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Abstract: An extremely common neurodegenerative disease is Parkinson's disease (PD), which impacts 

motor functions, with tremor being one of its most debilitating symptoms. Accurate detection and 

classification of tremors are crucial for diagnosis, treatment monitoring, and rehabilitation. Traditional 

assessment methods—clinical observations and patient self-reports—are subjective, prone to bias, and 

lack real-time applicability. To overcome these limitations, this study proposes an intelligent tremor 

detection system leveraging wearable sensors and artificial intelligence. 

Recorded tremor-related motion signals (accelerometer and gyroscope) were preprocessed and 

segmented for extracting time-resolved information. Time- and frequency-based wavelet features were 

computed from which both deep learning models and machine learning models were trained. the 

TPCNNs and MLP for the comparative analysis networks, novelNameRandom Forest, Support Vector 

Machine (SVM), Naı̈ve Bayes, ConvolutionalNeural Networks (CNN) and Long Short Term Memory 

(LSTM). 

The experimental results showed that LSTM obtained the best classification accuracy which was 

attributed to its excellent performance in temporal dependency learning for biomedical signals. Random 

Forest also performed well with good interpretability, followed by relatively modest CNNs and MLPs. 

The conclusions are verified and it can be observed that deep learning-based models such as LSTM can 

offer reliable, real-time tremor detection which is eligible for using in wearable healthcare devices. 

The proposed system provides a feasible answer to the need for continuous, objective monitoring of 

tremor that is between subjective clinical assessments and automatic intelligent systems. It offers hope 

for provident medical care over the lifetime, targeted curative treatments and successful remote 

healthcare monitoring.. 

 

Keywords: Parkinson’s disease, tremor detection, wearable sensors, accelerometer, gyroscope Deep 

learning, machine learning, and random Forest,  Long Short-Term Memory (LSTM), Convolutional 

Neural Network (CNN), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), biomedical 

signal processing, healthcare monitoring, IoMT stands for Internet of Medical Things 

 

I. INTRODUCTION 

The progressive neurodegenerative condition known as Parkinson's disease (PD) mainly affects motor functions due to 

the degeneration of dopamine-producing neurons in the brain. Among the cardinal motor symptoms, tremors are one 

among the earliest and most prominent indicators, often serving as a clinical marker for diagnosis. Tremors can 

manifest during rest, voluntary movement, or in high-intensity episodes, with varying frequency and amplitude across 

patients and disease stages. These involuntary oscillatory movements significantly impair daily living, making their 

accurate detection and classification essential for monitoring disease progression and evaluating treatment 

effectiveness. 

Traditional assessment methods, such as clinical rating scales like the Unified Parkinson’s Disease Rating Scale 

(UPDRS), rely heavily on neurologists’ subjective evaluations. Although these techniques offer useful diagnostic 

insights, they are inherently limited by observer bias, inter-rater variability, and the inability to capture continuous data 
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outside clinical settings. Patient self-reports further add variability, as they are often inconsistent and may fail to reflect 

real-time conditions. As a result, conventional approaches are not well-suited for objective, scalable, and continuous 

tremor monitoring. 

The advent of wearable sensor New opportunities have been brought about by technology. for addressing these 

limitations. Modern devices embedded with inertial measurement units, for example, gyroscopes and accelerometers, 

can continuously capture high-resolution motion signals in real-world environments. These sensors enable real-time 

monitoring of tremors during daily activities, moving beyond the constraints of hospital- based examinations. Such 

continuous, non-invasive monitoring holds promise for early intervention, treatment adjustment, and improved quality 

of life for patients. 

Parallel to advancements in hardware, artificial intelligence (AI)—particularly machine learning and also deep learning 

(DL)—has demonstrated remarkable potential in biomedical signal analysis. Classical ML methods such as Support 

Vector Machine and Random Forest(SVM), and Naïve Bayes, provide robust classification and interpretability. On the 

other hand, DL models such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) 

networks excel at capturing complex temporal and spatial dependencies in sequential data. The fusion of wearable 

sensors with AI- based classification techniques therefore represents a powerful solution for automated tremor 

detection. 

