, confirming clinical reliability. The approach, however,
struggled with patient-to-patient variability and relied on handcrafted features, limiting scalability compared to modern
deep learning methods.

[71 H. Mughal et al. (2022) conducted a systematic review of Parkinson’s disease management systems based on
wearable sensors. The review highlighted applications across tremor detection, gait monitoring, activity recognition,
and medication response. The integration of Al improved accuracy and efficiency in monitoring systems. However,
limitations such as device battery constraints, heterogeneous datasets, and lack of standardized data collection protocols
hindered widespread adoption. The study recommended multi- sensor integration and standardized frameworks for
future systems.

[8] M. Hammoud et al. (2024) proposed a sensor fusion approach for Parkinson’s assessment by integrating
accelerometer, gyroscope, and physiological signals with machine learning. Both feature-level and decision-level fusion
strategies were employed, leading to improved robustness and accuracy in contrast to single-sensor systems. The
primary challenge was The intricacy of sensor synchronization and integration in real-time systems. This research
demonstrated that multi-sensor fusion is a promising direction for comprehensive disease assessment.

[9] A. Raghu et al. (2021) explored the use of Adaptive deep reinforcement learning tremor detection models. Unlike
static classifiers, reinforcement learning allowed models to adapt dynamically to patient-specific patterns and changing
tremor intensities. Experimental results showed improved personalization and accuracy across diverse patient datasets.
However, training such models required large amounts of data and computational resources. This work highlighted the
potential of adaptive Al in personalized healthcare.

[10] K. Patel et al. (2019) investigated the application of cloud-based wearable monitoring for Parkinson’s tremors.
Accelerometer-derived motion data were transmitted to cloud servers for real-time analysis Using algorithms for
machine learning. The system demonstrated feasibility for continuous, remote monitoring of patients. Key limitations
included dependency on internet connectivity, latency in data transmission, and privacy concerns. In spite of these
obstacles, this research paved the way for integrating wearable-based monitoring with IoT and telemedicine platforms.
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III. METHODOLOGY
1. System Overview
The proposed tremor detection system is designed as an end-to-end framework that processes motion signals from
wearable sensors and classifies them into tremor or non- tremor states. Raw data from accelerometers and gyroscopes
are inherently noisy and non-stationary; therefore, preprocessing techniques such as normalization, band-pass filtering,
and segmentation are applied to improve signal quality. Features are then extracted from time, frequency, and wavelet
domains to capture statistical, spectral, and temporal properties of tremor episodes. These features provide a compact
and discriminative representation of patient movement patterns suitable for classification.
The classification layer employs both ML and DL models to ensure accuracy and adaptability. Classical ML algorithms
such as Support Vector Machine and Random Forest and Naive Bayes offer robustness and interpretability, while
advanced DL architectures— including Convolutional Neural Networks (CNN), Long Short-Term Memory networks,
and Multi-Layer Perceptrons(MLP)—Iearn complex temporal dependencies directly from the data. Model performance
is validated using accuracy, precision, recall, F1-score, confusion matrices, and ROC curves, ensuring reliability for
both binary and multi-class settings. The modular design allows pretrained models to be deployed on mobile or cloud
platforms, enabling real-time, continuous tremor monitoring and bridging the gap between subjective clinical
assessment and intelligent healthcare solutions.
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2. Dataset Preparation
The dataset utilized in this investigation consists of tremor-related motion signals recorded from gyroscopes and
accelerometers in wearable technology. Each subject’s recording contained 4097 data points, equivalent to
approximately 23.6 seconds of continuous activity, which were separated into 23 smaller segments.

This segmentation enabled a more granular examination of the temporal characteristics of tremor patterns. The dataset
captured different activity states, including rest tremor, tremor during voluntary movement, and non- tremor states,
thereby providing sufficient variability for both binary and multi-class classification tasks.

