

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, November 2025

SafeNest: A Real-Time Safety & Emergency Responsive Platform

Ms. Anamika Wasnik, Ms. Bhakti Raut, Ms.Sakshi Sankhe, Ms.Dipali Ugale, Ms.Sakshi Sakpal

Department of Computer Engineering

Dr. DY Patil College of Engineering and Innovation, Pune, India

Abstract: SafeNest is highly important in today's technology-driven world because personal safety has become a critical concern across all sections of society. Traditional safety apps often fail during network outages or emergencies, but SafeNest bridges this gap by offering both online and offline SOS features. With the integration of AI-based voice detection, face recognition, movement and fall detection, along with real-time location sharing, it ensures faster and smarter emergency responses. Built on the MERN stack, SafeNest aligns with modern scalable technologies while prioritizing privacy, reliability, and quick action. Thus, it provides a socially impactful and technologically advanced solution to one of the most urgent challenges of our time — personal safety.

Keywords: SafeNest.

I. INTRODUCTION

In today's dynamic and unpredictable world, personal safety has become a major concern for individuals as well as society. The effects of rapid urbanization, increasing crime rates, road accidents, and emergency incidents highlight the urgent need for systems that can ensure immediate response and reliable communication during crises [5]. Although several mobile safety applications have been developed, most of them depend entirely on uninterrupted internet connectivity, which limits their effectiveness during network failures or in remote regions with poor signal coverage [1]. Hence, there is a growing demand for a hybrid safety solution capable of functioning seamlessly in both online and offline environments, ensuring continuous protection and accessibility regardless of connectivity conditions. SafeNest Real-Time Safety and Emergency Response Platform is developed to bridge this critical gap by integrating the reliability of offline SMS-based alerts with the intelligent capabilities of online, AI-driven emergency detection [2]. The application allows users to trigger an SOS alert through a single tap or voice command, automatically notifying trusted contacts with vital information such as live location, motion data, recorded audio, and camera footage [9]. By incorporating advanced artificial intelligence technologies like voice recognition, facial detection, and body movement monitoring, SafeNest ensures that distress signals are identified and processed even when the user is unable to manually activate an alert [12].

This platform is developed using the MERN stack— comprising MongoDB, Express, React/React Native, and Node.js—which ensures scalability, cross-platform compatibility, and seamless integration with modern cloud infrastructures [10]. It supports real-time communication through technologies such as web sockets, push notifications, and SMS gateways, enabling instant transmission of SOS alerts and status updates during emergencies [6]. Furthermore, SafeNest is designed with a strong emphasis on user privacy and consent, ensuring that monitoring features are only activated during verified emergency situations to maintain ethical use of data [15].

By combining offline reliability, AI-driven online intelligence, and real-time responsiveness, SafeNest stands out as a technologically advanced yet socially impactful innovation addressing one of the most urgent issues of modern society— ensuring personal safety and facilitating faster emergency responses [11].

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, November 2025

II. LITERATURE REVIEW

A. Emergency alert systems and mobile SOS apps

Over the past decade, numerous mobile applications and safety systems have been designed to help users during emergencies by allowing quick alerts to trusted contacts or authorities [5]. Early developments primarily centered around single-tap panic buttons and GPS-based location sharing mechanisms that provided users with an easy way to communicate distress signals [8]. Commercially available solutions—such as personal safety mobile apps and dedicated wearable devices—typically integrate location tracking, one- touch emergency calling, and preconfigured emergency contact lists to support real-time responses [9].

B. Offline Communication and Hybrid Networks

Literature on delay-tolerant networking and SMS fallback mechanisms suggests that blending internet-based messaging with offline methods can significantly improve reliability [1]. Studies also show that SMS-based emergency alerts remain functional even during low bandwidth or internet failure, making them an effective backup communication channel [9]. However, integrating offline alerts seamlessly with modern apps requires careful design, as newer operating systems often restrict background SMS automation [3].