This project focuses on building a comprehensive pipeline for tremor classification utilizing information gathered from 

wearable devices. The workflow involves preprocessing raw signals through normalization and filtering, followed by 

extraction of features from time, frequency, and wavelet domains. Multiple classifiers— ranging from traditional ML 

models to advanced DL architectures—are trained and evaluated using robust performance metrics, including accuracy, 

precision, recall, F1-score, confusion matrices, and ROC curves. This ensures the reliability and generalizability of the 

proposed system. 

The study contributes significantly to both research and clinical practice. From a research standpoint, it demonstrates 

methods for signal processing that can be effectively combined with state-of-the-art AI models to address real-world 

biomedical challenges. From a clinical perspective, the proposed system offers an automated, objective, and scalable 

solution for tremor monitoring, reducing dependence on subjective evaluations and periodic hospital visits. Importantly, 

it aligns with the broader vision of personalized healthcare systems that deliver continuous, adaptive, and patient-

centered care. 

In the long term, integrating such AI-enabled tremor detection frameworks into wearable and mobile health platforms 

could transform Parkinson’s management. Beyond tremor classification, the system can be extended to detect other 

motor symptoms such as gait abnormalities and bradykinesia, creating a holistic monitoring ecosystem. Ultimately, this 

research bridges the gap between conventional clinical assessments and intelligent, real-time healthcare solutions, 

paving the way for predictive analytics, adaptive treatment strategies, and improved patient outcomes. 

 

II. LITERATURE SURVEY 

Several studies have explored tremor detection in Parkinson’s disease using wearable sensors and artificial intelligence. 

This section summarizes ten significant contributions. 

[1] J. Jorge et al. (2024) investigated the use of centralized versus federated learning for tremor detection from wearable 

accelerometer and gyroscope data. Centralized learning aggregated all data into a central repository, while federated 

learning enabled distributed training without raw data sharing. The findings indicated that federated learning achieved 

accuracy close to data- preserving centralized models privacy. However, federated methods introduced communication 

overhead and synchronization difficulties. This study is important for highlighting privacy-preserving AI in healthcare 

contexts. 

[2] S. Hur et al. (2025) proposed an ensemble learning approach for tremor detection in natural, real-world 

environments. By combining decision trees, random forests, and gradient boosting classifiers, the system improved 

robustness against noise and variability caused by  uncontrolled  patient  movements.  The  ensemble models 

outperformed individual classifiers in terms of accuracy and precision. Nevertheless, high computational requirements 
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limited their direct implementation in wearable devices. This work emphasized the balance between precision and 

effectiveness of calculation in clinical applications. 

[3] E. Kovalenko et al. (2022) introduced a multimodal framework that integrated wearable sensor signals with video 

analysis for Parkinson’s detection. Accelerometer and gyroscope data were paired with computer vision techniques to 

assess tremor severity. Multimodal learning yielded higher accuracy compared to unimodal methods. However, the 

complexity of synchronizing multimodal data, high computational needs, and privacy concerns related to video 

recording were major drawbacks. This research validated that combining modalities enhances diagnostic power. 

[4] L. Sigcha et al. (2023) presented a systematic review Numerous applications for deep learning in Parkinson’s 

diagnosis using wearable sensors. The review found that CNNs, RNNs, and hybrid models effectively captured 

temporal and spatial patterns in tremor signals, achieving high detection accuracy. Key issues identified included small 

datasets, risk of overfitting, lack of standardized benchmarks, and limited explainability of models. The study stressed 

the need for explainable AI frameworks to ensure clinical trust and adoption. 

[5] R. San-Segundo et al. (2020) examined tremor detection in uncontrolled, “in-the-wild” environments using 

accelerometer-based wearable devices. Unlike lab- based studies, data were collected during real-life activities, making 

the results clinically relevant. Strong performance was shown by machine learning models detection accuracy despite 

noisy conditions. However, overlapping voluntary movements and subtle tremor episodes reduced performance. This 

study confirmed the feasibility of deploying wearable-based monitoring in naturalistic scenarios. 

[6] H. Jeon et al. (2017) developed a system for automatic tremor severity classification using wearable devices. Instead 

of binary detection, their framework categorized tremor severity levels aligned with clinical scales. The findings 

indicated strong agreement with neurologists’ evaluations, confirming clinical reliability. The approach, however, 

struggled with patient-to-patient variability and relied on handcrafted features, limiting scalability compared to modern 

deep learning methods. 

