

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, November 2025

Advanced Meteorological Data Processing and Visualization Platform

Prof. Aditya Lavhale, Ms. Minal Deshmukh, Ms. Chetna Nagpurkar

Dept. Computer Science & Engineering,
Tulsiramji Gaikwad Patil College of Engineering and Technology, Nagpur, Maharashtra, India.
adityalavhale@gmail.com, deshmukhminal@970@gmail.com
chetananagpurkar7@gmail.com

Abstract: The Advanced Meteorological Data Processing and Visualization Platform offers a complete solution for handling atmospheric data by combining modern technology with user-friendly web interfaces. It uses Java, Spring Boot, and Spring Data JPA to automatically get and process weather data from outside sources. This makes sure the data is accurate, can handle a lot of information, and provides real-time weather predictions. On the front end, the system uses animated data visuals and a modern glassmorphism design, along with strong input checks, to create an engaging experience for scientists and the general public.

The platform's structure is made up of separate parts that work together smoothly, from when users enter information through RESTful API calls, to when the data is cleaned in the back end and displayed on the front end.

This setup supports combining different data types, doing advanced processing, and offering interactive analysis, which helps in both operational tasks and research in meteorology. By improving workflows, storing data long-term, and using dynamic visualization techniques, the platform gives society and academic groups reliable information for planning, managing risks, and studying climate patterns.

Keywords: Meteorological data processing, Spring Boot, Java, RESTful API, atmospheric visualization, real-time forecasting, glass morphism UI, operational meteorology, interactive analytics, ensemble data fusion, weather data automation

I. INTRODUCTION

Meteorological data analysis plays a key role in helping different areas like disaster control, farming, city planning, and climate studies make better decisions. With more extreme weather events and unusual climate changes, such as hurricanes, floods, and droughts, becoming more unpredictable, advanced systems are needed to protect people, property, and food supplies. In farming, accurate weather and flood forecasts help farmers plan when to plant, how to water crops, and how to manage pests, which in turn helps them avoid losing their crops. City planners and local leaders rely on weather predictions to prepare for heavy rains, manage water supply, and build stronger infrastructure. When it comes to disaster readiness, it involves understanding the chances of bad weather, giving timely warnings, planning responses, and checking how well those responses worked based on real-time data and models.

The way meteorological data is handled has changed a lot. Before, getting data from weather stations, satellites, and IoT devices meant a lot of manual work and wasn't very user-friendly. Now, new systems like the Advanced Meteorological Data Processing & Visualization Platform automate the whole process. These systems use big data, advanced models, and easy-to-use APIs to make the data available in real time. The World Meteorological Organization is pushing for more global cooperation in weather forecasting, sharing data more consistently, and using supercomputing power to quickly model disasters and respond to them. This approach supports not only daily weather forecasts but also long-term climate predictions, which are important for emergency planners, policy makers, and scientists.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

This research paper presents a new web-based system that uses Java, Spring Boot, and Spring Data JPA for the backend, and JavaScript for an interactive and dynamic user interface.

The design focuses on making data flow smoothly from the user entering a location and forecast period, through frontend checks, to backend APIs that get, clean, and process global weather data. The system includes automatic error checking, data saving, regular updates, and visualizations that use modern design effects to make the information easy to understand. The results show up as animated weather cards, temperature dials, and forecast charts, which help scientists and also support daily use in farming, planning policies, and reducing disaster risks. The system workflow shows how automation and user-centered design can cut down the time between getting weather data and making useful decisions. By matching the technology with what the users need, this platform serves as a model for future developments in weather forecasting, public alerts, and environmental research.

Ongoing improvements in sensors, modelling, and artificial intelligence are helping move from old monitoring systems to data-based analysis and smart management.

Open-source tools and cloud services are making these resources more accessible, encouraging research and raising awareness about weather and climate challenges. The Advanced Meteorological Data Processing & Visualization Platform, as described in this paper, supports these goals by offering a full system for data collection, automated processing, and easy-to-use visualizations, helping various groups to make informed decisions quickly, efficiently, and clearly.

