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Abstract: Bird invasions in agricultural regions result in significant crop damage, thereby diminishing
food output and impacting farmers' income. Traditional deterrence techniques, such as scarecrows and
auditory devices, sometimes prove ineffective owing to their restricted flexibility and absence of
automation. Progress in deep learning and computer vision has facilitated the creation of sophisticated
bird detection systems that can monitor and identify avian behaviors in real time. This article examines
contemporary deep learning methodologies employed for avian identification and their significance in
current smart agricultural practices. It emphasizes the accessible datasets, prevalent detection
algorithms (including YOLO and Faster R-CNN), assessment measures, and loT-based hardware
integration for practical applications. Finally, the report examines existing problems and proposes future
research avenues for developing dependable and cost-effective automated avian monitoring systems.
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L. INTRODUCTION

Agriculture consistently faces obstacles from pests, phytopathogens, and avian disruptions. Birds, specifically, can
inflict harm on crops during several growth stages, particularly in rice paddies and orchards. Traditional deterrence
methods require significant manpower and are insufficient for large agricultural areas. Conversely, contemporary smart
agriculture employs deep learning, IoT sensors, and edge computing to provide automated and efficient monitoring.
Deep learning-based avian identification systems enable ongoing surveillance using image or video feeds, precisely
recognizing bird species and triggering suitable deterrent measures. This technique enhances crop protection while
promoting precision and sustainable agriculture.

II. LITERATURE SURVEY
Birds Detection Techniques
Bird detection methodologies can be broadly categorized into several types, including CNN-based detection, region-
based detection, single-shot detectors, and attention-based methods. Recent advancements in deep learning (DL) have
significantly improved automated bird identification and classification, enabling accurate detection of both common
and rare species under diverse environmental conditions.
CNN-Based Detection:
Convolutional Neural Networks (CNNs) automatically extract hierarchical features from images, such as edges,
textures, and shapes, which are crucial for distinguishing bird species. CNN architectures like VGGNet, ResNet, and
DenseNet are widely used for bird classification tasks. While highly effective in feature extraction, CNNs alone may
struggle with detecting birds in complex or cluttered backgrounds.
Region-Based Detection:
Region-based Convolutional Neural Networks (R-CNN), Fast R-CNN, and Faster R-CNN focus on object detection by
first proposing candidate regions (bounding boxes) and then classifying them. Faster R-CNN integrates region proposal
networks (RPNs) into a CNN for faster and more accurate detection. This approach is effective for identifying multiple
birds in a single image but can be computationally intensive.
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Single-Shot Detectors (SSD and YOLO):

Single-shot detectors, such as SSD and YOLO, predict bounding boxes and class probabilities in a single pass, making
them suitable for real-time bird detection. YOLOv5 and YOLOVS are especially efficient in detecting birds at various
scales and in dynamic environments. These models provide a balance between speed and accuracy, enabling
applications in drones and surveillance systems.