[7] H. Mughal et al. (2022) conducted a systematic review of Parkinson’s disease management systems based on 

wearable sensors. The review highlighted applications across tremor detection, gait monitoring, activity recognition, 

and medication response. The integration of AI improved accuracy and efficiency in monitoring systems. However, 

limitations such as device battery constraints, heterogeneous datasets, and lack of standardized data collection protocols 

hindered widespread adoption. The study recommended multi- sensor integration and standardized frameworks for 

future systems. 

[8] M. Hammoud et al. (2024) proposed a sensor fusion approach for Parkinson’s assessment by integrating 

accelerometer, gyroscope, and physiological signals with machine learning. Both feature-level and decision-level fusion 

strategies were employed, leading to improved robustness and accuracy in contrast to single-sensor systems. The 

primary challenge was The intricacy of sensor synchronization and integration in real-time systems. This research 

demonstrated that multi-sensor fusion is a promising direction for comprehensive disease assessment. 

[9] A. Raghu et al. (2021) explored the use of Adaptive deep reinforcement learning tremor detection models. Unlike 

static classifiers, reinforcement learning allowed models to adapt dynamically to patient-specific patterns and changing 

tremor intensities. Experimental results showed improved personalization and accuracy across diverse patient datasets. 

However, training such models required large amounts of data and computational resources. This work highlighted the 

potential of adaptive AI in personalized healthcare. 

[10] K. Patel et al. (2019) investigated the application of cloud-based wearable monitoring for Parkinson’s tremors. 

Accelerometer-derived motion data were transmitted to cloud servers for real-time analysis Using algorithms for 

machine learning. The system demonstrated feasibility for continuous, remote monitoring of patients. Key limitations 

included dependency on internet connectivity, latency in data transmission, and privacy concerns. In spite of these 

obstacles, this research paved the way for integrating wearable-based monitoring with IoT and telemedicine platforms.  
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III. METHODOLOGY 

1. System Overview 

The proposed tremor detection system is designed as an end-to-end framework that processes motion signals from 

wearable sensors and classifies them into tremor or non- tremor states. Raw data from accelerometers and gyroscopes 

are inherently noisy and non-stationary; therefore, preprocessing techniques such as normalization, band-pass filtering, 

and segmentation are applied to improve signal quality. Features are then extracted from time, frequency, and wavelet 

domains to capture statistical, spectral, and temporal properties of tremor episodes. These features provide a compact 

and discriminative representation of patient movement patterns suitable for classification. 

The classification layer employs both ML and DL models to ensure accuracy and adaptability. Classical ML algorithms 

such as Support Vector Machine and Random Forest and Naïve Bayes offer robustness and interpretability, while 

advanced DL architectures— including Convolutional Neural Networks (CNN), Long Short-Term Memory networks, 

and Multi-Layer Perceptrons(MLP)—learn complex temporal dependencies directly from the data. Model performance 

is validated using accuracy, precision, recall, F1-score, confusion matrices, and ROC curves, ensuring reliability for 

both binary and multi-class settings. The modular design allows pretrained models to be deployed on mobile or cloud 

platforms, enabling real-time, continuous tremor monitoring and bridging the gap between subjective clinical 

assessment and intelligent healthcare solutions. 

 
Fig. 1. Sequence Diagram 

 

2. Dataset Preparation 

The dataset utilized in this investigation consists of tremor-related motion signals recorded from gyroscopes and 

accelerometers in wearable technology. Each subject’s recording contained 4097 data points, equivalent to 

approximately 23.6 seconds of continuous activity, which were separated into 23 smaller segments. 

This segmentation enabled a more granular examination of the temporal characteristics of tremor patterns. The dataset 

captured different activity states, including rest tremor, tremor during voluntary movement, and non- tremor states, 

thereby providing sufficient variability for both binary and multi-class classification tasks. 

To prepare the raw signals for analysis, a series of preprocessing steps were implemented. First, z-score normalization 

was applied to standardize the data, ensuring that variations in signal magnitude across different recordings did not bias 

the models. Next, a Butterworth band-pass filter with a frequency range of 0.5–30 Hz was used to remove noise and 

retain the frequency components relevant to tremor detection. The filtered signals were then segmented into 1-second 

frames, each containing 178 data points. This windowing strategy preserved essential temporal information while 

reducing computational complexity, making the data more manageable for feature extraction and also classification. 

