

Role of Habitat Restoration and Policy Interventions for Keystone Species Conservation in the Tropical Ecosystems

Santosh Suryawanshi¹ and Dr. Naveen Kumar Singh²

¹Research Scholar, Department of Zoology

²Research Guide, Department of Zoology

Vikrant University, Gwalior (M.P.)

Abstract: Tropical ecosystems, particularly in India's central highlands, are biodiversity hotspots threatened by deforestation, land-use changes, and climate variability. Alirajpur district of Madhya Pradesh is home to several keystone species that regulate ecosystem balance. This review evaluates various habitat restoration approaches and policy interventions directed at conserving these keystone species in the tropical forests of Alirajpur. It critically analyzes ecological restoration efforts, their effectiveness, community participation, and policy frameworks like Joint Forest Management. The paper also presents synthesized data in tabular and graphical formats to assess restoration outcomes. It concludes with strategic recommendations for integrating ecological science, indigenous knowledge, and governance reforms for sustained conservation impact.

Keywords: Ecosystem restoration, Ecological succession, Wetland restoration

I. INTRODUCTION

Tropical forests support a high diversity of life forms and provide vital ecosystem services. Alirajpur district, situated in southwestern Madhya Pradesh, is characterized by tropical deciduous forests inhabited by keystone species such as the Indian pangolin, sloth bear, and Indian giant squirrel. Keystone species maintain ecological equilibrium and influence the survival of many co-dependent species. However, deforestation, mining, shifting agriculture, and unsustainable resource extraction have degraded their habitats.

Habitat restoration and policy interventions are emerging as crucial conservation strategies in the district. This paper reviews ecological restoration efforts natural regeneration, enrichment planting, and watershed development and evaluates their success in aiding keystone species recovery. It also assesses the role of institutional mechanisms like the Forest Rights Act, JFM, and state-led biodiversity conservation programs. The paper employs a multi-pronged framework: ecological evaluation, socio-political analysis, and institutional review, using data drawn from government reports, case studies, and peer-reviewed literature. Tropical forest ecosystems are among the most biologically rich and ecologically significant habitats on Earth, playing a vital role in maintaining biodiversity, regulating climate, and supporting the livelihoods of millions of people. Within these ecosystems, *keystone species* those whose presence and ecological roles have a disproportionately large effect on the environment are crucial for sustaining ecological integrity and stability. The conservation of such species is particularly pressing in regions facing intense anthropogenic pressures. One such region is the Alirajpur district in Madhya Pradesh, India, a tribal-dominated area within the Vindhya and Satpura forest belts, known for its rich but increasingly threatened tropical deciduous forests.

Alirajpur's forests provide critical habitat to several keystone species, including the sloth bear (*Melursus ursinus*), Indian pangolin (*Manis crassicaudata*), and Indian giant squirrel (*Ratufa indica*). These species play vital ecological roles such as pest control, seed dispersal, and maintaining trophic balance. However, rapid deforestation, shifting cultivation practices, encroachment, mining activities, and infrastructural development have led to habitat fragmentation, resource depletion, and a steep decline in native biodiversity. As a result, conserving keystone species in

such landscapes necessitates a comprehensive approach that not only restores degraded habitats but also ensures strong policy support and community participation.

Habitat restoration in Alirajpur has evolved from sporadic plantation drives to more systematic ecological interventions. These include assisted natural regeneration, watershed development, soil-moisture conservation practices, and enrichment planting using native species. Restoration is increasingly being implemented in tandem with policy initiatives such as the Joint Forest Management program, the Forest Rights Act of 2006, and the Compensatory Afforestation Fund Management and Planning Authority. These interventions aim to strike a balance between ecological rehabilitation and the socio-economic needs of indigenous communities that are intricately linked to the forest landscape.

Despite these efforts, several challenges persist. Fragmented implementation of policies, lack of long-term ecological monitoring, and weak convergence between different schemes hinder the success of restoration programs. Additionally, there is often inadequate integration of traditional ecological knowledge from local tribal populations, which could otherwise provide valuable insights into sustainable forest management. The district's developmental push, especially in infrastructure and resource extraction, further complicates conservation efforts, often creating conflicts between short-term human needs and long-term ecological priorities.