II. LITERATURE SURVEY
Ye, Y., Zhang, T., & Lu, R. (2024) [1] a Margin and Average Precision Loss Calibration method to address the long-
tail item detection issue, characterized by certain categories having markedly fewer samples than others. The suggested
method enhances model training by dynamically modifying class margins and improving precision-oriented loss
functions, leading to equitable detection across all categories. Experimental findings demonstrate significant
enhancements in the recognition of underrepresented classes, with performance exceeding current benchmarks. The
approach exhibits adaptability in areas like remote sensing and autonomous systems, where data imbalance often arises.
This research improves fairness and reliability in contemporary object detection systems.
Gao, X., Zhao, D.,et.al (2024) [2] The authors introduce YOLO-Parallel, an innovative deep learning model designed to
enhance long-tail remote sensing object recognition. The framework implements a Positive Gradient Modeling
approach to mitigate class imbalance and enhance feature learning for rare object categories. By parallelizing gradient
updates, the model attains enhanced training stability and accelerated convergence. Experiments utilizing satellite
imaging datasets demonstrate that YOLO-Parallel attains more accuracy than traditional YOLO variations. The system
is especially adept in detecting small or unusual items in aerial imagery, hence enhancing the use of deep detectors in
environmental monitoring and remote sensing applications.
Jocher, G., Chaurasia, A.,et.al (2023) [3] This reference offers extensive technical material for Ultralytics YOLOVS, a
significant advancement in the YOLO series of realtime object detectors. YOLOVS integrates advancements including
decoupled detection heads, dynamic input scaling, and improved loss optimization, facilitating superior accuracy in
classification, segmentation, and posture estimation applications. The model is optimized for deployment on both edge
devices and cloud infrastructures, ensuring adaptability in real applications. Its open-source framework and modular
architecture provide the seamless adaption to bespoke datasets. YOLOVS represents a significant advancement in the
evolution of adaptable and cohesive vision frameworks.
Pan, X., et al. (2022) [4] Pan and colleagues offer a hybrid vision system that amalgamates self-attention with
convolutional processes to capture both global context and local spatial intricacies. This integration utilizes the
strengths of convolutional networks in spatial representation and the ability of transformers to describe long-range
relationships. Comprehensive evaluations on established benchmarks demonstrate constant performance improvements
in both classification and detection tasks. The study highlights the significance of integrating CNN and transformer
frameworks for thorough visual comprehension and has impacted later vision transformer architectures. The study
successfully integrates the effectiveness of CNNs with the interpretability of transformers.
Tu, Z., et al. (2020) [5] This study introduces MaxViT (Multi-Axis Vision Transformer), a hybrid deep learning model
that integrates convolutional layers with transformer blocks. MaxViT utilizes local and global attention processes to
effectively collect multi-scale picture characteristics. The design attains cutting-edge performance in classification,
segmentation, and detection, all while preserving computational economy.
MaxViT has greater versatility than pure CNN or transformer models and has proven beneficial in several domains,
including autonomous navigation and environmental analysis. This effort established the groundwork for a new age of
hybrid vision architectures that harmonize precision and efficiency.
Rajagopal, A., & Nirmala, V. (2021) [6] This study presents the Convolutional Gated MLP (gMLP) architecture, which
combines convolutional processes with gated multilayer perceptrons to improve visual identification tasks. The hybrid
architecture enhances spatial awareness and feature generalization beyond the capabilities of conventional CNNs or
independent MLPs. The integration of convolutional layers maintains local spatial dependencies, but the gating
technique enhances non-linear feature representation. Experimental findings on benchmark picture datasets provide
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high accuracy and processing efficiency. The suggested approach provides enhanced scalability and interpretability for
complex visual input, laying the groundwork for efficient and high performing detection systems.
Li, M., Cheung, Y.-M.,et.al (2022) [7] Li and colleagues provide the Gaussian Clouded Logit Adjustment, a method
designed to address class imbalance in long-tailed visual recognition tasks. The approach enhances classifier logits
using Gaussian distribution modeling, facilitating improved calibration between majority (head) and minority
(tail) classes during training. Empirical assessments on difficult vision datasets demonstrate substantial enhancements
in accuracy and stability compared to previous long-tail methodologies. The approach interfaces effortlessly with deep
object detection frameworks like YOLO and Faster R-CNN, enhancing equitable and consistent recognition of
uncommon item categories.
Fujii, S., Akita, K., et.al(2021) [8] Fujii and collaborators introduce a bird detection framework designed to guarantee
safe autonomous drone operation by averting bird-drone accidents. The research presents a customized dataset
consisting of annotated avian photos obtained by drone-mounted cameras. The device employs computer vision models
to detect birds in real time, enabling dynamic modifications to flight paths for improved aviation safety. The researchers
underscore the importance of early identification and the development of lightweight algorithms appropriate for on-
board processing. Experimental findings validate the model’s dependability across diverse illumination and motion
conditions, facilitating the progress of safer and more sophisticated aerial systems.
Kondo, Y., et al. (2023) [9] This document presents findings from the MVA2023 Small
Object Detection Challenge, focused on the identification of birds in aerial photography.
The authors provide a novel benchmark dataset and assess various detection algorithms designed to recognize tiny,
rapidly moving avian objects. Research demonstrates that traditional YOLO-based detectors exhibit suboptimal
performance with small object sizes, highlighting the necessity for tailored feature extraction layers. The challenge
outcomes delineate the highest-performing models and their parameter tuning methodologies. The dataset and insights
encourage more study in wildlife monitoring and aviation safety, establishing a significant benchmark for assessing tiny
object detection systems.
Sun, Z.-W., et al. (2024)[10] Sun and collaborators introduce FBD-SV-2024, an extensive dataset for Flying Bird
Detection, designed for surveillance and monitoring purposes. The collection comprises many bird species recorded
under different lighting, weather, and environmental situations, enabling study in bird identification and classification
for ecological and aviation applications. Several advanced detectors, such as YOLOvVS and transformer-based devices,
were evaluated, demonstrating notable enhancements in performance. The research highlights the significance of
dataset diversity in enhancing model generalization and resilience. FBD-SV-2024 serves as a crucial resource for
creating robust detection algorithms tailored for dynamic real-world contexts.