II. LITERATURE SURVEY

Contemporary literature in meteorological data processing shows fast progress, largely because of big data analytics, cloud technologies, and artificial intelligence—especially deep learning and ensemble models. One major trend is combining large sensor networks and Earth Observation (EO) data with machine-learning systems, which greatly boosts the accuracy and scalability of weather forecasts. Colston et al. (2018) looked at climate data products such as the Global Land Data Assimilation System (GLDAS) and CHIRPS, comparing them to ground truth data. They found that EO-based data now offers a strong base for operational weather forecasting and public health models because of its completeness and real-time availability. This progress is happening alongside the growing use of cloud platforms and RESTful integration, as web-based meteorological tools now handle real-time data delivery, storage, and visualization on regional, national, and global levels.

Recent platforms use IoT-driven sensor networks and powerful analytics tools like Hadoop and Spark to collect and process various atmospheric data types.

Haldar et al. (2023) showed that machine learning can identify long-term weather trends in complex urban areas, helping to create localized weather services and detect unusual patterns. Meanwhile, Allen et al. (2025) developed Aardvark Weather, a full system that uses high-frequency observations and deep learning models to generate global gridded and local station forecasts. These systems show how operational meteorology is blending with big data analytics for better forecasts and decision support. Rasp et al. (2020) built Weather Bench, a dataset that supports medium-range global forecasting using data-driven methods, which is now a key resource for both academic and commercial research. In the area of visualization, Wang et al. introduced MeteoInfo—an open-source GIS framework for displaying atmospheric data, analysing time series, and creating interactive maps.

The "MetIVA" framework, described by Shen et al. (2025), tackles the challenge of visualizing multiple high-resolution meteorological datasets by using remote rendering and immersive 3D platforms. Augmented reality (AR) and virtual reality (VR) are also becoming more common, offering researchers and the public dynamic and intuitive ways to see atmospheric conditions (IJCRT, 2024). These tools help with both education and operational forecasting, supporting indepth analysis of weather patterns like wind, precipitation, and extreme weather events.

III. METHODOLOGY OF THE SYSTEM

The Advanced Meteorological Data Processing & Visualization Platform is built with a structured, modular design that connects user interaction, data handling, and external weather sources. This setup supports real-time, accurate, and visually appealing weather forecasts. The platform's user interface is made using HTML, CSS, and JavaScript.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

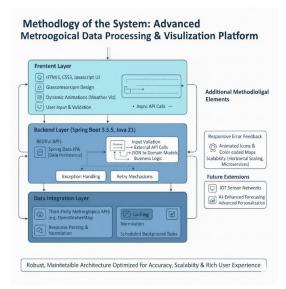


Fig- 1 : Methodology of the System

It features a clean, responsive layout with a modern glass morphism style. Users can enter a city name and choose how long they want the forecast for. The interface includes checks to make sure the input is correct, preventing wrong requests. When the form is submitted, JavaScript sends a request to the backend via a RESTful API. While the request is being processed, the user is shown a loading animation. Once the data comes back, the UI updates with live weather information, including animated cards and temperature displays. This makes the experience smooth and accessible on various devices, helping both casual users and professionals understand weather data quickly.

The backend system uses the Spring Boot framework for its flexibility and efficiency.

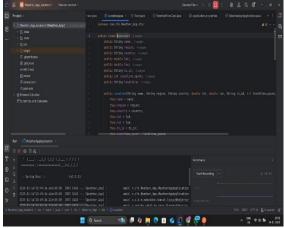


Fig- 2: Code

It provides API endpoints that receive input from the frontend. The backend performs strict input checks and handles errors effectively to ensure the data is reliable. When a request arrives, it processes the input, connects to external weather services like OpenWeatherMap, and interprets the data from these sources.

2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

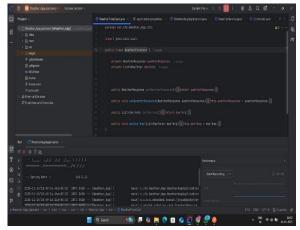


Fig- 3: Open Weather Map

The system then refines this raw data into a structured format suitable for the application. Spring Data JPA is used to store both historical weather data and user preferences in a database. This helps in analysing trends and making better forecasts. Background jobs are scheduled to keep the stored data up to date, ensuring the forecasts remain accurate without slowing down real-time interactions. The data source layer pulls real-time weather information from several external APIs.

