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Abstract: Dynamic resource allocation is central to efficient training and serving of machine learning 

workloads across modern cloud, on-premise, and edge infrastructures. This review surveys algorithmic 

strategies used to allocate CPU/GPU/accelerator, memory, and network resources for ML tasks. We 

present a taxonomy covering heuristic and rule-based methods, optimization-based approaches, elastic 

and autoscaling systems, straggler-mitigation and coding techniques, predictive and workload-

forecasting algorithms, and machine learning / deep reinforcement learning schedulers. Strengths, 

limitations, implementation considerations, and open research directions are discussed to guide both 

researchers and practitioners. 
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I. INTRODUCTION 

Machine learning workloads especially deep learning training and large-scale inference place distinctive, time-varying 

demands on compute, memory, and network resources. Allocating resources statically leads to underutilization or 

missed deadlines; hence dynamic allocation algorithms that adapt to workload variability are required to maximize 

throughput, minimize job completion time, reduce cost, and control energy use (Khan et al., 2022; Chiang et al., 2021). 

This review synthesizes canonical and recent approaches (2017–2025) to dynamic resource allocation for ML 

workloads and highlights trade-offs between optimality, scalability, and implementation complexity. 

 

TAXONOMY OF DYNAMIC ALLOCATION ALGORITHMS 

The taxonomy of dynamic allocation algorithms for machine learning workloads encompasses a broad spectrum of 

techniques designed to efficiently distribute computational resources under conditions of uncertainty, variability, and 

heterogeneity. As ML systems grow in scale spanning cloud clusters, edge devices, and hybrid platforms resource 

allocation must be both responsive and intelligent. Dynamic allocation algorithms are generally classified into several 

major categories based on their decision-making frameworks, optimization goals, adaptability, and computational 

complexity. These categories include heuristic-based approaches, optimization-based methods, predictive and 

forecasting models, machine learning driven allocation strategies, market-inspired and economic models, and hybrid or 

multi-layered scheduling systems. Each class embodies distinct operational principles and is suited to specific workload 

characteristics, from iterative deep learning training to real-time inference on streaming data. 

Heuristic-based algorithms form one of the earliest and most widely used classes. These include greedy strategies, 

priority queues, rule-based schedulers, and threshold-trigger mechanisms that dynamically reassign tasks based on real-

time system metrics such as CPU/GPU load, memory usage, network throughput, and latency. Although heuristics do 

not guarantee optimality, they offer low overhead, fast execution, and practical scalability for large distributed training 

tasks. They are particularly effective in clusters where workloads shift rapidly, making complex optimization models 

impractical. 

Optimization-based algorithms constitute another key category, leveraging linear programming, mixed-integer 

programming, nonlinear programming, and convex optimization to derive mathematically optimal or near-optimal 

allocations. These models incorporate constraints such as energy limits, task dependencies, deadlines, and hardware 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology 

                           International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 2, November 2025 

Copyright to IJARSCT DOI: 10.48175/568   716 

www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 
diversity. Due to their computational complexity, optimization-based systems are often used in offline scheduling or 

batch training environments where planning horizons are longer, but hybrid adaptations also exist for near-real-time 

adjustments. 

Predictive and forecasting algorithms form a third major category, integrating statistical models, machine learning 

predictors, or reinforcement learning to anticipate future resource demands. These proactive methods help autoscalers 

adjust resources ahead of workload spikes, improving stability, reducing bottlenecks, and preventing underutilization. 

They are particularly relevant for cloud-based ML services with periodic usage patterns or unpredictable inference 

loads. 

Another important category is machine learning-driven resource allocation, in which ML models directly learn optimal 

allocation policies. Reinforcement learning agents, classification models, and deep neural networks can dynamically 

adjust scheduling decisions based on system feedback, making them highly adaptable to non-linear, high-variance 

environments. This category is rapidly expanding as ML techniques become more effective at modeling system 

dynamics. 

Market-based and economic allocation algorithms treat computational resources as commodities, using auction 

mechanisms, bidding strategies, cost models, and game theory to guide allocation. These methods are prevalent in 

multi-tenant cloud environments where resource pricing, fairness, and user priorities significantly influence scheduling 

decisions. 