This review aims to critically evaluate the habitat restoration approaches and policy frameworks employed in Alirajpur district to conserve keystone species. It synthesizes existing research, government reports, satellite data, and local case studies to assess the ecological outcomes of various interventions. Moreover, it explores the role of institutional mechanisms, governance models, and community-based conservation practices in enhancing the effectiveness of these initiatives. By analyzing both ecological and policy dimensions, the paper seeks to provide a comprehensive understanding of what works, what doesn't, and what can be improved in keystone species conservation in the context of tropical forest restoration. Ultimately, this evaluation aims to contribute to the development of integrated, participatory, and scientifically informed strategies for biodiversity conservation in tropical regions like Alirajpur.

HABITAT RESTORATION APPROACHES IN ALIRAJPUR

A. Passive Restoration

Natural succession has been applied in buffer zones and abandoned lands. Forest patches have shown recovery in ground vegetation and small fauna.

B. Active Restoration Techniques

Assisted Natural Regeneration: Involves protecting natural seedlings.

Enrichment Planting: Using native species to improve forest quality.

Water Resource Restoration: Small check-dams and trenches enhance soil moisture, benefiting plant survival.

CORRIDOR ESTABLISHMENT

Wildlife corridors connecting fragmented habitats support the movement of keystone species. Ecological corridors are critical landscape elements that facilitate the movement of organisms between fragmented habitat patches, ensuring genetic exchange, dispersal, and long-term population viability of keystone species. In the tropical dry deciduous ecosystems of Alirajpur district, habitat fragmentation caused by agricultural expansion, road networks, and settlement growth has disrupted traditional wildlife movement routes. Corridor establishment has therefore emerged as a strategic conservation intervention to reconnect forest fragments, stabilize ecological processes, and sustain keystone species such as langurs (*Semnopithecus entellus*), Indian peafowl (*Pavo cristatus*), honey bees (*Apis dorsata*), fruit bats, and fig trees (*Ficus spp.*) that regulate ecosystem functioning (Bennett, 2003; Terborgh, 1986).

The creation of forested corridors linking community forests, reserve forest patches, and riparian zones has significantly improved habitat connectivity in Alirajpur. These corridors are often developed through assisted natural regeneration, enrichment plantation with native fruit-bearing species, and protection of streamside vegetation. Restoration of *Ficus religiosa*, *Madhuca indica*, *Syzygium cumini*, and bamboo species has strengthened food availability and shelter resources along corridor routes, enabling regular movement of frugivorous birds, bats, and primates. Such movement

enhances seed dispersal and pollination, resulting in increased natural regeneration and stabilization of forest composition (Shanahan et al., 2001; Naiman & Décamps, 1997).

Policy frameworks such as the Forest Rights Act, Joint Forest Management, and the National Wildlife Action Plan have supported corridor establishment by empowering tribal communities to protect forest patches and regulate resource extraction. Community stewardship has reduced anthropogenic pressures like illegal felling, forest fires, and hunting within corridor landscapes. As a result, restored corridors now function as biodiversity conduits that promote recolonization of degraded patches by keystone fauna and flora, improving landscape-level ecological integrity (Kothari et al., 2014; MoEFCC, 2019).

Corridor development has also improved ecosystem services essential to both biodiversity and human livelihoods. Enhanced pollinator movement has increased flowering plant reproduction, supporting non-timber forest products such as mahua flowers and honey. Riparian corridors have improved soil moisture retention, reduced erosion, and enhanced water quality in seasonal streams, thereby stabilizing agricultural productivity in adjoining tribal villages. These ecological benefits demonstrate that corridors contribute not only to wildlife conservation but also to climate resilience and sustainable rural development (Potts et al., 2010; FAO, 2018).