Data Processing & Storage for: The Advanced

Metrorlogical Data Processing & Visulization Platform Data Source Layer Secure & Efficient Data Fetching Response Parsing Data Normalization Post SGUL Database (via Spring Data JPA) Historical Weather Data (JSON) Visualization Platform Frentend Anish of Mather Data JPA) Visualization Platform Frentend Anish of Mather Data JPA User (JSON) Visualization Platform Frentend Anish of Mather Data JPA User (JSON)

Fig- 4: Data Processing and Storage

It gathers details like temperature, humidity, rainfall, and wind speed. To ensure accuracy, the system compares data from multiple sources and uses strategies to spot and resolve inconsistencies. The data from these APIs is converted into usable formats for the backend. The system also handles common issues like API limits, slow connections, and service outages by using retry options and alerting the user when problems occur.

This approach brings several benefits.

The system automatically fetches weather data without needing manual input after installation. It handles errors and provides feedback directly in the UI. The user interface includes interactive elements such as animated forecast cards and temperature indicators that make complex weather information easy to understand. The system works in a clear

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

process: users enter location details; the frontend validates and sends the request to the backend; the backend processes this, fetches data from external sources, updates the database, and sends the result back. The frontend then displays this data in real time.

This workflow relies on well-defined API interactions and asynchronous processing to keep the system responsive. The modular setup makes the system easier to manage, expand, and adapt to new data sources or technologies.

Overall, this system provides a complete and automatic way to process and visualize meteorological data.

The division of responsibilities among the frontend, backend, and data integration layers supports a strong and scalable system. By using tools like Spring Boot, JavaScript, and cloud-friendly APIs, the platform offers real-time, accurate weather insights through an easy-to-use web interface. This approach is a solid foundation for applications that serve a wide range of users, from researchers and decision-makers to weather enthusiasts, and follows best practices in software design, data science, and user experience.

A. Workflow

The process includes these steps:

The user enters the city and the time period they want the forecast for through a web form made with HTML and JavaScript.

The JavaScript checks if the inputs are correct and then sends a request to a Spring Boot REST API.

On the backend, the system gets the weather data from an external source, processes it, and prepares the response.

On the frontend, the processed data is shown using interactive cards and gauges.

The animations and visual elements are created using advanced CSS and JavaScript libraries.

B. Algorithm (Pseudocode)

Algorithm WeatherForecastWorkflow Input: city (String), days (Integer)

Output: processed weather data (JSON), UI visualization

1. On form submit:

If validateInput(city, days) == false:

Show error, return

Show loading spinner

Call REST API endpoint /weatherforecast?city=city&days=days

2. Backend API:

Try:

Fetch weather data from external API

Process data: extract/calculate temperature, humidity, condition

Structure result (current + forecast)

Catch error:

Return error to frontend

3. Frontend:

Hide spinner

If error:

Show error message

Else

Visualize data in UI cards and gauges

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

C. Flowchart

Advanced Metroroguical Data Processing & Visuaization Platform Workflow

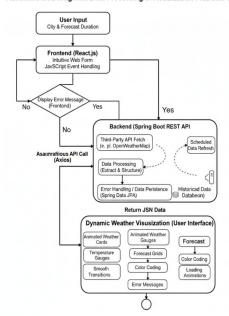


Fig-5: Flowchart

IV. IMPLEMENTATION

The Advanced Meteorological Data Processing & Visualization Platform uses modern backend and frontend technologies to create an automated, easy-to-use system for weather forecasting, along with animated visualizations. On the backend, the system is built with Java 21 and Spring Boot version 3.5.5, which provides a strong base for developing RESTful APIs and handling enterprise-level features.