Finally, hybrid approaches blend elements from multiple categories for example, combining heuristics with predictive 

models, or using optimization for baseline planning and ML-based algorithms for real-time adaptation. These hybrid 

systems offer balanced performance, robustness, and scalability, making them increasingly essential in modern ML 

infrastructure. Overall, the taxonomy of dynamic allocation algorithms reflects the diverse and evolving nature of ML 

workloads, providing a structured understanding of how different algorithmic strategies address resource variability, 

performance goals, and system complexity. 

 

HEURISTIC AND RULE-BASED SCHEDULERS 

Legacy cluster managers and many production schedulers use priority queues, greedy bin-packing, fair-sharing, and 

simple backfilling heuristics adapted for GPU jobs. Heuristic methods are fast and robust but often fail to exploit 

workload-specific structure and cannot easily optimize multi-objective goals like energy and latency simultaneously (Li 

et al., 2022). The taxonomy of dynamic allocation algorithms for machine learning workloads encompasses a structured 

classification of techniques designed to optimize computational resources in dynamic, data-intensive environments. 

These algorithms can be broadly grouped into rule-based, predictive, learning-based, market-driven, and hybrid 

allocation approaches, each offering distinct strategies for handling the fluctuating demands of ML tasks.  

Rule-based algorithms operate on predefined system thresholds such as CPU utilization, memory usage, or job queue 

length and allocate resources reactively based on observed conditions. They are widely used due to their simplicity and 

low computational overhead, although they often struggle with workload unpredictability (Zhao & Zhang, 2020). In 

contrast, predictive allocation algorithms rely on statistical models and time-series forecasting to estimate future 

resource needs. By anticipating workload spikes, they enable proactive scaling and reduce latency, making them 

suitable for training pipelines where resource demands follow identifiable patterns (Chen et al., 2021).  

A more advanced class, learning-based allocation algorithms, employs reinforcement learning, deep learning, and 

evolutionary optimization to autonomously learn optimal allocation policies. These methods adapt to dynamic changes 

in real time and are particularly effective for heterogeneous ML workloads involving GPUs, TPUs, and distributed 

clusters. Their growing popularity stems from their ability to minimize resource wastage while maximizing 

performance, though they require significant training overhead and complex tuning (Kumar & Singh, 2022). 

Another category, market-driven algorithms, conceptualizes resource allocation as an economic problem, where pricing 

models, bidding mechanisms, and utility functions determine distribution. This approach is useful in large-scale cloud 

environments where multiple ML tasks compete for limited resources. Market-driven methods promote fairness and 

cost-efficiency, but their performance can fluctuate based on pricing dynamics and user demand (Huang et al., 2020). 
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Complementing these strategies, hybrid allocation algorithms integrate two or more techniques for example, combining 

predictive analytics with reinforcement learning or merging static rules with dynamic optimization.  

Hybrid models are increasingly adopted in modern ML systems due to their robustness and versatility in 

accommodating diverse workload characteristics. They also support multi-objective optimization, balancing 

throughput, energy efficiency, job deadlines, and cost constraints simultaneously (Patel & Mehta, 2023). Beyond these 

core categories, the taxonomy also recognizes architecture-specific allocation mechanisms, such as GPU-aware 

schedulers, memory-centric allocation algorithms, and container-orchestration-based approaches (e.g., Kubernetes or 

Docker Swarm), all of which are essential for deep learning workloads that demand high parallelism and fast data 

transfer rates. 

Overall, the taxonomy highlights the transition from simple threshold-driven strategies to intelligent, autonomous 

systems capable of adapting to rapid workload variations. As ML models continue to grow in scale and complexity, 

dynamic resource allocation algorithms will play an increasingly vital role in ensuring performance efficiency, energy 

conservation, and cost-effectiveness. The evolution of these techniques underscores the need for systems that balance 

computational demands with constraints on cloud infrastructure, energy usage, and real-time operational requirements 

(Li & Wen, 2021). 