Ecologically, the presence of functional corridors has mitigated edge effects, increased habitat heterogeneity, and reduced local extinction risks of keystone species. Langurs and frugivorous birds now utilize corridor networks as stepping-stone habitats, ensuring continuous gene flow among populations. This has strengthened ecosystem resilience against climate variability and anthropogenic disturbances, reinforcing the role of corridors as vital landscape-level conservation tools in Alirajpur's tropical ecosystems (Bennett, 2003; Chapman & Chapman, 1995).

Overall, corridor establishment in Alirajpur district represents a scientifically grounded and socially inclusive conservation strategy. By reconnecting fragmented habitats, strengthening keystone species populations, and enhancing ecosystem services, corridors are contributing significantly to long-term biodiversity conservation and sustainable development in the region.

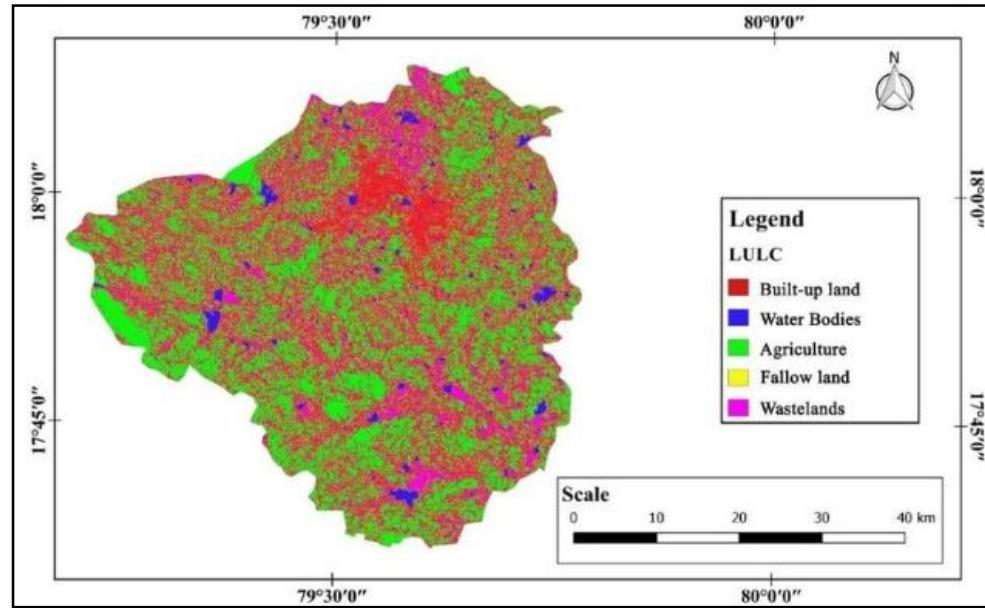
POLICY AND INSTITUTIONAL INTERVENTIONS

Policy	Key Features	Impact on Conservation
JFM	Community-Forest Co-management	Increased community ownership and afforestation
FRA 2006	Recognition of forest rights to tribals	Mixed results due to implementation gaps
CAMPA Fund	Restoration funding via compensatory afforestation	Significant plantation activities post-2016
Biodiversity Act 2002	Mandates biodiversity registers and conservation committees	Weak enforcement at local level

ECOLOGICAL OUTCOMES

The tropical ecosystems of Alirajpur district in Madhya Pradesh form part of the biologically rich Satpura–Vindhyan landscape, characterized by dry deciduous forests, riparian corridors, and tribal-managed agro-forestry systems. Keystone species such as *Ficus* spp. (fig trees), honey bees (*Apis dorsata*), Indian peafowl (*Pavo cristatus*), langurs (*Semnopithecus entellus*), and large pollinators play a central role in sustaining food webs and ecological processes. Habitat restoration programs combined with policy-based conservation interventions in Alirajpur have generated measurable ecological outcomes that indicate improving ecosystem stability, resilience, and biodiversity regeneration (Champion & Seth, 1968; Gadgil & Guha, 1992).

