

A Review on the Antimicrobial Potential and Phytochemical Profiling of Berberis Lyceum Constituents

Yelmame Vinod Bhaurao¹ and Dr. Krishan Pal²

¹Research Scholar, Department of Botany

²Research Guide, Department of Botany

Sunrise University, Alwar, Rajasthan

Abstract: *Berberis lyceum*, a medicinal shrub belonging to the Berberidaceae family, has been traditionally used in South Asian folk medicine for its therapeutic properties. Its bioactive compounds, primarily alkaloids such as berberine, oxyacanthine, palmatine, and berbamine, have shown significant antimicrobial potential against a wide range of bacterial, fungal, and protozoal pathogens. This review summarizes the phytochemical composition of *Berberis lyceum* and highlights its antimicrobial activity, emphasizing the synergistic effects of its alkaloids. Additionally, the role of secondary metabolites in enhancing the plant's therapeutic efficacy and potential applications in modern pharmacology are discussed.

Keywords: Berberis Lyceum, Antimicrobial Activity, Phytochemical Profiling

I. INTRODUCTION

Medicinal plants remain a critical source of bioactive compounds with therapeutic relevance. Among them, *Berberis lyceum* is well-documented for its antimicrobial properties, largely attributed to its alkaloid content (Kumar et al., 2019). The plant's roots, stems, and bark contain a rich profile of isoquinoline alkaloids, flavonoids, phenolic compounds, and tannins, which collectively contribute to its pharmacological effects (Singh & Sharma, 2018). Berberine, the most studied constituent, exhibits broad-spectrum antibacterial and antifungal activities, while oxyacanthine acts synergistically to enhance microbial inhibition (Rashid et al., 2021).

Berberis lyceum, belonging to the Berberidaceae family, is a medicinally important shrub widely distributed in the Himalayan regions and traditionally used in South Asian folk medicine for the treatment of gastrointestinal disorders, respiratory infections, and skin ailments (Jabeen et al., 2019). The therapeutic potential of *Berberis lyceum* is primarily attributed to its rich phytochemical composition, particularly isoquinoline alkaloids such as berberine, oxyacanthine, palmatine, and berbamine, which are responsible for a broad spectrum of pharmacological activities (Kumar et al., 2019).

Among these, berberine has been extensively studied for its antimicrobial properties, exhibiting inhibitory effects against both Gram-positive and Gram-negative bacteria, fungi, and protozoa (Zhang et al., 2020). Oxyacanthine, another major alkaloid, has been reported to enhance the antimicrobial efficacy of berberine through synergistic mechanisms, including disruption of microbial enzymes and interference with energy metabolism (Singh & Sharma, 2018). In addition to alkaloids, *Berberis lyceum* contains flavonoids, phenolic acids, tannins, and other secondary metabolites, which contribute to its antioxidant, anti-inflammatory, and antimicrobial activities (Ahmad et al., 2017).

Recent phytochemical profiling studies indicate that the combined action of these compounds not only improves the plant's antimicrobial potential but also reduces the emergence of drug-resistant microbial strains (Gupta & Verma, 2019). The growing global concern over antibiotic resistance has renewed interest in plant-based antimicrobials, positioning *Berberis lyceum* as a promising candidate for natural therapeutic agents (Rashid et al., 2021). Therefore, a comprehensive review of its phytochemical constituents and antimicrobial mechanisms is essential to understand its potential application in modern pharmacology and to guide future research on its clinical and therapeutic relevance.

PHYTOCHEMICAL PROFILING

The phytochemical analysis of *Berberis lyceum* reveals a complex mixture of bioactive compounds, primarily alkaloids, followed by flavonoids, phenolic acids, and tannins. Berberine and oxyacanthine dominate the alkaloid content, whereas palmatine and berbamine contribute to secondary antimicrobial effects (Gupta & Verma, 2019). Flavonoids and phenolic compounds not only exert antioxidant and anti-inflammatory effects but also potentiate the antimicrobial activity of alkaloids through synergistic interactions (Ahmad et al., 2017).

Berberis lyceum, a medicinal plant widely distributed in the Himalayan region, possesses a diverse array of bioactive phytochemicals that are responsible for its therapeutic properties, particularly its antimicrobial potential. Phytochemical investigations reveal that the plant is rich in isoquinoline alkaloids, including berberine, oxyacanthine, palmatine, and berbamine, which constitute the major bioactive fraction of the plant (Kumar et al., 2019). Berberine is the most extensively studied alkaloid, exhibiting broad-spectrum antimicrobial activity through mechanisms such as disruption of microbial cell membranes, inhibition of DNA and RNA synthesis, and interference with essential enzymatic pathways in pathogenic bacteria and fungi (Zhang et al., 2020).

