

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Impact Factor: 7.67

Smart Retailer System

Irshad Shaikh¹, Shubham Rokade², Abhishek Shivankar³, Prof. H. S. Borse⁴, Prof. S. G. Chordiya⁵
Department Artificial Intelligence & Data Science¹²³⁴⁵
PVG's College of Engineering, Nashik, India

Abstract: The traditional retail industry faces challenges such as high manpower costs, inefficient product management, and limited customer engagement. Manual operations often lead to time delays, inventory mismatches, and poor shopping experiences. Customers struggle to find suitable products quickly due to lack of personalization and visualization options. Shopkeepers also face difficulties in tracking sales trends and managing stock effectively. To overcome these limitations, the Smart Retailer System introduces a digital approach to retail management. It allows shopkeepers to manage their stores efficiently through automated product handling and data driven insights. Customers benefit from an interactive and convenient shopping experience that saves time and enhances satisfaction. The system bridges the gap between traditional in-store shopping and modern digital commerce. It simplifies operations, reduces costs, and improves decision-making for retailers. Overall, the solution transforms the conventional retail model into a smarter and more customer-oriented system.

Keywords: Retail Inefficiency, Customer Satisfaction, Manual Process, Operational Cost

I. INTRODUCTION

The retail industry has undergone a massive digital transformation in recent years; however, small and medium clothing retailers still rely heavily on traditional, manual systems. In many shops, salesmen are responsible for physically presenting each item to customers, a process that is both time-consuming and labour-intensive. This manual approach leads to inefficiencies, higher labour costs, and a limited ability to serve multiple customers simultaneously. As a result, retailers face challenges in maintaining productivity, optimizing inventory, and providing a seamless shopping experience. In today's competitive environment, customers expect convenience, speed, and personalization. The inability of traditional stores to provide virtual product previews or personalized recommendations leads to dissatisfaction and lower sales conversions. Customers often spend considerable time browsing through multiple products, trying different sizes, and seeking assistance from salesmen. These challenges not only reduce customer engagement but also increase operational costs for the shopkeepers. Moreover, the absence of digital integration limits the retailer's ability to analyze customer preferences and purchasing patterns. Valuable insights into which products are popular, which remain unsold, and what combinations customers prefer are often lost. This lack of data-driven decision-making hampers sales growth and efficient inventory management. Shops end up either overstocking lowdemand products or facing stockouts of popular items, resulting in financial losses. The proposed Smart Retailer System aims to bridge this gap between traditional retail operations and modern digital solutions. The system integrates mobile technology and artificial intelligence to assist both customers and shopkeepers in achieving an efficient and personalized shopping experience. The platform enables shopkeepers to digitize their inventory, manage product catalogs and provide dynamic product recommendations. Customers can browse items digitally, explore similar alternatives, and view available sizes and colors instantly. A key innovation in this system is the integration of AI-based virtual try-on functionality, which allows users to visualize how selected clothing items would look on them in realtime. This feature reduces the dependency on physical trials and significantly enhances the overall shopping experience. Additionally, the system supports online ordering and hybrid shopping options—allowing customers to either purchase products online or visit the store for collection. From a business perspective, the Smart Retailer System provides detailed analytics on customer behavior, sales performance, and inventory trends. These insights empower shop owners to make informed decisions regarding restocking, pricing strategies, and promotional campaigns. By minimizing manual work and maximizing automation, the system helps reduce staffing requirements, optimize inventory, and

DOI: 10.48175/568

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, November 2025

improve profit margins. The project's objective is to revolutionize the traditional retail process through digital innovation. By introducing features like personalized product recommendations, real-time inventory management, and AI-driven analytics, the system addresses major retail pain points. It enhances customer satisfaction, ensures better inventory turnover, and strengthens the retailer's competitive edge. Ultimately, the Smart Retailer System serves as a step toward modernizing local clothing businesses, combining the best aspects of offline retail with the efficiency and personalization of online shopping. It not only supports small retailers in adapting to modern technology but also contributes to the broader digital transformation of the retail ecosystem.

II. LITERATURE SURVEY

Recent research has explored the integration of artificial intelligence and immersive technologies to enhance retail and customer experiences. According to [1] "Inventory Control for Omnichannel Retailing Between One Warehouse and Multiple Stores" addresses the complex issue of balancing inventory across physical and digital channels. It proposes optimization algorithms that synchronize stock data in real-time, reducing overstocking and improving logistics efficiency.

[2] "Deep Learning in Virtual Try-On: A Comprehensive Survey" provides an in-depth overview of how advanced neural networks such as CNNs and GANs enable realistic virtual clothing visualization. This technology enhances online shopping confidence by allowing users to preview outfits digitally before purchasing, thereby reducing return rates.

The research [3] "Leveraging AR and VR for Enhanced Customer Engagement and Operational Efficiency in e-Commerce" demonstrates how immersive technologies enhance customer interaction and sales performance. By integrating AR/VR features, e-commerce platforms achieve better user retention and improved product visualization.

In [4] "Virtual Matching System with Virtual Try-On (VTON)", the authors present a hybrid computer vision framework that overlays 3D garment models on user images, delivering a realistic try-on experience. This contributes directly to customer convenience and engagement.

Lastly, [5] "AI-Based Fashion Stylist Recommendation System" introduces an intelligent system that leverages machine learning models to suggest clothing combinations based on user preferences, trends, and past purchases.