C. AI for Voice-Activated Emergency Detection

Several studies have explored voice-triggered emergency systems where specific keywords like "Help" or "Emergency" automatically activate alerts [2]. Research on speech-to-text (STT) and keyword spotting models such as Google Speech Commands, Whisper, and DeepSpeech has shown promising accuracy for real-time safety applications [14]. However, a major limitation remains the occurrence of false positives and challenges with language diversity, which SafeNest aims to overcome through multi-modal confirmation using voice, movement, and camera inputs [13].

D. Face Detection and Camera-Based Safety

Face detection and recognition technologies have been widely explored using CNN-based models such as OpenCV Haar cascades, Dlib, and MobileNet SSD [7]. In the context of personal safety, enabling camera access helps capture crucial visual evidence during emergency situations [9]. Studies have further shown that privacy-preserving and event-triggered face detection methods are more acceptable to users than continuous surveillance, a principle that SafeNest adopts by activating the camera only during verified emergencies [11].

E. Location Tracking for Emergency Response

Location-based services (LBS) have long served as a foundation for modern emergency response applications [5]. GPS-enabled safety platforms enhance real-time location sharing, thereby improving the effectiveness and response time of emergency services [7]. However, studies highlight that continuous background tracking can lead to excessive battery consumption and potential privacy risks [9]. To address these challenges, research advocates for on-demand and event-triggered location sharing, a strategy effectively implemented in SafeNest [10].

An emerging field in artificial intelligence (AI) safety research focuses on detecting spy cameras and preventing privacy violations in sensitive environments such as changing rooms, hotels, and public restrooms (G. Alhussein et al., [18], 2025). Prior studies have introduced various detection techniques, including infrared-based camera identification using smartphone sensors, electromagnetic field (EMF) scanning for identifying wireless surveillance devices, and AI-powered anomaly detection models leveraging image recognition (S. Ntalampiras et al., [16], 2023). Although this area of research is still developing, these studies demonstrate the feasibility of transforming smartphones into proactive privacy protection tools (G. Alhussein et al., [18], 2025). Building upon this foundation, SafeNest extends such approaches by integrating a changing-room camera detection feature, offering users enhanced security and confidence against hidden surveillance threats.

Existing mobile safety applications incorporate SOS alerts, voice detection, face recognition, and fall detection features but still face limitations such as heavy internet dependency, false AI triggers, and privacy concerns (R. K. Balan et al., [1], 2023;

DOI: 10.48175/IJARSCT-29760

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POUT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 2, November 2025

Impact Factor: 7.67

R. Bhande and S. Desai, [5], 2023; A. Z. Alharbi et al., [9], 2024). Research emphasizes that combining offline SMS alerts, online notifications, AI-driven detection, and event-triggered camera activation can significantly enhance reliability and responsiveness (L. Chen et al., [4], 2023; Y. Tripathi, [10], 2025; S. Jena et al., [14], 2024). Furthermore, emerging studies on spy camera detection in sensitive environments underline the growing importance of privacy-preserving safety mechanisms (S. Ntalampiras et al., [16], 2023; G. Alhussein et al., [18], 2025). SafeNest bridges these research gaps by integrating offline and online SOS capabilities, multi-modal AI detection, and privacy-focused changing room surveillance prevention into a unified real-time safety platform (T. Htun et al., [2], 2023; A. K. Anuvindh et al., [11], 2024).

III. DISCUSSION

The review of algorithms implemented in SafeNest underscores both the strengths and limitations of current methodologies in real-time safety and emergency response systems [6]. The platform employs a layered architectural design, where each module—such as SOS activation, AI-based detection, and communication routing—contributes to the system's overall reliability and resilience, minimizing dependence on a single detection method [4]. This modular approach is consistent with findings in existing research, which suggest that multi-modal frameworks outperform single-mode solutions in ensuring timely and accurate emergency responses [8].