Table 1: Comparison table for the literature review

Title Methodology Algorithm Limitations
Used

Contributors, Y. You Only | Utilized a real-time object | YOLOVS5 Struggles with detecting very small or
Look Once Version 5 | detection framework overlapping objects; limited
(YOLOV5), 2021. [11] optimized for speed and performance in low-light or cluttered

accuracy in various agricultural conditions.

environments.
Li, C. et al. YOLOv6: A | Introduced an optimized | YOLOvV6 Although efficient, it requires high
Single-Stage Object | single-stage detection model computational resources and fine-
Detection Framework for | tailored for industrial and tuning for outdoor agricultural
Industrial Applications, | high-speed visual tasks. applications.
arXiv, 2022.[12]
Wang, C.-Y., Yeh, L-H., | Proposed a new gradient | YOLOV9 Complexity in training and requires
Liao, H.-Y.M. YOLOV9: | programming mechanism to large, well-annotated datasets to
Learning What You Want to | enhance feature learning and achieve optimal accuracy.
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Learn Using Programmable | detection precision.
Gradient Information, arXiv,

2024.[13]

Wang, W. et al. Pyramid | Introduced a transformer- | Pyramid Transformer models require large-
Vision  Transformer: A | based architecture for dense | Vision scale data and computational power;
Versatile  Backbone  for | visual prediction, eliminating | Transform | slower inference compared to CNN-
Dense Prediction Without | convolutional layers. er (PVT) based models.

Convolutions,  IEEE/CVF
ICCV, 2021.[14]

Zhang, C. et al. An Efficient | Developed an end-to-end | Deep Focuses on audio detection only;
Time-Domain  End-to-End | deep learning network for | Sound lacks integration with visual-based
Single-Channel Bird Sound | isolating bird sounds in real- | Separation | bird detection for field applications.
Separation Network, | time audio streams. Network

Animals, 2022.[15]

Gap Analysis

Most current studies focus on general-purpose object detection rather than specialized agricultural use cases, thereby
reducing the efficiency of systems designed explicitly for identifying birds in crop protection and precision farming
contexts [1, 2, 3, 9].

Many detection models struggle with the issue of long-tail data imbalance, as they are not effectively tuned to handle
uneven sample distributions across diverse bird species or varying flight patterns [1, 2, 7].

A significant limitation of existing detection techniques is their inability to operate in real time, hindering their
suitability for continuous monitoring over large agricultural or ecological landscapes [3, 8, 12].

Available bird detection datasets often lack sufficient variability in illumination, climatic conditions, and crop types,
resulting in limited model adaptability to complex and changing outdoor environments [9, 10].

Although hybrid deep learning models that integrate CNN and Transformer architectures have emerged, their potential
remains largely unexplored for detecting small, fast-moving objects such as birds in open-field agricultural scenarios [4,
5,9].

Temporal and behavioral dynamics of bird activity are seldom incorporated, as most algorithms depend solely on static
images instead of leveraging motion-based or sequence-aware analysis [2, 3, 13].

Traditional YOLO-based detection systems encounter challenges in identifying small or swiftly moving avian targets,
which leads to diminished precision and recall in aerial image interpretation [3, 9, 12].

Research efforts are largely centered around visual data alone, with limited incorporation of multimodal information
such as audio signals, radar sensing, or environmental parameters that could significantly improve detection reliability
under real-world conditions [8, 10, 15].