Two complementary approaches were adopted to represent the preprocessed dataset. In the first approach, handcrafted 

features were extracted from multiple domains, including time-domain measures (mean, variance, skewness, kurtosis), 
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frequency-domain features (power spectral density using Welch’s method), and wavelet coefficients (energy at different 

decomposition levels). These features provided interpretable characteristics of tremor and non-tremor states. In the 

second approach, deep learning models were trained directly on the normalized sequences, allowing the networks to 

automatically learn complex temporal dependencies. By combining handcrafted and raw- sequence representations, the 

system ensured comprehensive coverage of tremor dynamics, improving the resilience and applicability of the 

classification models. 

 

3. Model Architectures 

The proposed system employs a hybrid approach that integrates both traditional algorithms for machine learning and 

modern deep learning architectures for tremor classification. Classical ML models provide robust and interpretable 

baselines, while deep learning models exploit their ability to capture complex temporal and spatial dependencies 

directly from raw sequences. This dual strategy ensures a balance between accuracy, interpretability, and computational 

feasibility, making the system suitable for the both research and potential real- world deployment. 

Among the classical models, Random Forest, Support Vector Machine (SVM), and Naïve Bayes (NB) were 

implemented. Random Forest constructs a  group of decision trees to achieve high classification accuracy and reduce 

overfitting, and in this examine, it achieved approximately 96% accuracy with balanced performance across tremor and 

non-tremor states. SVM, particularly with the radial basis function (RBF) kernel, effectively separated tremor and non-

tremor data in high- dimensional space, reaching around 90% accuracy. Naïve Bayes, though achieving slightly lower 

accuracy (~87%), provided computational efficiency and demonstrated suitability for rapid inference on resource-

constrained devices. These models established reliable benchmarks and offered high interpretability, which is valuable 

for clinical applications. 

For deep learning, three architectures were developed: Convolutional Neural Networks (CNN), Long Short- Term 

Memory (LSTM) networks, and Multi-Layer Perceptrons (MLP). CNNs, implemented as one- dimensional models, 

extracted local spatial patterns from sequential sensor data, achieving the accuracy of 88%. LSTM networks, designed 

to capture long-term temporal dependencies in sequential biomedical signals, outperformed all other models with a 

classification accuracy of 96%, highlighting their suitability for tremor detection. MLPs, with fully connected layers 

and dropout for regularization, reached ~93% accuracy, offering a strong trade-off between computational performance 

and cost. These designs collectively illustrated the relative advantages of deep learning and machine learning. 

approaches, confirming that LSTM-based models are best suited for real-time tremor monitoring while classical models 

remain valuable for interpretable and efficient clinical decision support. 

 

4. Training Procedure 

The training phase began with the preparation of input data through preprocessing and segmentation. After 

normalization and filtering, the continuous sensor signals were divided into overlapping windows of 178 points each, 

representing approximately 1-second intervals. For machine learning models, handcrafted features extracted from time, 

frequency, and wavelet domains were used as input. For deep learning models, normalized raw sequences were fed 

directly into the architectures, enabling automatic feature learning. Training and testing sets were created from the 

dataset in an 80:20 ratio, and cross-validation was hired to ensure generalization and prevent model bias. 

Machine learning models, including Random Forest, Support Vector Machine, and Naïve Bayes, were trained using 

scikit-learn implementations. Hyperparameters like the quantity of estimators for Random Forest, kernel choice for 

SVM, and smoothing parameters for Naïve Bayes were tuned using grid search optimization. Deep learning models 

were developed using TensorFlow and Keras libraries. CNN architectures employed one- dimensional convolutional 

and pooling layers to capture local patterns, while MLPs used multiple dense layers with dropout regularization. LSTM 

models incorporated gated recurrent units designed to learn long-term dependencies in sequential information, which 

makes them especially well-suited for tremor analysis. 

The training process employed categorical cross-entropy loss for multi-class classification tasks and binary cross- 

entropy for binary detection. Optimization was carried out utilizing the Adam optimizer with an adaptive learning rate, 

while early stopping and dropout were applied to reduce overfitting. Training was performed over multiple epochs, with 
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mini-batch processing to balance efficiency and convergence stability. Performance metrics— encompassing recall, 

accuracy, and precision,F1-score, confusion matrices, and ROC-AUC—were calculated on the examine set to evaluate 

model effectiveness. Among all models, LSTM consistently outperformed others with regard to accuracy and 

generalization, validating its appropriateness for real-time, wearable-based tremor detection. 