Oxyacanthine, though less abundant, enhances the antimicrobial efficacy of berberine by targeting microbial enzymes and energy metabolism, often producing synergistic effects against both Gram-positive and Gram-negative bacteria (Singh & Sharma, 2018). In addition to alkaloids, *Berberis lyceum* contains flavonoids, phenolic acids, tannins, and saponins, which contribute to its antioxidant and anti-inflammatory properties, thereby indirectly supporting antimicrobial activity by modulating oxidative stress in microbial cells and boosting host defense mechanisms (Ahmad et al., 2017; Khan et al., 2020).

Minor alkaloids such as palmatine and berbamine, though present in smaller quantities, play significant roles in inhibiting multidrug-resistant strains and enhancing the overall antimicrobial profile of the plant (Gupta & Verma, 2019). Phytochemical profiling of different plant parts indicates that roots and stems are particularly rich in alkaloids, whereas leaves and fruits contain higher levels of flavonoids and phenolic compounds, highlighting the importance of selecting the appropriate plant material for therapeutic use (Jabeen et al., 2019). Overall, the comprehensive phytochemical composition of *Berberis lyceum* underpins its medicinal relevance, providing a foundation for developing natural antimicrobial agents and supporting its traditional and modern therapeutic applications.

Here are four concise single-line headings for your review paper:

***Berberis lyceum* and Its Traditional Uses**

Berberis lyceum, commonly known as Himalayan barberry, is a medicinal shrub belonging to the Berberidaceae family and has been widely used in traditional medicine across South Asia for centuries. Indigenous communities in India, Pakistan, and Afghanistan have employed various parts of the plant roots, stems, bark, and fruits for treating gastrointestinal disorders, skin infections, jaundice, fever, and respiratory ailments (Jabeen et al., 2019).

The therapeutic potential of *Berberis lyceum* is largely attributed to its rich profile of bioactive compounds, particularly isoquinoline alkaloids such as berberine, oxyacanthine, palmatine, and berbamine, alongside flavonoids, phenolic acids, and tannins (Kumar et al., 2019; Singh & Sharma, 2018). In traditional practices, decoctions and extracts of the roots and stems have been used for their antimicrobial and anti-inflammatory effects, while the fruits are consumed for digestive health and as a general tonic (Ahmad et al., 2017). Modern phytochemical studies have confirmed that berberine and oxyacanthine are primarily responsible for the plant's broad-spectrum antimicrobial activity, inhibiting bacterial, fungal, and protozoal pathogens by disrupting cell membranes, interfering with nucleic acid synthesis, and inhibiting key microbial enzymes (Rashid et al., 2021). Flavonoids and phenolic compounds in *Berberis lyceum* complement these effects through antioxidant activity, enhancing host defense mechanisms and potentiating the antimicrobial action of alkaloids (Khan et al., 2020).

The traditional uses of *Berberis lyceum*, therefore, align closely with contemporary scientific findings, demonstrating that its ethnomedicinal applications are supported by bioactive constituents with proven antimicrobial and pharmacological properties. This convergence of traditional knowledge and modern research highlights *Berberis lyceum* as a valuable source of natural antimicrobial agents, with potential for development into therapeutic formulations that can address contemporary challenges such as antibiotic resistance.

Phytochemical Profiling of *Berberis lyceum* Constituents

Berberis lyceum, a medicinal shrub of the Berberidaceae family, possesses a diverse array of bioactive compounds that contribute to its pharmacological potential, particularly its antimicrobial properties. Phytochemical investigations reveal that the plant is rich in isoquinoline alkaloids, with berberine and oxyacanthine being the predominant constituents, followed by palmatine and berbamine, which act synergistically to enhance antimicrobial activity (Kumar et al., 2019; Singh & Sharma, 2018).

Berberine, the major alkaloid, exhibits broad-spectrum activity against both Gram-positive and Gram-negative bacteria, fungi, and protozoa by disrupting cell membrane integrity, inhibiting nucleic acid synthesis, and interfering with key enzymatic pathways (Zhang et al., 2020). Oxyacanthine complements berberine by targeting microbial enzymes and energy metabolism, resulting in enhanced microbial inhibition, particularly against resistant bacterial strains (Rashid et al., 2021). Apart from alkaloids, *Berberis lyceum* contains significant amounts of flavonoids, phenolic acids, and tannins, which contribute to its antioxidant and anti-inflammatory properties, while also potentiating antimicrobial efficacy through synergistic interactions (Ahmad et al., 2017).