To prepare the raw signals for analysis, a series of preprocessing steps were implemented. First, z-score normalization
was applied to standardize the data, ensuring that variations in signal magnitude across different recordings did not bias
the models. Next, a Butterworth band-pass filter with a frequency range of 0.5-30 Hz was used to remove noise and
retain the frequency components relevant to tremor detection. The filtered signals were then segmented into 1-second
frames, each containing 178 data points. This windowing strategy preserved essential temporal information while
reducing computational complexity, making the data more manageable for feature extraction and also classification.
Two complementary approaches were adopted to represent the preprocessed dataset. In the first approach, handcrafted
features were extracted from multiple domains, including time-domain measures (mean, variance, skewness, kurtosis),
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frequency-domain features (power spectral density using Welch’s method), and wavelet coefficients (energy at different
decomposition levels). These features provided interpretable characteristics of tremor and non-tremor states. In the
second approach, deep learning models were trained directly on the normalized sequences, allowing the networks to
automatically learn complex temporal dependencies. By combining handcrafted and raw- sequence representations, the
system ensured comprehensive coverage of tremor dynamics, improving the resilience and applicability of the
classification models.

3. Model Architectures

The proposed system employs a hybrid approach that integrates both traditional algorithms for machine learning and
modern deep learning architectures for tremor classification. Classical ML models provide robust and interpretable
baselines, while deep learning models exploit their ability to capture complex temporal and spatial dependencies
directly from raw sequences. This dual strategy ensures a balance between accuracy, interpretability, and computational
feasibility, making the system suitable for the both research and potential real- world deployment.

Among the classical models, Random Forest, Support Vector Machine (SVM), and Naive Bayes (NB) were
implemented. Random Forest constructs a group of decision trees to achieve high classification accuracy and reduce
overfitting, and in this examine, it achieved approximately 96% accuracy with balanced performance across tremor and
non-tremor states. SVM, particularly with the radial basis function (RBF) kernel, effectively separated tremor and non-
tremor data in high- dimensional space, reaching around 90% accuracy. Naive Bayes, though achieving slightly lower
accuracy (~87%), provided computational efficiency and demonstrated suitability for rapid inference on resource-
constrained devices. These models established reliable benchmarks and offered high interpretability, which is valuable
for clinical applications.

For deep learning, three architectures were developed: Convolutional Neural Networks (CNN), Long Short- Term
Memory (LSTM) networks, and Multi-Layer Perceptrons (MLP). CNNs, implemented as one- dimensional models,
extracted local spatial patterns from sequential sensor data, achieving the accuracy of 88%. LSTM networks, designed
to capture long-term temporal dependencies in sequential biomedical signals, outperformed all other models with a
classification accuracy of 96%, highlighting their suitability for tremor detection. MLPs, with fully connected layers
and dropout for regularization, reached ~93% accuracy, offering a strong trade-off between computational performance
and cost. These designs collectively illustrated the relative advantages of deep learning and machine learning.
approaches, confirming that LSTM-based models are best suited for real-time tremor monitoring while classical models
remain valuable for interpretable and efficient clinical decision support.

4. Training Procedure

The training phase began with the preparation of input data through preprocessing and segmentation. After
normalization and filtering, the continuous sensor signals were divided into overlapping windows of 178 points each,
representing approximately 1-second intervals. For machine learning models, handcrafted features extracted from time,
frequency, and wavelet domains were used as input. For deep learning models, normalized raw sequences were fed
directly into the architectures, enabling automatic feature learning. Training and testing sets were created from the
dataset in an 80:20 ratio, and cross-validation was hired to ensure generalization and prevent model bias.

Machine learning models, including Random Forest, Support Vector Machine, and Naive Bayes, were trained using
scikit-learn implementations. Hyperparameters like the quantity of estimators for Random Forest, kernel choice for
SVM, and smoothing parameters for Naive Bayes were tuned using grid search optimization. Deep learning models
were developed using TensorFlow and Keras libraries. CNN architectures employed one- dimensional convolutional
and pooling layers to capture local patterns, while MLPs used multiple dense layers with dropout regularization. LSTM
models incorporated gated recurrent units designed to learn long-term dependencies in sequential information, which
makes them especially well-suited for tremor analysis.