A. Offline SMS to Trusted Contacts

When operating offline, SafeNest utilizes an SMS-based emergency alert system that transmits the user's location and essential details to pre-registered trusted contacts while locally queuing alerts for later synchronization once connectivity is restored [1]. This hybrid communication mechanism ensures reliability even during internet outages, effectively addressing one of the major limitations found in conventional internet-dependent safety systems [5].

B. Context Capture

SafeNest collects real-time contextual data such as GPS location, images or videos, and short audio clips to provide accurate situational awareness during emergencies [8]. This functionality enables trusted contacts and emergency responders to better understand the nature and severity of an incident, allowing for quicker and more informed action. To maintain user privacy, context capture is activated strictly during verified emergency conditions, ensuring that sensitive data is handled efficiently, securely, and only when necessary [15].

C. Alert Delivery

The SafeNest system delivers emergency alerts through a dual-mode mechanism—sending notifications online via the backend and push services, or offline via SMS when network connectivity is unavailable [1]. In cases of network disruption, the system locally stores unsent alerts and automatically retries transmission once the device regains connectivity, ensuring that no emergency message is lost [3]. This hybrid alert delivery model enhances reliability and ensures continuous protection for users in both urban and remote environments [7].

D. Camera Detection

SafeNest activates its camera module only when an emergency event is detected, capturing short images or video clips to provide visual context without enabling continuous surveillance [7]. The captured media is securely encrypted and temporarily stored, allowing trusted contacts or emergency responders to assess the situation rapidly while ensuring user privacy and data protection [9]. This design approach aligns with privacy-preserving frameworks proposed in recent research on responsible AI and surveillance detection [18].

E. Face Detection

The face detection module in SafeNest plays a vital role in verifying user identity during emergency events, thereby reducing false alarms and supplying credible visual evidence to trusted contacts or responders [12]. This functionality is designed to activate exclusively during SOS triggers to maintain user privacy and prevent unauthorized surveillance.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29760

ISSN 2581-9429 IJARSCT 492

International Journal of Advanced Research in Science, Communication and Technology

JSO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Impact Factor: 7.67

Furthermore, all captured facial data are securely encrypted and stored only for a limited duration, ensuring compliance with ethical guidelines and data protection regulations [11].

F. Additional Considerations

In addition to the core emergency detection and alert algorithm, SafeNest integrates several critical design considerations to enhance effectiveness, reliability, and user trust [5]. The system employs event-triggered sensor activation to optimize battery performance and reduce power consumption [9]. All sensitive data—including location, audio, video, and facial information—are securely encrypted and stored temporarily to preserve user privacy [11]. Users are provided with extensive customization options, allowing them to configure trusted contacts, emergency keywords, and geofenced privacy zones, ensuring that the platform adapts to individual safety preferences [10]. Moreover, SafeNest is designed for instant SOS activation, prioritizing accessibility during high-stress scenarios [4]. Features such as offline SMS alerts, queued message retries, and periodic system integrity checks further strengthen reliability [1], while its privacy-first event-triggering mechanism ensures compliance with ethical and legal standards [15].

IV. FUTURE DIRECTIONS

The current version of SafeNest demonstrates how offline and online emergency detection, multi-modal AI, and privacy- aware features can provide real-time personal safety [1]. However, several areas remain open for further development:

- 1) Future improvements could further reduce false positives caused by environmental noise, low-light conditions, or sudden movement [14]. Prior research has shown that deep-learning-based multimodal frameworks can significantly improve emergency detection accuracy compared to traditional methods [13].
- 2) Currently, SafeNest reacts to emergency triggers, but integrating predictive analytics could help anticipate risky situations based on patterns of user behavior [15]. Similar approaches have been explored in AI-based safety and healthcare applications to improve proactive response [10].
- 3) Expanding monitoring to include real-time health metrics, such as heart rate, sudden falls, or abnormal activity, via smartwatches or fitness trackers could enhance safety [5]. Literature highlights that combining mobile and wearable sensor data enhances overall safety monitoring and emergency responsiveness [7].
- 4) Users may feel anxious about continuous monitoring or sensitive data capture [15]. Techniques such as event-triggered recording, encrypted data storage, and user- configurable privacy zones can address these concerns while maintaining trust. Transparency in alerting and data usage is critical for user acceptance [9].
- 5) Real-world conditions often include low-cost devices, unstable internet, or shared spaces [1]. Offline support, SMS fallback, cloud synchronization, and clear user guidance are essential for resilient emergency response [3]. Institutional experiences show that redundancy and usability improvements increase effectiveness [6].