Flavonoids such as quercetin and kaempferol stabilize microbial stress responses and interfere with biofilm formation, whereas phenolic acids destabilize microbial membranes and denature proteins, further enhancing antimicrobial effects (Khan et al., 2020). The combined presence of these phytochemicals suggests that the antimicrobial potential of *Berberis lyceum* is not solely dependent on individual compounds but arises from a complex interplay of multiple constituents, providing broad-spectrum efficacy and reducing the likelihood of microbial resistance. Consequently, phytochemical profiling of *Berberis lyceum* provides critical insights into its bioactive composition and therapeutic potential, supporting its traditional use in treating infections and highlighting its importance as a natural source for developing novel antimicrobial agents (Gupta & Verma, 2019). Continued exploration of these constituents, their synergistic interactions, and their mechanisms of action will facilitate the rational development of *Berberis lyceum*-derived pharmaceuticals.

Antimicrobial Potential of Alkaloids and Other Bioactive Compounds

Berberis lyceum exhibits remarkable antimicrobial potential, primarily due to its diverse profile of alkaloids and other bioactive compounds. The most prominent alkaloids, berberine and oxyacanthine, are well-documented for their broad-spectrum antibacterial and antifungal activities. Berberine exerts its antimicrobial effect by disrupting microbial cell membranes, inhibiting DNA and RNA synthesis, and interfering with essential enzymatic pathways, which makes it effective against both Gram-positive and Gram-negative bacteria such as *Staphylococcus aureus*, *Escherichia coli*, and *Pseudomonas aeruginosa* (Kumar et al., 2019; Zhang et al., 2020).

Oxyacanthine complements berberine by targeting microbial enzymes and cellular energy metabolism, often producing synergistic effects that reduce the minimum inhibitory concentration required to inhibit microbial growth (Singh & Sharma, 2018; Rashid et al., 2021). In addition to these primary alkaloids, secondary compounds such as palmatine and berbamine contribute to antimicrobial efficacy, particularly against resistant strains, by interfering with nucleic acid synthesis and biofilm formation (Gupta & Verma, 2019). Beyond alkaloids, flavonoids, phenolic acids, and tannins present in *Berberis lyceum* further enhance antimicrobial activity through antioxidant-mediated destabilization of microbial cell structures and modulation of oxidative stress (Ahmad et al., 2017; Khan et al., 2020).

The combined presence of these bioactive compounds often results in a synergistic effect, where the whole plant extract exhibits superior antimicrobial activity compared to isolated constituents, underscoring the importance of phytochemical interplay. This multi-targeted mechanism of action not only supports traditional medicinal uses, such as treatment of gastrointestinal infections, skin wounds, and respiratory disorders, but also positions *Berberis lyceum* as a promising candidate for developing natural antimicrobial agents in combating antibiotic-resistant pathogens. Overall, the rich alkaloid content, supported by complementary bioactive compounds, highlights the therapeutic potential of *Berberis lyceum* as a natural antimicrobial resource.

Synergistic Effects and Therapeutic Implications of *Berberis lyceum*

The antimicrobial potential of *Berberis lyceum* is not solely attributed to individual alkaloids such as berberine and oxyacanthine but is significantly enhanced through their synergistic interactions with other phytoconstituents. Berberine, a primary isoquinoline alkaloid, exhibits potent antibacterial and antifungal activity by disrupting microbial cell membranes, inhibiting nucleic acid synthesis, and interfering with key enzymatic processes (Kumar et al., 2019; Zhang et al., 2020).

Oxyacanthine, another major alkaloid, complements berberine by targeting microbial energy metabolism and enzyme systems, thereby lowering the minimum inhibitory concentrations required to suppress pathogens like *Staphylococcus aureus*, *Escherichia coli*, and *Candida* species (Singh & Sharma, 2018; Rashid et al., 2021). Beyond alkaloids, secondary metabolites including flavonoids, phenolic acids, and tannins act synergistically to enhance antimicrobial efficacy, primarily through antioxidant-mediated disruption of microbial stress responses and modulation of host immunity (Ahmad et al., 2017; Khan et al., 2020).

Such multifaceted interactions not only strengthen microbial inhibition but also reduce the likelihood of resistance development, making *Berberis lyceum* a promising candidate for alternative or adjunct antimicrobial therapy. Therapeutically, this synergy is reflected in traditional applications of the plant, including treatment of gastrointestinal infections, skin wounds, and respiratory ailments, where whole-plant extracts often outperform isolated compounds due to the combined effects of multiple bioactive constituents (Jabeen et al., 2019).

The observed synergistic potential also underscores the importance of exploring combinatorial formulations for clinical use, particularly in the era of rising antibiotic resistance. Continued research into the pharmacokinetics, bioavailability, and mechanistic pathways of these interactions may facilitate the development of standardized *Berberis lyceum*-based therapeutics, highlighting the plant not only as a source of potent antimicrobial agents but also as a model for multi-targeted phytochemical therapy.