The training process employed categorical cross-entropy loss for multi-class classification tasks and binary cross-
entropy for binary detection. Optimization was carried out utilizing the Adam optimizer with an adaptive learning rate,

while early stopping and dropout were applied to reduce overfitting. Training was performed over multiple epochs, with
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mini-batch processing to balance efficiency and convergence stability. Performance metrics— encompassing recall,
accuracy, and precision,F1-score, confusion matrices, and ROC-AUC—were calculated on the examine set to evaluate
model effectiveness. Among all models, LSTM consistently outperformed others with regard to accuracy and
generalization, validating its appropriateness for real-time, wearable-based tremor detection.

5. Evaluation Metrics

To evaluate the efficacy of the proposed tremor detection system, multiple evaluation metrics were employed. Since the
dataset involved both binary classification (tremor vs. non-tremor) and multi-class classification (rest tremor,
movement tremor, high-intensity tremor, and non-tremor states), a diverse set of performance indicators was necessary
to capture model reliability. Accuracy was the main measure employed, expressing the overall percentage of accurately
classified examples. It’s not enough to rely on accuracy, if classes are imbalanced it may be misleading: you need some
other metrics as well.

F1-score, recall and precision were also introduced to interpret the classification better. Recall measured the level of all
predicted tremors which were labeled correctly as having them, meaning not including false negatives. Remembering
identified the models’ capability to properly identify actual tremor events, preventing fault negatives which is crucial in
healthcare applications as missing a tremor event can influence medical results. The F1-score, which is the harmonic
mean of precision and recall, weights these two metrics equally and yielded a single strong measure for messenger
evaluation.

Furthermore, confusion matrices were implemented to illustrate the classification results among all classes, which help
reveal certain misclassification patterns such as mistaken voluntary movement for tremor. The corresponding Area
Under the Curve (AUC) and Receiver Operating Characteristic (ROC) curves were also used to assess sensitivity-
specificity trade-off at different threshold values. Many users found these methods useful to compare classifiers without
subjective bias. Together, these measurements allowed the complete analysis of not just the accuracy of the models but
also their clinical applicability and robustness in practice.

6. Deployment Framework

The proposed tremor detection system is designed with a modular deployment framework that ensures adaptability to
both clinical and home-based environments. The pipeline begins with wearable sensors, like gyroscopes and
accelerometers, which continuously capture motion data during patients’ daily activities. These sensors transmit the raw
signals to a processing unit, which may be a smartphone, edge device, or cloud server, depending on the application
context. By supporting multiple data transmission protocols, including Bluetooth and Wi-Fi, the framework ensures
real-time monitoring while maintaining patient mobility and convenience.

At the processing layer, the deployed models operate in two configurations: lightweight machine learning algorithms
for edge deployment and resource-constrained devices, and advanced deep learning models for cloud or high-
performance platforms. Classical models such as Random Forest and Naive Bayes provide fast inference with minimal
resource requirements, making them suitable for integration into wearable devices or mobile applications. In contrast,
LSTM and CNN architectures, while computationally heavier, are deployed on cloud platforms or optimized using
quantization and pruning techniques to reduce latency and energy consumption. This hybrid strategy ensures scalability
and supports different deployment scenarios depending on hardware capabilities and clinical needs.