 

OPTIMIZATION-BASED APPROACHES (MIP/LP) 

Mixed-Integer Programming and Linear Programming formulations can produce high-quality allocations that 

incorporate constraints. Such methods have been used for elastic training allocation and resource loaning, but their 

computational cost limits real-time use to small clusters or to periodic planning phases; heuristics or rounding are 

commonly applied to produce actionable allocations (ResearchGate papers; Chiang et al., 2021). Optimization-based 

approaches, particularly those using Mixed-Integer Programming and Linear Programming, play a significant role in 

designing efficient and reliable resource allocation and scheduling mechanisms for machine learning workloads. These 

methods provide mathematically rigorous frameworks capable of modeling complex constraints, multi-objective 

requirements, and large-scale resource dependencies. Linear Programming is often used when the decision variables 

can be expressed as continuous values for example, determining the fractional allocation of CPU cycles, memory 

bandwidth, or network throughput to different ML jobs.  

LP models are valued for their computational efficiency and ability to produce globally optimal solutions under linear 

constraints, making them particularly useful in scenarios such as batch training pipelines, distributed data 

preprocessing, and minimizing communication overhead in ML clusters. By formulating objectives like minimizing 

total latency, maximizing throughput, or reducing energy consumption, LP enables precise control over resource usage 

and provides interpretable allocation strategies suitable for system-level optimization (Bertsimas & Tsitsiklis, 1997). 

In contrast, Mixed-Integer Programming extends LP by incorporating both continuous and discrete decision variables, 

enabling it to capture more complex scheduling problems where binary or integer decisions are required such as 

assigning a task to a specific GPU, selecting a server for a training job, or determining whether to migrate a model to a 

different node. Because many ML workload scheduling problems inherently involve discrete decisions, MIP is 

particularly effective for modeling real-world constraints that arise in heterogeneous computing environments.  

MIP-based scheduling has been applied to problems such as optimizing GPU utilization, minimizing total energy 

consumption during distributed training, and dynamically mapping deep learning tasks across multi-tenant cloud 

infrastructures. Researchers have shown that MIP formulations can achieve near-optimal resource allocations even 

under strict QoS requirements, making them valuable tools for ML platforms that must balance accuracy, cost, and 

latency simultaneously (Chu & Beasley, 1998). However, the computational cost of MIP solutions grows rapidly with 

problem size, which limits their use in real-time or large-scale settings. 

To mitigate these challenges, hybrid approaches combining MIP/LP with heuristics or approximation algorithms have 

emerged. These hybrid models exploit the precision of mathematical optimization in the initial planning stage while 

relying on fast heuristics for real-time adjustments. For example, LP can be used to determine an optimal baseline 

allocation, while greedy heuristics or local search strategies handle runtime workload fluctuations. This combination 

allows cloud providers to maintain stability and fairness while efficiently adapting to dynamic environments.  
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Additionally, MIP/LP formulations have been integrated with machine learning itself such as using predictive models to 

estimate job execution times or energy consumption which helps refine the input parameters of the optimization models 

and produce more accurate allocations (Mulvey & Ruszczyński, 1995). Recent advancements in solver technologies, 

including parallel branch-and-bound algorithms and cutting-plane techniques, have further improved the scalability of 

optimization-based systems, making them increasingly feasible for large distributed ML clusters. 

Overall, optimization-based approaches grounded in MIP and LP provide a powerful mathematical foundation for 

addressing the intricate and evolving requirements of ML workload management. Their ability to balance multiple 

conflicting objectives, incorporate detailed constraints, and generate globally optimal solutions makes them 

indispensable in the shifting landscape of distributed computing and machine learning operations. Despite their 

computational complexity, these models remain essential for designing high-performance, predictable, and cost-

efficient resource schedulers in modern ML ecosystems. 

 

ELASTIC AND AUTOSCALING SYSTEMS 

Elastic schedulers change a job’s resource footprint at runtime adding or removing GPUs/VMs to match demand and 

improve utilization. Systems such as Lyra, Aryl, Kale, and Dynamo ML represent practical designs that combine 

elasticity with capacity-loaning and fine-grained GPU sharing to shorten queueing delay and raise utilization while 

minimizing preemption overhead (Li et al., 2023; Li et al., 2022; Chiang et al., 2021; Kale paper 2024). 

Elastic and autoscaling systems have become foundational components in managing dynamic machine learning 

workloads, particularly in large-scale distributed environments where resource demands fluctuate significantly over 

time. These systems enable computational resources such as CPUs, GPUs, memory, and storage to scale up or down 

automatically in response to changes in workload intensity, thereby improving performance, reducing cost, and 

enhancing overall system reliability.  