 

5. Evaluation Metrics 

To evaluate the efficacy of the proposed tremor detection system, multiple evaluation metrics were employed. Since the 

dataset involved both binary classification (tremor vs. non-tremor) and multi-class classification (rest tremor, 

movement tremor, high-intensity tremor, and non-tremor states), a diverse set of performance indicators was necessary 

to capture model reliability. Accuracy was the main measure employed, expressing the overall percentage of accurately 

classified examples. It´s not enough to rely on accuracy, if classes are imbalanced it may be misleading: you need some 

other metrics as well. 

F1-score, recall and precision were also introduced to interpret the classification better. Recall measured the level of all 

predicted tremors which were labeled correctly as having them, meaning not including false negatives. Remembering 

identified the models’ capability to properly identify actual tremor events, preventing fault negatives which is crucial in 

healthcare applications as missing a tremor event can influence medical results. The F1-score, which is the harmonic 

mean of precision and recall, weights these two metrics equally and yielded a single strong measure for messenger 

evaluation. 

Furthermore, confusion matrices were implemented to illustrate the classification results among all classes, which help 

reveal certain misclassification patterns such as mistaken voluntary movement for tremor. The corresponding Area 

Under the Curve (AUC) and Receiver Operating Characteristic (ROC) curves were also used to assess sensitivity-

specificity trade-off at different threshold values. Many users found these methods useful to compare classifiers without 

subjective bias. Together, these measurements allowed the complete analysis of not just the accuracy of the models but 

also their clinical applicability and robustness in practice. 

 

6. Deployment Framework 

The proposed tremor detection system is designed with a modular deployment framework that ensures adaptability to 

both clinical and home-based environments. The pipeline begins with wearable sensors, like gyroscopes and 

accelerometers, which continuously capture motion data during patients’ daily activities. These sensors transmit the raw 

signals to a processing unit, which may be a smartphone, edge device, or cloud server, depending on the application 

context. By supporting multiple data transmission protocols, including Bluetooth and Wi-Fi, the framework ensures 

real-time monitoring while maintaining patient mobility and convenience. 

At the processing layer, the deployed models operate in two configurations: lightweight machine learning algorithms 

for edge deployment and resource-constrained devices, and advanced deep learning models for cloud or high-

performance platforms. Classical models such as Random Forest and Naïve Bayes provide fast inference with minimal 

resource requirements, making them suitable for integration into wearable devices or mobile applications. In contrast, 

LSTM and CNN architectures, while computationally heavier, are deployed on cloud platforms or optimized using 

quantization and pruning techniques to reduce latency and energy consumption. This hybrid strategy ensures scalability 

and supports different deployment scenarios depending on hardware capabilities and clinical needs. 

The output layer provides actionable insights through user-friendly interfaces. Patients can access feedback via 

smartphone applications, which display tremor intensity, frequency, and progression trends. Clinicians, on the other 

hand, can review comprehensive dashboards integrating longitudinal patient data for treatment planning. The 

framework also supports secure cloud storage and integration with healthcare information systems, enabling 

telemedicine consultations and remote monitoring. By combining real-time detection with long- term data analytics, the 

deployment framework bridges the gap between laboratory research and practical clinical application, ultimately 

enhancing patient quality of life and supporting personalized treatment strategies. 
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IV. RESULTS AND DISUSSIONS: 

1. Quantitative Results 

The effectiveness of the suggested system was evaluated using multiple Deep learning and machine learning models 

trained on tremor and non-tremor data. Among the classical Random Forest, one of the machine learning models, 

obtained the best accuracy of approximately 96%, demonstrating strong robustness and balanced classification across 

classes. Support Vector Machine obtained a precision of around 90%, effectively distinguishing between tremor and 

non-tremor states but showing sensitivity to parameter tuning. Naïve Bayes, while computationally efficient, reached 

87% accuracy, indicating its suitability for lightweight deployment but with trade-offs in precision and recall compared 

to ensemble methods. 