The output layer provides actionable insights through user-friendly interfaces. Patients can access feedback via
smartphone applications, which display tremor intensity, frequency, and progression trends. Clinicians, on the other
hand, can review comprehensive dashboards integrating longitudinal patient data for treatment planning. The
framework also supports secure cloud storage and integration with healthcare information systems, enabling
telemedicine consultations and remote monitoring. By combining real-time detection with long- term data analytics, the
deployment framework bridges the gap between laboratory research and practical clinical application, ultimately
enhancing patient quality of life and supporting personalized treatment strategies.
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IV. RESULTS AND DISUSSIONS:
1. Quantitative Results
The effectiveness of the suggested system was evaluated using multiple Deep learning and machine learning models
trained on tremor and non-tremor data. Among the classical Random Forest, one of the machine learning models,
obtained the best accuracy of approximately 96%, demonstrating strong robustness and balanced classification across
classes. Support Vector Machine obtained a precision of around 90%, effectively distinguishing between tremor and
non-tremor states but showing sensitivity to parameter tuning. Naive Bayes, while computationally efficient, reached
87% accuracy, indicating its suitability for lightweight deployment but with trade-offs in precision and recall compared
to ensemble methods.
In the deep learning category, Convolutional Neural Networks achieved a precision of nearly 88%, capturing local
spatial dependencies in the sequential data but occasionally misclassifying voluntary movement as tremor. Multi-Layer
Perceptrons (MLP) performed better, reaching 93% accuracy, benefiting from fully connected architectures and
dropout-based regularization. The highest-performing model was Long Short-Term Memory networks, which attained
96% accuracy and demonstrated superior Capacity to simulate temporal relationships inherent in tremor signals. These
results confirmed that recurrent architectures for deep learning are particularly well-suited for sequential biomedical
data.
Beyond accuracy, other performance metrics reinforced these findings. Random Forest and The highest precision and
recall were attained with LSTM with Fl-scores above 0.95, indicating both models’ reliability in correctly detecting
tremor episodes while minimizing false positives and false negatives. ROC curves showed that both models achieved
an AUC close to 0.98, highlighting their strong discriminative capability. In contrast, CNN and Naive Bayes, though
effective, exhibited slightly lower recall values, suggesting occasional under- detection of tremors. These quantitative
results validate The efficiency of the suggested methodology and emphasize LSTM and Random Forest as the most
promising candidates for real-world deployment.

2. Qualitative Analysis

Beyond numerical performance, qualitative analysis provides important information about the system’s behavior and its
applicability in actual situations. Visual analysis of the tremor-obtained signals at each step (segmentation and filtering)
evidenced that they succeed in keeping tremorspecific oscillations while discarding unwanted noise and irrelevant
components. The features extracted in frequency domain correspond to the clinically established tremor frequency
range of Parkinson’s disease (typically between 4 and 6 Hz), thus demonstrating clinical meaningfulness of the signal
processing course. Wavelet decompositions also indicated that there were focal bursts of tremor, particularly helpful for
distinguishing rest from voluntary movement times.

The confusion matrix also offered qualitative information on model strengths and weaknesses. Random Forest and
LSTM always decreased the number of misclassifications for all the types, whereas CNN still occasionally confused
voluntary activity with tremor, whenever the movement signal shared its frequency components. This finding may be
considered representative of the natural challenge for distinction of fine motor in real-world environments. But, even
so, the models created are indeed bona fide probability distributions that adequately capture their uncertain belief about
predictions — information which might be valuable to clinicians in deciding how to judge borderline cases.

It might appear that in certain cases the values of confusion matrix could also provide qualitative judgment about the
strengths and weaknesses of a model. RF and LSTM also decreased numbers of all kinds for misclassifications while
CNN sometimes mistook voluntary action by tremor, especially in the event that motion frequency signal was common.
This finding might be regarded as an illustration of the difficulty to discriminate small motor actions in ecological
environments. But the models in such cases were still valid probability distributions which represented uncertainty
about predictions that would be useful to a clinician trying to make borderline decisions.

3. Comparative Discussion
The comparative evaluation of machine learning and deep learning (DL) models revealed distinct strengths and trade-
offs that guide their suitability for tremor detection. Classical ML models, particularly Random Forest, demonstrated
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high accuracy (~96%) while maintaining interpretability and computational efficiency. These characteristics make ML
models attractive for deployment in low-power devices such as smartphones and embedded wearable systems. In
contrast, Naive Bayes, while less accurate (~87%), offered extremely fast inference and minimal resource consumption,
underscoring has potential for use in situations where real-time feedback is prioritized over maximum accuracy.

Deep learning-based models significantly enhanced the ability to capture temporal and spatial dependencies in tremor
signals. The LSTM method was the best performing model, which is roughly equivalent to Random Forests at 96%
accuracy but with better recall and F1-score, especially for multi-class scenario in which the classifications are intricate.
CNNs, while successful in detecting spatial patterns in the signal locally, occasionally could misclassify voluntary
movements since classification was based on time-frequency overlap. Multi-Layer Perceptrons (MLPs) offered a
tradeoff with 93% accuracy and moderate computing requirements. All these results show that deep learning models are
generally better in capturing non-linear dependencies in sequential data, but they have a demand on more samples for
training, huper-parameters tuning and the computational resource comparing with ML models.