Elasticity ensures that ML training jobs, inference pipelines, and data preprocessing tasks receive the appropriate 

amount of computational power at any given time, preventing both under-provisioning and over-provisioning. 

Autoscaling mechanisms rely on predefined policies, monitoring metrics, and predictive algorithms to orchestrate real-

time adjustments. This dynamic provisioning has become especially vital for ML workflows that experience 

unpredictable fluctuations, such as hyperparameter tuning, batch inference surges, and online learning systems that 

react to streaming data. 

Elastic autoscaling frameworks commonly use both horizontal scaling and vertical scaling. Horizontal autoscaling is 

prevalent in distributed training setups like Horovod or TensorFlow Distributed, where additional GPU instances can be 

temporarily allocated to accelerate training during peak workloads. Cloud platforms such as AWS Auto Scaling, 

Google Kubernetes Engine Autoscaler, and Azure VM Scale Sets provide built-in support for dynamically resizing ML 

clusters based on CPU utilization, GPU usage, memory pressure, or custom metrics such as training loss or model 

throughput.  

Vertical autoscaling, although more limited by hardware constraints, allows systems to allocate additional memory or 

processing cores to an existing virtual machine, which can be beneficial for memory-intensive workloads like 

transformer-based models. Both approaches aim to maintain seamless operation by adapting resource configurations in 

real time, ensuring operational continuity even during sudden workload spikes. 

A key advancement in elastic ML systems is the incorporation of predictive autoscaling, which leverages machine 

learning itself to forecast resource demands before they occur. By analyzing historical workload patterns, time-series 

trends, or user request behaviors, predictive autoscaling can proactively provision additional resources ahead of 

anticipated load increases. This reduces latency during inference bursts and accelerates distributed training tasks by 

eliminating the lag associated with reactive scaling.  

Reinforcement learning-based autoscaling strategies further enhance adaptability by learning optimal scaling policies 

over time, improving responsiveness and reducing the likelihood of oscillations or unnecessary scaling events. These 

intelligent systems outperform traditional threshold-based autoscaling by offering smoother scaling transitions and 

more accurate resource utilization predictions. 
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Elastic and autoscaling systems also bring cost-efficiency benefits. By releasing idle resources during low-demand 

periods, organizations dramatically reduce operational expenses, particularly when using GPU-accelerated cloud 

services that can be expensive when allocated continuously. Techniques such as spot instance utilization, serverless 

ML, and container orchestration through Kubernetes help decrease costs while maintaining flexibility.  

However, challenges remain autoscaling decisions must consider model checkpointing overheads, inter-node 

communication latency, and the potential for training instability when workers join or leave during distributed training. 

Despite these challenges, elastic and autoscaling systems remain indispensable for modern ML operations. They 

provide the computational agility necessary to support diverse and evolving workloads, making them a cornerstone of 

efficient, scalable, and cost-effective machine learning infrastructure in both research and industrial environments. 

 

PREDICTIVE AND FORECASTING ALGORITHMS 

Predictive methods use time-series models or ML to forecast resource usage and proactively scale or pre-place tasks. 

Techniques range from classical ARIMA and regression to modern LSTM/BiLSTM/attention models for fine-grained 

forecasting; they improve reactive autoscaling by reducing oscillation and misallocation. 

Predictive and forecasting algorithms play a crucial role in dynamic resource allocation for machine learning 

workloads, as they enable systems to anticipate future demand and proactively adjust computational resources. Instead 

of reacting to performance bottlenecks or spikes in workload intensity, predictive algorithms use historical data, 

workload trends, and statistical or machine learning models to estimate future resource usage. This ability to foresee 

demand is especially beneficial in distributed ML environments where training tasks, data preprocessing jobs, and 

inference workloads are highly variable. Forecasting mechanisms help minimize latency, avoid resource shortages, and 

reduce operational costs by scaling infrastructure precisely when needed. By integrating intelligence into resource 

management systems, predictive algorithms significantly enhance the stability, energy efficiency, and overall 

performance of ML platforms. 