The lack of standardized datasets and evaluation metrics for bird detection hampers consistency, reproducibility, and
fair benchmarking across different research studies [9, 10, 12].

Advanced deep learning architectures such as YOLOvVS and MaxViT require substantial computational power, posing
challenges for their integration into low-energy, real-time IoT or edge-based agricultural surveillance systems [3, 5, 12].

I1II. CHALLENGES IN BIRDS DETECTION
Birds often appear as small targets in wide-field or aerial imagery, making it difficult for detection models to accurately
identify and localize them, especially at greater distances or under low-resolution conditions. Birds exhibit fast, erratic
flight patterns, leading to motion blur and inconsistent object trajectories that hinder accurate frame-by-frame detection
and tracking.
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Table II: Key Challenges in Birds Detection

Impact Factor: 7.67

Sr. No. | Challenges References

1 Small object size and limited visibility in large agricultural or aerial imagery reduce | [3], [9], [10]
detection accuracy.

2 Rapid and unpredictable flight motion causes motion blur and hinders continuous | [2],[8], [9]
detection and tracking.

3 Environmental variability, including lighting, weather, and crop background, affects model | [8], [9], [10]
robustness.

4 Data imbalance across bird species and flight patterns leads to biased learning and poor | [1],[2], [7]
generalization.

5 Occlusion by vegetation and background similarity causes misclassification and false | [4], [5], [9]
detections.

6 Limited availability of large, diverse, and annotated datasets restricts model scalability and | [9], [10],
adaptability. [15]

7 High computational cost and latency make real-time deployment difficult on IoT and edge | [3], [5], [12]
devices.

8 Lack of standardized benchmark datasets prevents fair comparison across detection | [9], [10],
models. [12]

9 Integration complexity between deep learning models, IoT sensors, and automation | [8], [10],
systems hinders field deployment. [12]

10 Energy inefficiency and high operational costs limit continuous surveillance in large-scale | [3], [5], [12]
farming environments.

IV. APPLICATIONS OF MACHINE OR DEEP LEARNING TECHNIQUES ON DIFFERENT DATASETS
Machine learning and deep learning models have been widely employed in avian detection and monitoring systems,
especially within agricultural and ecological sectors. These models are trained on varied picture and video datasets that
encompass avian species, flying behaviors, and ecological fluctuations. Utilizing extensive datasets, algorithms may

acquire intricate geographical and temporal characteristics that facilitate precise bird categorization, motion tracking,
and behavioral analysis.

Table III: Overview of Machine OR DEEP Learning Applications on Different Datasets

Authors / Year Dataset Used Machine Learning / Deep Learning
Technique

Ye, Y.; Zhang, T.; Lu, R. (2024) | Long-Tail Object Detection | Margin and Average Precision Loss
[1] Dataset Calibration for long-tail detection
Gao, X.; Zhao, D.; Yuan, Z. (2024) | Remote Sensing Object | YOLO-Parallel with Positive Gradient
[2] Dataset Modeling for imbalanced data
Jocher, G.; Chaurasia, A.; Qiu, J. | Ultralytics YOLOvS8 Dataset YOLOvVS framework for real-time object
(2023) [3] detection
Pan, X.; Ge, C.; Lu, R.; et al. | Vision Dataset (CVPR) Integration of Self-Attention and
(2022) [4] Convolution for feature enhancement
Tu, Z.; Talebi, H.; Zhang, H.; et al. | Image Classification Dataset MaxViT: Multi-Axis Vision Transformer
(2020) [6] for dense prediction
Rajagopal, A.; Nirmala, V. (2021) | Big Data Image Dataset Convolutional Gated MLP combining
[7] Convolutions and gMLP
Li, M.; Cheung, Y.-M.; Lu, Y. | Long-Tailed Visual | Gaussian Clouded Logit Adjustment for
(2022) [8] Recognition Dataset improved classification
Fujii, S.; Akita, K.; Ukita, N. | Bird Detection Dataset for | Distant Bird Detection for safe UAV flight
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(2021) [8] Drone Safety
Kondo, Y.; Ukita, N.; Yamaguchi, | MVA 2023 Small Object | Bird spotting challenge dataset and
T.; et al. (2023) [9] Detection Dataset detection results
Sun, Z.-W.; Hua, Z.-X.; Li, H.-C.; | FBDSV-2024 Dataset Flying Bird Detection Dataset in
et al. (2024)[10] Surveillance Videos
Contributors, Y. (2021) [11] YOLOVS Dataset YOLOVS: Single-stage real-time object
detection