V. CONCLUSION

SafeNest provides a comprehensive real-time safety and emergency response platform by integrating offline and online SOS alerts, AI-powered voice, movement, and face detection, camera-based context capture, and privacy-aware features. Its hybrid approach ensures reliable communication even without internet, while multi-modal detection reduces false alarms and enhances accuracy. By prioritizing user privacy, incorporating location tracking, and enabling trusted contact notifications, SafeNest offers a proactive and secure solution for personal safety. With future enhancements like predictive alerts, wearable integration, and advanced AI models, SafeNest has the potential to become a robust, intelligent, and user-friendly platform for safeguarding individuals in diverse environments.

SafeNest represents a significant advancement in personal safety and emergency response by combining multiple innovative technologies into a single, unified platform. The system effectively integrates offline and online SOS alerts, AI- driven voice recognition, movement and fall detection, face verification, camera-based context capture, and location tracking to ensure timely and accurate emergency notifications. Its privacy-conscious design, including event-triggered data capture and geofenced sensitive area detection, addresses critical concerns related to user trust and data

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29760

493

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Impact Factor: 7.67

security. The offline SMS feature guarantees alert delivery even in low-connectivity or remote areas, while the multimodal verification system reduces false alarms and improves reliability. Looking forward, enhancements such as predictive risk analytics, wearable device integration, cloud-based real- time processing, and multilingual support will further increase SafeNest's effectiveness and accessibility. Overall, SafeNest offers a comprehensive, intelligent, and user-friendly platform that not only responds to emergencies but also proactively contributes to individual safety, making it a valuable tool for modern-day personal security challenges.