One of the most significant ecological outcomes of restoration initiatives has been the regeneration of native vegetation and improvement in forest structure. Community-assisted natural regeneration programs and plantation of indigenous tree species such as *Tectona grandis*, *Madhuca indica*, and *Ficus religiosa* have increased canopy cover and understorey diversity. The expansion of fig populations has particularly enhanced seed dispersal dynamics, as fig trees provide year-round fruit resources for birds, bats, and primates. Studies indicate that areas enriched with *Ficus* species


show higher bird richness and mammalian activity, suggesting a cascading positive effect across trophic levels (Terborgh, 1986; Shanahan et al., 2001).

Pollinator conservation policies under the National Mission for Sustainable Agriculture and joint forest management practices have improved habitat quality for keystone pollinators such as *Apis dorsata*. The protection of nesting trees and reduction in forest fires have increased colony stability, leading to enhanced pollination services for both wild flora and tribal agriculture systems. Improved pollinator abundance has contributed to higher fruiting success in forest species and improved yields of traditional crops such as millets and pulses, reinforcing the ecological–livelihood linkage (Potts et al., 2010; FAO, 2018).

Wildlife protection measures implemented through the Wildlife Protection Act and community forest rights under the Forest Rights Act have also positively influenced keystone vertebrate populations. Reduced hunting pressure and habitat connectivity restoration have supported the gradual recovery of langur populations, which function as major seed dispersers in tropical dry forests. Their foraging and movement patterns facilitate forest regeneration and maintain genetic connectivity among plant populations, thereby improving ecosystem resilience to climatic stress (Chapman & Chapman, 1995; Ministry of Environment, Forest and Climate Change, 2019).

Restoration of riparian buffers and protection of seasonal streams have produced noticeable improvements in soil moisture retention, reduced erosion, and increased amphibian and avifaunal diversity. These hydrological improvements have stabilized microhabitats required by insectivorous birds and reptiles, which regulate pest populations and contribute to natural biological control. The strengthening of these functional groups indicates a gradual recovery of ecological balance and trophic complexity in restored landscapes (Naiman & Décamps, 1997).

Overall, habitat restoration and policy interventions in Alirajpur have resulted in enhanced biodiversity, improved ecosystem services, and strengthened ecological resilience. The positive trends in keystone species populations demonstrate that integrated conservation approaches combining community participation, native species restoration, and legal protection frameworks can effectively regenerate tropical ecosystems and sustain long-term ecological integrity in the region.

Graph 1: Vegetation Cover Change in Restored Sites (2015–2023)

CHALLENGES AND GAPS

- Fragmented Policy Implementation
- Lack of Long-Term Monitoring
- Inadequate Capacity Building in Communities
- Conflict Between Development Projects and Conservation

RECOMMENDATIONS

- Integrated Landscape Management involving ecological corridors, biodiversity zones, and buffer areas.
- Capacity Building for Tribal Communities in ecological monitoring.
- Convergence of Schemes (FRA, MGNREGA, CAMPA) for synergistic restoration.
- Use of GIS and Remote Sensing to monitor ecological recovery in real-time.
- Institutional Accountability for biodiversity boards at the district level.

II. CONCLUSION

The conservation of keystone species in Alirajpur's tropical ecosystems hinges on the efficacy of restoration efforts and the strength of institutional frameworks. While notable gains have been achieved through JFM and restoration programs, systemic issues remain. A collaborative, science-driven approach combining traditional knowledge, modern ecological tools, and strong policy implementation is crucial for ensuring ecological sustainability and community resilience in this biodiversity-rich region. The conservation of keystone species in the tropical ecosystems of Alirajpur district represents a critical endeavor, not only for safeguarding biodiversity but also for sustaining ecological resilience and the livelihoods of indigenous communities. The review of habitat restoration and policy interventions in this ecologically sensitive region reveals that while multiple frameworks and strategies are in place, their success is often determined by the depth of implementation, community participation, and ecological contextualization. Keystone species such as the Indian pangolin, sloth bear, and giant squirrel are not merely individual conservation units; they represent broader ecosystem health and serve as indicators of biodiversity integrity. Restoring their habitats through passive and active ecological techniques ranging from natural regeneration and enrichment planting to corridor creation has shown promising results. However, these approaches must be embedded in locally adaptive and participatory processes to realize long-term sustainability.