In the deep learning category, Convolutional Neural Networks achieved a precision of nearly 88%, capturing local 

spatial dependencies in the sequential data but occasionally misclassifying voluntary movement as tremor. Multi-Layer 

Perceptrons (MLP) performed better, reaching 93% accuracy, benefiting from fully connected architectures and 

dropout-based regularization. The highest-performing model was Long Short-Term Memory networks, which attained 

96% accuracy and demonstrated superior Capacity to simulate temporal relationships inherent in tremor signals. These 

results confirmed that recurrent architectures for deep learning are particularly well-suited for sequential biomedical 

data. 

Beyond accuracy, other performance metrics reinforced these findings. Random Forest and The highest precision and 

recall were attained with LSTM with F1-scores above 0.95, indicating both models’ reliability in correctly detecting 

tremor episodes while minimizing false positives and false negatives. ROC curves showed that both models achieved 

an AUC close to 0.98, highlighting their strong discriminative capability. In contrast, CNN and Naïve Bayes, though 

effective, exhibited slightly lower recall values, suggesting occasional under- detection of tremors. These quantitative 

results validate The efficiency of the suggested methodology and emphasize LSTM and Random Forest as the most 

promising candidates for real-world deployment. 

 

2. Qualitative Analysis 

Beyond numerical performance, qualitative analysis provides important information about the system’s behavior and its 

applicability in actual situations. Visual analysis of the tremor-obtained signals at each step (segmentation and filtering) 

evidenced that they succeed in keeping tremorspecific oscillations while discarding unwanted noise and irrelevant 

components. The features extracted in frequency domain correspond to the clinically established tremor frequency 

range of Parkinson’s disease (typically between 4 and 6 Hz), thus demonstrating clinical meaningfulness of the signal 

processing course. Wavelet decompositions also indicated that there were focal bursts of tremor, particularly helpful for 

distinguishing rest from voluntary movement times. 

The confusion matrix also offered qualitative information on model strengths and weaknesses. Random Forest and 

LSTM always decreased the number of misclassifications for all the types, whereas CNN still occasionally confused 

voluntary activity with tremor, whenever the movement signal shared its frequency components. This finding may be 

considered representative of the natural challenge for distinction of fine motor in real-world environments. But, even 

so, the models created are indeed bona fide probability distributions that adequately capture their uncertain belief about 

predictions – information which might be valuable to clinicians in deciding how to judge borderline cases. 

It might appear that in certain cases the values of confusion matrix could also provide qualitative judgment about the 

strengths and weaknesses of a model. RF and LSTM also decreased numbers of all kinds for misclassifications while 

CNN sometimes mistook voluntary action by tremor, especially in the event that motion frequency signal was common. 

This finding might be regarded as an illustration of the difficulty to discriminate small motor actions in ecological 

environments. But the models in such cases were still valid probability distributions which represented uncertainty 

about predictions that would be useful to a clinician trying to make borderline decisions. 

 

3. Comparative Discussion 

The comparative evaluation of machine learning and deep learning (DL) models revealed distinct strengths and trade-

offs that guide their suitability for tremor detection. Classical ML models, particularly Random Forest, demonstrated 
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high accuracy (~96%) while maintaining interpretability and computational efficiency. These characteristics make ML 

models attractive for deployment in low-power devices such as smartphones and embedded wearable systems. In 

contrast, Naïve Bayes, while less accurate (~87%), offered extremely fast inference and minimal resource consumption, 

underscoring has potential for use in situations where real-time feedback is prioritized over maximum accuracy. 

Deep learning-based models significantly enhanced the ability to capture temporal and spatial dependencies in tremor 

signals. The LSTM method was the best performing model, which is roughly equivalent to Random Forests at 96% 

accuracy but with better recall and F1-score, especially for multi-class scenario in which the classifications are intricate. 

CNNs, while successful in detecting spatial patterns in the signal locally, occasionally could misclassify voluntary 

movements since classification was based on time-frequency overlap. Multi-Layer Perceptrons (MLPs) offered a 

tradeoff with 93% accuracy and moderate computing requirements. All these results show that deep learning models are 

generally better in capturing non-linear dependencies in sequential data, but they have a demand on more samples for 

training, huper-parameters tuning and the computational resource comparing with ML models. 