A widely adopted class of predictive techniques is time-series forecasting, which uses historical patterns to model 

future resource consumption. Algorithms such as ARIMA, Holt–Winters exponential smoothing, and state-space 

models are commonly used to predict CPU loads, GPU utilization, network bandwidth requirements, and memory 

usage. These statistical models capture periodic usage cycles, trends in training intensity, and seasonal variations in user 

requests, making them valuable for scheduling ML inference during high-demand periods or planning distributed 

training during low-traffic windows. For example, ARIMA-based resource prediction has been shown to reduce SLA 

violations in cloud systems by anticipating workload increases and enabling proactive resource scaling. Similarly, 

exponential smoothing techniques provide short-term forecasts that help maintain operational continuity during rapid 

workload fluctuations. 

Beyond classical statistical models, machine learning–based predictive algorithms have emerged as more flexible and 

accurate alternatives. Techniques such as random forests, gradient boosting models, and neural networks particularly 

LSTMs (Long Short-Term Memory) and GRUs (Gated Recurrent Units) excel at capturing nonlinear patterns and long-

range dependencies in workload behavior. LSTM-based forecasting has proven especially effective for predicting GPU 

demand during deep learning training, as it can model the complex and irregular spikes associated with iterative model 

updates or hyperparameter tuning procedures.  

These models are not only used to predict resource utilization but also estimate execution times, queue lengths, failure 

probabilities, and the energy overhead associated with scheduled tasks. By integrating such predictions into resource 

allocation algorithms, schedulers can more effectively balance task placement, improve job throughput, and mitigate 

straggler effects. 

An emerging frontier in forecasting-based scheduling is the use of reinforcement learning (RL), where scaling decisions 

are learned through continuous interaction with the environment. RL agents can dynamically adjust resource 

provisioning in response to observed rewards such as reduced latency, minimized energy consumption, or lower 

operational cost. Unlike traditional autoscalers that rely on static thresholds, RL-based systems evolve and optimize 

their policies over time, adapting to changes in workload characteristics or hardware performance. Additionally, 
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probabilistic forecasting methods, such as Bayesian regression and Gaussian Processes, provide uncertainty estimates 

alongside predictions, enabling risk-aware scaling that accounts for potential spikes or unexpected job arrivals. 

Despite their advantages, predictive and forecasting algorithms face challenges related to accuracy, model drift, and 

computational overhead. Forecasting errors can lead to premature or delayed scaling, resulting in resource wastage or 

performance bottlenecks. To address these limitations, hybrid systems combine statistical forecasting with ML-based 

approaches to leverage the benefits of both. Moreover, continuous monitoring and model retraining help maintain 

predictive accuracy in dynamic environments where workload patterns evolve rapidly. Overall, predictive and 

forecasting algorithms have become essential components of modern resource allocation strategies in machine learning 

systems, providing the intelligence required to support efficient, scalable, and cost-effective cloud and edge computing 

infrastructures. 

 

MACHINE LEARNING AND DEEP REINFORCEMENT LEARNING (DRL) SCHEDULERS 

DRL and multi-agent RL have become prominent for dynamic allocation due to their ability to learn policies that trade 

off objectives under stochastic conditions. DRL schedulers have been applied to container placement, GPU allocation, 

and multi-objective tradeoffs (latency, energy). While DRL can outperform hand-tuned heuristics in changing 

environments, it requires careful reward design, offline training with representative traces, and safety considerations for 

production deployment (Mao et al., 2019; Frontiers 2025 review; DRL scheduling surveys). 

 

COMPARATIVE STRENGTHS AND WEAKNESSES 

 Heuristics: simple, low overhead, but suboptimal on complex ML-aware metrics. 

 Optimization (MIP/LP): near-optimal but computationally expensive and brittle to noisy inputs. 

 Elastic systems: practical and effective in production; rely on preemption and migration mechanics. 

 Coded/replication: robust to stragglers but increase resource use and programming complexity. 

 Predictive & ML-based: reduce reactive oscillations; success depends on forecasting quality. 

 DRL: adaptable and powerful for multi-objective control but difficult to validate and generalize. 

 

II. CONCLUSION 

Dynamic resource allocation for ML workloads spans a spectrum from lightweight heuristics to complex learning-based 

controllers. Recent systems demonstrate that elastic allocation and ML-driven controllers can materially improve 

utilization and job latency in production clusters, but tradeoffs between optimality, overhead, and reliability persist. 

Future solutions will likely blend predictive models, elastic resource primitives, and safe RL to deliver adaptive, 

efficient, and explainable allocation policies. 
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