REFERENCES

- [1] S. K. Kar, F. S. Prity, N. Fahad, M. M. Hasan, M. K. Morol, and M. A. Al Jubair, "Rokkha: Enabling Offline Emergency Location Sharing via SMS," in 3rd International Conference on Computing Advancements (ICCA 2024), Dhaka, Bangladesh, Oct. 17–18, 2024.
- [2] T. Htun, A. N. Soe, N. N. Aye, and Z. M. Htut, "Real-time Emergency Response Systems Powered by AI," University of Computer Studies, Yangon, Myanmar, Dec. 21, 2025.
- [3] T. Htun, A. N. Soe, N. N. Aye, and Z. M. Htut, "Real-time Emergency Response Systems Powered by AI," University of Computer Studies, Yangon, Myanmar, Dec. 21, 2023
- [4] S. Adda, U. Kalatturu, and G. Abirami, "Offline Smart Phone Based Human-Fall Detection System," Computer Science & Engineering, SRM
- [5] R. Bhande and S. Desai, "Leveraging smartphone technology for enhanced personal safety: A solution driven approach," in International Journal of Engineering Research & Technology (IJERT), vol. 12, no. 7, pp. 66–72, 2023.
- [6] H. N. Alshareef and D. Grigoras, "Using social media and the mobile cloud to enhance emergency and risk management," Department of Computer Science, University College Cork (UCC), Cork, Ireland.
- [7] K. Arai and T. Eguchi, "Realistic Rescue Simulation Method with Consideration of Road Network Restrictions," Graduate School of Science and Engineering, Saga University, Saga City, Japan.
- [8] M. Romano, T. Onorati, I. Aedo and P. Diaz, "Designing Mobile Applications for Emergency Response: Citizens Acting as Human Sensors," Computer Science Department, Universidad Carlos III de Madrid, Madrid, Spain.
- [9] A. Z. Alharbi, H. T. Omaier and M. F. Alotaibi, "Safety Souls Mobile Application for Emergency Response System," Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia.2024.
- [10] Y. Tripathi, "AI Chatbot for Health: A MERN Stack-Based Intelligent Healthcare Assistant with Natural Language Processing," Department of Computer Science and Engineering, IIMT College of Engineering, Greater Noida, Uttar Pradesh, India.May- 2025
- [11] A. K. Anuvindh, V. Vinod, A. Sushil, and A. P., "SafeMate: A Comprehensive Review and Emergency Response System for Enhanced Personal Safety," Department of Computer Science and Engineering (Cyber Security), Vimal Jyothi Engineering College, Chemperi, Kannur, India.
- [12] G. Alhussein, I. Ziogas, S. Saleem, and L. J. Hadjileontiadis, "Speech emotion recognition in conversations using artificial intelligence: a systematic review and meta-analysis," Published online 11 April 2025.
- [13] M. Abi Kanaan, J-F. Couchot, C. Guyeux, D. Laiymani, T. Atechian, and R. Darazi, "Combining a multi-feature neural network with multi-task learning for emergency calls severity prediction," FEMTO-ST Institute, CNRS, Université de Franche-Comté, Besançon, France, and TICKET Lab, Université Antonine (UA), Baabda, Lebanon.
- [14] S. Jena, S. Basak, H. Agrawal, B. Saini, S. Gite, K. Kotecha, and S. Alfarhood, "Developing a negative speech emotion recognition model for safety systems using deep learning," Computer Science Engineering Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India; Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International (Deemed University), Pune, India; Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
- [15] B. M. R. Spiegel, O. Liran, A. Clark, J. S. Samaan, C. Khalil, R. Chernoff, K. Reddy, and M. Mehra, "Feasibility of combining spatial computing and AI for mental health support in anxiety and depression," Department of Medicine,

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29760

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Impact Factor: 7.67

Division of Health Services Research Virtual Medicine Program, Cedars-Sinai, Los Angeles, CA, USA; Department of Medicine, Division of Gastroenterology, Cedars-Sinai, Los Angeles, CA, USA; Department of Psychiatry and Behavioral Sciences, Cedars-Sinai, Los Angeles, CA, USA.Jan-2024

- [16] S. Ntalampiras, I. Potamitis, and N. Fakotakis, "An adaptive framework for acoustic monitoring of potential hazards," Electrical and Computer Engineering Department, University of Patras, Rio-Patras 26500, Greece; Department of Music Technology and Acoustics, Technological Educational Institute of Crete, Daskalaki-Perivolia, Crete 74100, Greece.
- [17] K. Weerasinghe, S. Janapati, X. Ge, S. Kim, S. Iyer, J. A. Stankovic, and H. Alemzadeh, "Real-time multimodal cognitive assistant for emergency medical services," in Proceedings of the ACM/IEEE Conference (details to be added), University of Virginia, USA.Mar-2024.
- [18] G. Alhussein, I. Ziogas, S. Saleem, and L. J. Hadjileontiadis, "Speech emotion recognition in conversations using artificial intelligence: a systematic review and meta-analysis," in Journal of Affective Computing and Artificial Intelligence, Springer, Published online Apr. 11, 2025.
- [19] H. P. M., S. S. B., and H. G., "Crisis Connect: Real-time Emergency Response System using Machine Learning," in International Journal for Research in Applied Science & Engineering Technology (IJRASET), vol. 13, no. 6, pp. 7069–7075, 2025. DOI: 10.22214/ijraset.2025.67069.
- [20] N. Mostafa, A. Ashraf, and A. Eltawil, "Mobile-based Social Platform for Emergency Response Coordination," in Proceedings of [Journal/Conference Name], 2025.