From a clinical perspective, plasticity may not affect ML vs DL for device deployment. For resource-constrained, real-

time monitoring devices, Random Forest or SVM models provide reliable and interpretable solutions. For cloud-based 

or high-performance platforms supporting continuous monitoring, LSTM networks are superior because of their 

capacity to model long-term dependencies in tremor dynamics. Importantly, both approaches complement each other: 

ML models offer interpretability essential for clinical trust, while DL models provide state-of-the-art accuracy and 

robustness. Thus, a hybrid strategy—deploying ML at the edge for immediate feedback and DL in the cloud for 

comprehensive analysis—presents the most practical pathway toward real-world adoption of tremor detection systems. 

 

V. CONCLUSION. 

Parkinson’s disease continues to be among the most prevalent neurodegenerative disorders, with tremor as one of its 

earliest and most disabling symptoms. Traditional diagnostic and monitoring techniques, while clinically valuable, are 

limited by subjectivity, infrequent evaluations, and lack of continuous data collection. The need for the objective, 

scalable, and real-time monitoring has therefore driven the advancement of wearable sensor- based systems coupled 

with artificial intelligence. This study contributes to that growing body of work by designing and evaluating an 

intelligent tremor detection framework capable of robust classification across multiple tremor states. 

This system permits automatic sEMG signal analysis and can be applied in either clinical or home environment context, 

since it integrates a modular pipeline performing signal pre-processing, feature extraction and classification. Wearable 

sensors such as gyroscopes and accelerometers could monitor motion signals in time domain continuously, which were 

later denoised, normalizedand segmented. Three types of feature representations (i.e. time, frequency and wavelet 

domains) are adopted to learn convolutional models that replicate tremor features. This preprocessing was important for 

enhancing signal and minimizing noise, which in turn allowed classification to be calculated. 

Machine learning versus deep learning models was the focus of study. Among the machine learning methods, Random 

Forest captured most efficiently the accuracy and interpretability trade-off. 

Support Vector Machine and Naïve Bayes also showed good results, the latter being particularly attractive for low 

power solutions. 100 In contrast, deep learning architectures provided more latent capacity. For all the LSTM based 

models, they were far superior to all other methods by being able to model long distance dependency sequence for 

biomedical data. CNNs and MLPs also achieved strong performance, indicating that deep learning could be a very 

feasible way to detect tremor. 

The precision, accuracy, recall, F1-score and ROC-AUC measures of system performance supported the efficiency and 

robustness of this work. 

LSTM and Random Forest both achieved accuracies above 95%, with LSTM excelling in multi-class classification 

tasks. Finally, confusion-matrix analyses indicated that these models minimized the misclassifications between tremor 

and voluntary movements, which is essential for the application in real environments. These results validate the 

approach and launch a wearables plus AI approach for clinical decision making. 

The study also noted trade-offs between accuracy and interpretability. The machine learning models came with 

interpretable rationale of decisions to be important for clinician trust and regulation. While deep learning models 
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generally perform better, they hardly have any features as being black-box systems. This underscores the need for 

future work in explainable AI to close the divide between high-performance and clinical interpretability. This is the 

kind of thing that will need to happen if AI-enabled healthtech like this ever hopes to be widely adopted and used. 

From an implementation perspective in the deployment framework section, we demonstrate how to deploy the system 

into mobiles devices, cloud platforms or hybrid environments edge-cloud. Patients may get real-time responses through 

smartphone applications, while clinicians could follow long-term developments via secure dashboards. This twofold 

functionality not only allows patients to be proactive in managing their condition, but also enables doctors to have 

better- informed treatment options. The framework therefore enables the evolution from episodic, clinic-type 

assessment to continual tracking of individual healthcare. 

In summary, the presented system verifies the possibility and adequacy of intelligent tremor detection method with 

wearable sensor and AI. The study decides on a comprehensive solution comprising robust preprocessing, feature 

extraction and comparative evaluation of ML and DL models balancing between Accuracy, Interpretability and 

Deployment readiness. The results indicate that hybrid approaches utilizing lightweight ML models on- edge devices 

and complex DL architectures in the cloud present as the most feasible direction for large-scale integration. Ultimately, 

this work contributes to the broader vision of intelligent, patient-centered healthcare systems capable of improving 

quality of life for individuals with Parkinson’s disease. 
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