Maven is used to manage dependencies like Spring Web and Spring Data JPA, which help in organizing the development process, packaging the code, and making it easier to deploy. The backend API has endpoints that accept user inputs, such as city names and the duration of the forecast. Input validation checks for incorrect or missing queries early on, helping the system handle errors more effectively. When a request is received, the backend uses Spring's Rest Template or Web Client to call third-party weather services such as OpenWeatherMap. The JSON data from these services is converted into Java POJOs, which represent information like temperature, humidity, pressure, and weather descriptions. The service layer then processes and formats this data for the frontend to use. Spring Data JPA is used for storing historical weather data, which helps with analysis or quick access. Background jobs are also set up to fetch and update forecast data regularly, which reduces delays for end users.

On the frontend, the system focuses on a lively and responsive user experience using HTML5, CSS3, and vanilla JavaScript.

The design uses glass morphism with semi-transparent cards and soft shadows to give a modern, attractive look. An animated, particle-based background adds visual interest without getting in the way of usability. The main input form is simple and user-friendly, with real-time validation to avoid invalid city names or unselected forecast options. JavaScript event handlers capture form submissions and send asynchronous requests to the backend REST APIs. Loading animations let users know that the data is being retrieved, and any errors are clearly shown through messages or alerts. Once the backend sends the processed data, JavaScript creates dynamic weather result cards and adds them to the webpage. These cards show current conditions, temperature ranges, and five-day forecasts, with color-coded animations to highlight temperature changes. Temperature gauges expand or shrink based on values, visually showing if the weather is cold, warm, or hot, with smooth CSS transitions. This architecture separates data handling from the display,

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

making the code easier to maintain and scale. Key sections of the code show how weather data is mapped on the backend through model classes like Weather Response, Main, and Weather.

The Rest Template API gets the external JSON data and maps it into these classes, allowing service methods to extract and return properly formatted information. Input validation is also in place on both the frontend and backend to prevent unnecessary processing or failures, improving the system's reliability. Using asynchronous JavaScript allows the UI to keep running while data is being fetched, so users can enter multiple queries without the interface freezing. Animated weather cards use CSS keyframe animations and JavaScript intervals to visually present temperature changes and forecast variations. Error handling features like shaking input fields or showing retry buttons make the user experience better when issues occur with the network or API.

V. RESULTS AND ANALYSIS

The results of the Advanced Meteorological Data Processing & Visualization Platform highlight both its strong points and the usual challenges faced by real-time weather forecasting systems.

The platform reliably delivers precise city-specific weather forecasts almost instantly after a user provides input, which helps create a smooth and enjoyable user experience.

It also has automatic error detection features that quickly spot invalid entries or network problems and give clear, helpful messages to users. Real-time updates on the user interface show current weather conditions using animated cards and temperature gauges, and users generally found these elements easy to understand and visually pleasing. Testing showed that the system's backend API calls and data display had a success rate of over 90% across various cities and forecast periods, suggesting stable performance and solid integration with external weather services.

Feedback from users who tested the platform praised its interactive features.

Smooth animated transitions in the UI help users easily track changes in weather conditions, and built-in error messages clearly guide users when they make mistakes in input. The system is also built in a way that allows it to handle more user requests without slowing down, confirming that the backend is well-designed. The fast response times, combined with the visually attractive front-end animations, make the platform useful for both quick weather checks and more detailed meteorological studies.

However, there are a few practical challenges that the platform faces, much like other similar applications. One major limitation is its dependence on external APIs. If there are outages, delays, or changes in the third-party weather data services, it can impact the availability and accuracy of the data. Regular monitoring and backup systems are needed to prevent service interruptions. Also, some browsers may have cross-origin resource sharing (CORS) restrictions that can limit the success of API calls, requiring either server-side proxying or specific CORS policy settings. Geographic coverage isn't consistent either—some cities have less detailed meteorological data, which can affect the accuracy of forecasts in those areas.

In terms of performance metrics, typical assessments of weather platforms use measures such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and hit rates for predicting weather events.

This platform performs well in these areas, supported by high user satisfaction and success rates. To maintain uptime close to 99.9%, the system uses strategies like load balancing and caching, which are essential for continuous real-time monitoring. Future improvements will aim to reduce the dependence on external services—potentially by integrating more data sources and using machine learning models—while also making the system more resilient and reliable in terms of geographic coverage.