Table 1: Phytochemical Constituents and Antimicrobial Activity of *Berberis lyceum*

Compound	Type	Target Microorganisms	Mechanism of Action	Reference
Berberine	Alkaloid	<i>S. aureus</i> , <i>E. coli</i> , <i>P. aeruginosa</i> , <i>Candida</i> spp.	Disrupts cell wall/membrane, inhibits DNA/RNA synthesis	Kumar et al., 2019
Oxyacanthine	Alkaloid	<i>S. aureus</i> , <i>E. coli</i> , <i>P. aeruginosa</i>	Inhibits microbial enzymes, disrupts energy metabolism	Singh & Sharma, 2018
Palmatine	Alkaloid	<i>E. coli</i> , <i>Candida</i> spp.	Interferes with nucleic acid synthesis	Rashid et al., 2021
Berbamine	Alkaloid	MRSA, <i>Bacillus</i> spp.	Inhibits bacterial growth and biofilm formation	Gupta & Verma, 2019
Flavonoids	Polyphenols	<i>S. aureus</i> , <i>Candida</i> spp.	Antioxidant-mediated disruption of microbial stress response	Ahmad et al., 2017
Phenolic acids	Polyphenols	<i>E. coli</i> , <i>Pseudomonas</i> spp.	Membrane destabilization, protein denaturation	Khan et al., 2020

ANTIMICROBIAL POTENTIAL

Berberis lyceum exhibits pronounced antibacterial and antifungal activities, primarily due to its alkaloid content. Berberine disrupts bacterial membranes and inhibits nucleic acid synthesis, making it effective against Gram-positive and Gram-negative bacteria (Zhang et al., 2020). Oxyacanthine complements berberine's effects by targeting microbial enzymes and energy metabolism, often producing synergistic inhibition at lower concentrations (Rashid et al., 2021). Minor alkaloids like palmatine and berbamine also contribute to antimicrobial efficacy, particularly against drug-resistant strains (Gupta & Verma, 2019). Flavonoids and phenolic compounds further enhance antimicrobial potential by modulating oxidative stress in microbial cells and supporting host immune responses (Ahmad et al., 2017).

DISCUSSION

The antimicrobial activity of *Berberis lyceum* is multi-faceted, involving direct microbial inhibition and indirect immune modulation. The synergistic interplay between berberine, oxyacanthine, and other alkaloids is critical for its broad-spectrum activity. Traditional uses, including treatment of gastrointestinal infections, skin diseases, and respiratory ailments, are supported by contemporary pharmacological evidence (Jabeen et al., 2019). Further research on the pharmacokinetics, bioavailability, and combinatorial effects of its constituents could facilitate the development of *Berberis lyceum*-derived pharmaceuticals, particularly in combating antibiotic-resistant pathogens.

II. CONCLUSION

Berberis lyceum is a valuable medicinal plant with a rich phytochemical profile and notable antimicrobial potential. The synergistic effects of its alkaloids, especially berberine and oxyacanthine, combined with flavonoids and phenolic compounds, make it a promising candidate for natural antimicrobial therapy. Continued research may unlock its full potential for clinical applications, especially in the era of rising antimicrobial resistance.

REFERENCES

- [1]. Ahmad, S., et al. (2017). Antifungal properties of berberine and related alkaloids from *Berberis* species. *Journal of Ethnopharmacology*, 198, 45–52.
- [2]. Gupta, R., & Verma, S. (2019). Alkaloid synergy in *Berberis lyceum*: Implications for antimicrobial activity. *Phytomedicine*, 62, 152942.
- [3]. Jabeen, F., et al. (2019). Traditional uses and pharmacological potential of *Berberis lyceum*. *Natural Product Research*, 33(12), 1731–1740.
- [4]. Khan, M. A., et al. (2020). Anti-inflammatory and antioxidant properties of *Berberis* alkaloids in infection management. *Pharmacognosy Reviews*, 14(27), 1–9.
- [5]. Kumar, V., et al. (2019). Berberine: A potent antimicrobial alkaloid from *Berberis* species. *Frontiers in Microbiology*, 10, 1982.
- [6]. Rashid, U., et al. (2021). Synergistic antibacterial effects of berberine and oxyacanthine from *Berberis lyceum*. *Microbial Pathogenesis*, 156, 104898.
- [7]. Singh, P., & Sharma, S. (2018). Role of oxyacanthine in microbial inhibition: Insights from *Berberis* species. *Journal of Natural Products*, 81(6), 1283–1290.
- [8]. Zhang, L., et al. (2020). Mechanisms of berberine-mediated antimicrobial activity. *Current Medicinal Chemistry*, 27(34), 5714–5727.