Li, C.; Li, L.; Jiang, H.; et al. | Industrial Object Detection | YOLOv6: Object detection framework for
(2022) [12] Dataset industrial and agricultural applications
Wang, C.-Y.; Yeh, I.-H.; Liao, H.- | Object Detection Dataset YOLOV9: Programmable Gradient-based
Y.M. (2024) [13] Object Detection Framework
Wang, W.; Xie, E.; Li, X.; et al. | Vision Transformer Dataset Pyramid Vision Transformer (PVT) for
(2021) [14] dense prediction without convolutions
Zhang, C.; Chen, Y.; Hao, Z.; Gao, | Bird Sound Dataset Time-domain end-to-end single-channel
X. (2022) [15] bird sound separation network

V. TRENDS IN Birds DETECTION
State-of-the-art models such as YOLOv5, YOLOVS8, and YOLOV9 have become the preferred choice for real-time bird
detection, offering exceptional speed, precision, and the ability to identify small, rapidly moving objects.
Meanwhile, Vision Transformers (ViT), Pyramid Vision Transformers (PVT), and MaxViT have emerged as powerful
architectures for capturing global contextual cues and enhancing detection performance in visually complex agricultural
environments.
To handle class imbalance where certain bird species appear infrequently, methods like Margin Loss Calibration and
Gaussian Clouded Logit Adjustment are employed.
Modern bird detection frameworks are increasingly leveraging IoT-enabled smart cameras and edge computing
technologies to facilitate real-time observation and automated deterrent actions in the field.
Moreover, integrating visual data with acoustic inputs from bird sound separation networks strengthens detection
accuracy in noisy, outdoor environments.
Lightweight architectures such as YOLOv6 and Convolutional Gated MLPs are being developed to ensure efficient
operation on low-power and embedded agricultural hardware.
Recent advancements also focus on combining detection with motion tracking and behavioral analysis to gain deeper
insights into bird activity and movement patterns.
Additionally, GAN-based data augmentation and synthetic dataset generation techniques are used to enhance model
generalization, particularly for rare or unseen bird species.
Ultimately, modern intelligent bird monitoring systems integrate Al-driven detection, decision-making, and automated
deterrent modules, creating autonomous, adaptive frameworks for sustainable crop protection.

VI. FUTURE RESEARCH DIRECTIONS IN BIRDS DETECTION
Design of unified, multi-species detection frameworks capable of performing consistently across varied and challenging
environmental settings.
Optimization of algorithms to enhance detection accuracy for small, distant, and partially obscured birds within
complex natural scenes.
Integration of multimodal learning approaches that combine visual and acoustic information to improve recognition
precision and robustness.
Expansion of synthetic and augmented datasets to effectively mitigate data scarcity and class imbalance issues.
Development of lightweight edge-Al architectures tailored for real-time inference and deployment in field-based
agricultural environments.
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Implementation of adaptive loss calibration techniques to address long-tail distributions and underrepresented bird
species in datasets.

Utilization of drone- and UAV-assisted monitoring systems for large-scale and remote bird activity surveillance.
Adoption of continual and transfer learning strategies to enable models to adapt dynamically to changing environmental
and seasonal conditions.

Incorporation of environmental and climatic parameters into detection pipelines to enhance system reliability and
contextual awareness.

Development of explainable and transparent Al frameworks to increase model interpretability, trust, and practical
usability among end-users.

VII. CONCLUSION
In conclusion, the Deep Learning-Based Framework for Real-Time Bird Detection on Crops effectively illustrates the
application of artificial intelligence and computer vision in addressing practical agricultural issues. The YOLO deep
learning model enables the system to precisely detect and monitor birds in real time, assisting farmers in mitigating
crop damage and decreasing manual monitoring requirements. The study underscores the efficacy of automation and
deep learning in enhancing agricultural output, providing a dependable, scalable, and effective answer for contemporary
smart farming methodologies.
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