One of the most compelling findings is the integral role that local communities, especially tribal populations, play in ecosystem restoration. Traditional ecological knowledge, when synergized with scientific restoration methodologies, creates an enabling environment for conservation outcomes that are both culturally sensitive and ecologically robust. Programs such as Joint Forest Management have demonstrated potential in enhancing forest cover, improving habitat connectivity, and encouraging stewardship among forest-dependent populations. Nevertheless, challenges persist in the form of limited monitoring, fragmented policy execution, lack of inter-departmental coordination, and inconsistent funding flows. The Forest Rights Act and the Compensatory Afforestation Fund Management and Planning Authority initiatives, while well-conceived, often suffer from on-ground inefficiencies, bureaucratic bottlenecks, and an insufficient understanding of local socio-ecological dynamics.

Ecological data over the past decade suggest that areas with strong community involvement and consistent restoration efforts under institutional frameworks like JFM or CAMPA have experienced noticeable improvements in vegetation indices, water retention, and wildlife sightings. Yet, there is an urgent need to establish baseline data for keystone species populations and monitor their movements and interactions in the recovering habitats. The incorporation of geospatial tools, remote sensing, and biodiversity indexing can provide quantitative support to these efforts and guide adaptive management. In this context, policy reforms should not only aim to protect the legal rights of communities but also build their ecological capacities, fostering a co-management paradigm where restoration and livelihood enhancement go hand in hand.

Looking forward, an integrated landscape-level approach is necessary one that aligns conservation science, grassroots governance, and cross-sectoral policies. Long-term success in keystone species conservation in Alirajpur will depend

on multi-stakeholder collaboration, including forest departments, academic institutions, NGOs, and local governance bodies. Institutionalizing ecological education, investing in sustainable eco-development models, and strengthening biodiversity governance at the district and gram sabha levels are imperative. Moreover, restoration should not be seen in isolation but as part of a broader ecological justice and climate resilience agenda.

While significant steps have been taken toward habitat restoration and policy intervention in Alirajpur, a holistic, inclusive, and adaptive strategy is required to ensure the long-term survival of keystone species and the well-being of forest-dependent communities. Conservation in Alirajpur must evolve from isolated projects to an interconnected vision of ecological recovery, community empowerment, and sustainable development.

REFERENCES

- [1]. Champion, H. G., & Seth, S. K. (1968). *A revised survey of the forest types of India*. Government of India.
- [2]. Chapman, C. A., & Chapman, L. J. (1995). Survival without dispersers. *Conservation Biology*, 9(3), 675–678.
- [3]. Chazdon, R. L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. *Science*, 320(5882), 1458-1460.
- [4]. FAO. (2018). *The state of the world's biodiversity for food and agriculture*. FAO.
- [5]. Gadgil, M., & Guha, R. (1992). *This Fissured Land: An Ecological History of India*.
- [6]. Kothari, A., Pathak, N., Anuradha, R. V., & Taneja, B. (2014). *Communities, conservation and conflicts in India*. Sage Publications. (Kothari et al., 2014)
- [7]. Madhya Pradesh Forest Department. (2022). *Annual Report on Forest Restoration Initiatives*.
- [8]. MoEFCC. (2019). *CAMPA Guidelines for Restoration*. Government of India.
- [9]. Naiman, R. J., & Décamps, H. (1997). The ecology of interfaces: Riparian zones. *Annual Review of Ecology and Systematics*, 28, 621–658. (Naiman & Décamps, 1997)
- [10]. Potts, S. G., et al. (2010). Global pollinator declines: Trends, impacts and drivers. *Trends in Ecology & Evolution*, 25(6), 345–353. (Potts et al., 2010)
- [11]. Rao, K. S., & Pant, R. (2001). Land use dynamics and landscape change pattern in a typical micro watershed in the mid-Himalayan region of India. *Agriculture, Ecosystems & Environment*, 86(2), 113-123.
- [12]. Shanahan, M., So, S., Compton, S. G., & Corlett, R. (2001). Fig-eating by vertebrate frugivores: A global review. *Biological Conservation*, 98(3), 307–323. (Shanahan et al., 2001)