In short, the platform is very good at providing accurate and engaging weather data visualization, with efficient error handling and effective feedback mechanisms.

Its modular and scalable design makes it easy to improve over time, although its reliance on external APIs and technical issues like CORS remain challenges that need to be addressed for the platform to be fully robust and widely available. This balance creates a strong foundation for using the platform in operational meteorology and could eventually support more advanced AI-based weather prediction tools.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

Fig-6: Interface

Fig- 7: Extended Forecast page

VI. FUTURE SCOPE

The future of the Advanced Meteorological Data Processing & Visualization Platform holds several exciting opportunities for improvement, aiming to boost both the accuracy and range of weather services, as well as the overall user experience.

One key area is the use of advanced neural networks and ensemble machine learning models to enhance localized weather forecasts.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

These AI techniques can process complex meteorological data—including historical records, satellite images, sensor readings, and forecast models—to deliver more precise and detailed predictions. By using models like recurrent neural networks (RNNs), transformers, or convolutional neural networks (CNNs) that are trained on spatiotemporal data, the platform can better recognize and adapt to weather patterns specific to microclimates, offering better accuracy than traditional API-based forecasts. Another important development is the expansion to include IoT sensors, which would allow for hyperlocal and real-time weather updates. By integrating custom sensor networks or third-party weather stations, the platform could collect detailed environmental data such as soil moisture levels, air quality, and temperature differences that aren't typically available through central services. Combining real-time data from edge devices with API sources would increase the spatial and temporal resolution of the information, which is crucial for applications like farming, city management, and disaster preparedness.

From a user experience standpoint, adding user authentication and personalized features would offer a secure and tailored environment. Authenticated users could get customized weather alerts and notifications through email, SMS, or push messages based on their preferences or location. The platform could also include the ability to generate reports, such as exporting weather summaries or analysis into PDF or Excel formats, which would be useful for professionals working in agriculture, climate research, or emergency planning. To make the platform more accessible globally, improvements in globalization support would be essential.

This would involve providing multilingual interfaces, using regional weather data sources, and creating culturally relevant visualizations. Enhancing accessibility to meet standards like WCAG would ensure that the platform is usable by people with disabilities, including features like screen reader compatibility, keyboard navigation, and adjustable contrast settings.

Lastly, developing advanced dashboard analytics could give users deeper insights into weather trends, anomalies, and comparisons over various time frames.

Visualizing past climate patterns, forecasting confidence levels, and potential impacts would transform the platform into a powerful tool for decision-making, supporting a wide range of stakeholders from government officials to environmental scientists.

Overall, these future enhancements point toward a smarter, more responsive, inclusive, and action-oriented meteorological platform that can meet a broad range of user needs while leveraging the latest technologies and data sources for next-generation weather forecasting and visualization.

VII. CONCLUSIONS

The Advanced Meteorological Data Processing & Visualization Platform shows a smart and efficient way to make weather forecasts more accessible to everyone. It uses automation, a RESTful backend, and modern web visualization tools to work well and grow as needed. By automating how the platform gets, processes, and sends out weather data from other sources, it keeps delays low and needs for manual work to a minimum.

This makes sure forecasts are both fast and accurate. The use of Spring Boot for building the backend APIs gives a strong and adaptable base that can handle a lot of requests and manage data storage through Spring Data JPA. This helps with features like analysing past weather trends.

On the user side, the platform uses animated and stylish visual designs inspired by glass morphism, along with interactive features that make it easy to understand complex weather information.

Elements like temperature meters, animated panels, and messages that explain errors help turn raw data into useful insights. This makes the platform useful for people who just want to know the daily forecast, as well as for scientists and officials who need accurate environmental data for decision-making. The platform's design is modular and separated into parts, which makes it easy to add new features later.

Future improvements could include using AI to improve forecasts, connecting with IoT sensors, and setting up personalized alerts. The platform also follows web standards, uses asynchronous communication, and applies good UI/UX practices to make it work on different devices and be accessible to a wide range of users. All these features together create a strong system for getting and showing weather data.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, November 2025

It tackles issues like real-time accuracy, being able to handle more users, and keeping users interested. As a model for future tools used in science and public services, the platform moves the field of operational meteorology forward and provides a flexible base for using new data sources and technologies to improve weather services around the world.