From a clinical perspective, plasticity may not affect ML vs DL for device deployment. For resource-constrained, real-
time monitoring devices, Random Forest or SVM models provide reliable and interpretable solutions. For cloud-based
or high-performance platforms supporting continuous monitoring, LSTM networks are superior because of their
capacity to model long-term dependencies in tremor dynamics. Importantly, both approaches complement each other:
ML models offer interpretability essential for clinical trust, while DL models provide state-of-the-art accuracy and
robustness. Thus, a hybrid strategy—deploying ML at the edge for immediate feedback and DL in the cloud for
comprehensive analysis—presents the most practical pathway toward real-world adoption of tremor detection systems.

V. CONCLUSION.
Parkinson’s disease continues to be among the most prevalent neurodegenerative disorders, with tremor as one of its
earliest and most disabling symptoms. Traditional diagnostic and monitoring techniques, while clinically valuable, are
limited by subjectivity, infrequent evaluations, and lack of continuous data collection. The need for the objective,
scalable, and real-time monitoring has therefore driven the advancement of wearable sensor- based systems coupled
with artificial intelligence. This study contributes to that growing body of work by designing and evaluating an
intelligent tremor detection framework capable of robust classification across multiple tremor states.
This system permits automatic SEMG signal analysis and can be applied in either clinical or home environment context,
since it integrates a modular pipeline performing signal pre-processing, feature extraction and classification. Wearable
sensors such as gyroscopes and accelerometers could monitor motion signals in time domain continuously, which were
later denoised, normalizedand segmented. Three types of feature representations (i.e. time, frequency and wavelet
domains) are adopted to learn convolutional models that replicate tremor features. This preprocessing was important for
enhancing signal and minimizing noise, which in turn allowed classification to be calculated.
Machine learning versus deep learning models was the focus of study. Among the machine learning methods, Random
Forest captured most efficiently the accuracy and interpretability trade-off.
Support Vector Machine and Naive Bayes also showed good results, the latter being particularly attractive for low
power solutions. 100 In contrast, deep learning architectures provided more latent capacity. For all the LSTM based
models, they were far superior to all other methods by being able to model long distance dependency sequence for
biomedical data. CNNs and MLPs also achieved strong performance, indicating that deep learning could be a very
feasible way to detect tremor.
The precision, accuracy, recall, F1-score and ROC-AUC measures of system performance supported the efficiency and
robustness of this work.
LSTM and Random Forest both achieved accuracies above 95%, with LSTM excelling in multi-class classification
tasks. Finally, confusion-matrix analyses indicated that these models minimized the misclassifications between tremor
and voluntary movements, which is essential for the application in real environments. These results validate the
approach and launch a wearables plus Al approach for clinical decision making.
The study also noted trade-offs between accuracy and interpretability. The machine learning models came with

interpretable rationale of decisions to be important for clinician trust and regulation. Whlle deep learning models
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generally perform better, they hardly have any features as being black-box systems. This underscores the need for
future work in explainable Al to close the divide between high-performance and clinical interpretability. This is the
kind of thing that will need to happen if Al-enabled healthtech like this ever hopes to be widely adopted and used.

From an implementation perspective in the deployment framework section, we demonstrate how to deploy the system
into mobiles devices, cloud platforms or hybrid environments edge-cloud. Patients may get real-time responses through
smartphone applications, while clinicians could follow long-term developments via secure dashboards. This twofold
functionality not only allows patients to be proactive in managing their condition, but also enables doctors to have
better- informed treatment options. The framework therefore enables the evolution from episodic, clinic-type
assessment to continual tracking of individual healthcare.

In summary, the presented system verifies the possibility and adequacy of intelligent tremor detection method with
wearable sensor and Al. The study decides on a comprehensive solution comprising robust preprocessing, feature
extraction and comparative evaluation of ML and DL models balancing between Accuracy, Interpretability and
Deployment readiness. The results indicate that hybrid approaches utilizing lightweight ML models on- edge devices
and complex DL architectures in the cloud present as the most feasible direction for large-scale integration. Ultimately,
this work contributes to the broader vision of intelligent, patient-centered healthcare systems capable of improving
quality of life for individuals with Parkinson’s disease.
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