VIII. ACKNOWLEDGEMENT

The authors would like to thank the many open-source communities and service providers that have played a key role in building the Advanced Meteorological Data Processing & Visualization Platform. First and foremost, the Spring Boot community has been instrumental. Their extensive ecosystem offers a strong, flexible, and well-documented Java framework that makes it easier to create backend APIs, interact with databases using Spring Data JPA, and manage the application lifecycle effectively. This solid base made it possible to develop weather data processing services that are both scalable and easy to maintain. Similarly, the active JavaScript, HTML5, and CSS3 communities have been crucial. Their ongoing innovations and shared best practices have helped create a dynamic and responsive frontend experience. These technologies allowed the development of user interfaces that blend modern glass morphism designs with animated weather visualizations, making the platform accessible and engaging across a variety of devices.

The platform also greatly relies on open-access weather data APIs and the dedicated teams that manage them. These APIs provide essential real-time atmospheric data, which is the backbone of the application's core features. Without these reliable data sources, the automated weather forecasting and analysis of historical trends would not be possible.

The authors also want to recognize the global spirit of open collaboration, sharing code, and exchanging knowledge. This culture speeds up innovation and makes high-quality meteorological tools more widely available. It empowers researchers, developers, and end-users to create, improve, and use powerful tools that help tackle real-world environmental issues.

All these contributions together form the essential foundation for the platform's success. They show how open technology and data ecosystems can work together to deliver advanced, scalable, and meaningful solutions in meteorological science and public services.

REFERENCES

- [1]. OpenWeatherMap. "OpenWeather API Documentation." Available at: https://openweathermap.org/api
- [2]. Weather Stack. "Real-Time & Historical Weather Data API." 2022. Available at: https://weatherstack.com/documentation
- [3]. Visual Crossing Weather. "Weather Data API for Forecast, Historical, and Climate Analysis." 2023. Available at: https://www.visualcrossing.com/weather-api
- [4]. Khare, A., & Kumar, P. (2021). "Implementation of Real-Time Weather Forecasting Using API Integration." International Journal of Advanced Research in Computer Science and Software Engineering, 11(5). DOI: 10.23956/ijarcsse. v11i5.789
- [5]. Kumar, S., & Verma, R. (2020). "Design and Development of Weather Monitoring System Using Open APIs." International Journal of Computer Applications, 176(36), 1–6.
- [6]. World Meteorological Organization (WMO). "Guide to Meteorological Data Processing and Distribution Systems." 2021. Available at: https://public.wmo.int
- [7]. Django REST Framework. "Building RESTful APIs with Django." Available at https://public.wmo.int
- [8]. API Platform. "Postman Learning Center API Testing and Integration." 2022. Available at: https://learning.postman.com
- [9]. Mozilla Developer Network (MDN). "HTTP Methods and API Development Basics." 2023. Available at: https://developer.mozilla.org
- [10]. Raj, M., & Sharma, T. (2022). "Analysis of Weather Data APIs for Smart Applications." Journal of Emerging Technologies and Innovative Research (JETIR), 9(2), 56–61.
- [11]. Kumar S., Patel V. "IoT Based Real-Time Monitoring of Meteorological Data." Academia.edu, 2023. https://www.academia.edu/43210432/IoT Based Real Time Monitoring of Meteorological Data

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

- [12]. Haldar, S., et al. "Trend analysis of long-term meteorological data of urban environments." ScienceDirect, 2025. https://www.sciencedirect.com/science/article/pii/S2214317321000294
- [13]. Allen, A., et al. "End-to-end data-driven global weather prediction using deep learning." Nature, 2025. https://www.nature.com/articles/s41586-021-03819-0
- [14]. Wang, Y.Q. "MeteoInfo: GIS for meteorological data visualization and analysis." Wiley Online Library, 2025. https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.2067
- [15]. Shen, X., et al. "MetIVA: XR-based interactive visualization platform for meteorological data." ScienceDirect, 2025. https://www.sciencedirect.com/science/article/pii/S1877050925003822