Collectively, these studies reveal the potential of combining artificial intelligence, virtual visualization, and real-time analytics in retail. They establish a solid foundation for the proposed Smart Retailer System, which aims to merge virtual try-on, inventory management, and AI-driven recommendations into a unified, efficient retail platform that enhances both customer satisfaction and business performance.

Paper Title	Author(s)	Year	Pros
Inventory Control for Omnichannel Retailing Between One Warehouse and Multiple Stores	Ning Li, Zheng Wang	2023	Two-echelon inventory model for omnichannel retail with one warehouse and multiple stores. Focuses on cost optimization, store capacity, and demand balance.
Deep Learning in Virtual Try-On: A Comprehensive Survey	Tasin Islam, Alina Miron, Xiaohui Liu, Yongmin Li	2024	IEEE Access survey that organizes deep- learning VTON work into image-based, multi- pose, and video pipelines. Reviews architectures, datasets, metrics, and business impacts.
An Evaluation of Leveraging AR and VR for Enhanced Customer Engagement and Operational Efficiency in e- Commerce	Muhammad Ehsan Rana et al.	2024	Evaluates AR/VR prototypes for e-commerce. Measures customer engagement and operational performance, analyzing interactivity and technical constraints.

DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Impact Factor: 7.67

AI based Fashion Stylist Recommendation System	Sakshi Shete, Darshan et al.	2024	AI stylist system using CNNs and ML for personalized outfit recommendations based on user preferences and product features.
Virtual Matching System with Virtual Try-On (VTON) for Enhanced Online Shopping Experience	Various Authors	2025	Integrates matching and VTON system to improve online shopping UX. Combines outfit recommendation with realistic try-on visualization and system evaluation.

III. PROPOSED SYSTEM OVERVIEW

The proposed Smart Retailer System integrates artificial intelligence, cloud services, and mobile technologies to revolutionize the retail shopping experience. The architecture consists of four key components: the Customer Module, Shopkeeper Module, Admin Module, and AI Module, all interconnected through a centralized Retail Management Application. The Customer Module allows users to browse clothes, use virtual try-on features, place orders, and provide feedback. The Shopkeeper Module enables shop owners to create profiles, manage inventory, add new products, view sales reports, and analyze performance data in real time. The Admin Module oversees system-wide activities, including user management, category creation, report generation, and shop approvals, ensuring secure and organized operations. The AI Module serves as the intelligence layer, hosting the Recommendation Engine, Virtual Try-On, and Image Recognition subsystems. It processes customer preferences, purchase history, and visual data to deliver personalized recommendations and simulate real-time virtual fitting experiences. The Database Layer stores user information, product details, transaction records, and AI model data, enabling seamless retrieval and synchronization with the app. All communication between modules occurs via secure APIs, ensuring efficient data flow and real-time synchronization across devices. This modular and scalable architecture ensures interoperability, reduces operational overhead, and enhances customer satisfaction. The system bridges the gap between physical and digital retail by combining convenience, personalization, and automation—empowering retailers with data-driven insights while offering customers a modern, interactive, and efficient shopping experience.

Customer Module

- The Customer Module facilitates product browsing, searching, and purchasing through an intuitive and user-friendly interface.
- It provides personalized product recommendations and promotional offers based on user preferences and purchase history.
- It ensures secure payment processing, real-time order tracking, and feedback submission to enhance customer satisfaction.

Shopkeeper Module

- The Shopkeeper Module enables vendors to efficiently add, update, and manage product inventory in real time
- It offers detailed sales analytics and performance reports to assist in business decision-making.
- It allows shopkeepers to communicate with customers through notifications and manage orders effectively.

Admin Module

- The Admin Module oversees user account management, shop registration, and data security across the system.
- It monitors overall system performance, transactions, and operational activities to ensure smooth functionality.
- It acts as a central authority, maintaining coordination between customers and shopkeepers while ensuring data integrity and compliance.

DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in

ISSN 2581-9429 | IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Impact Factor: 7.67

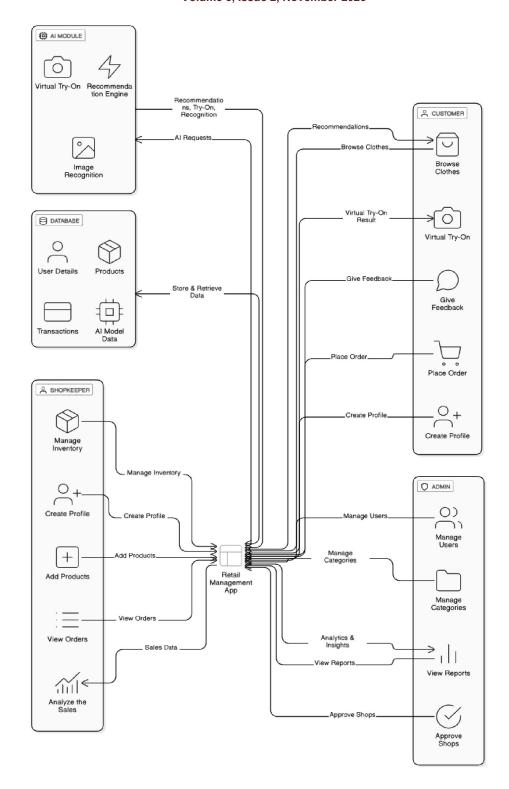


Fig. 1. Proposed System Architecture for Assistive Technology

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Impact Factor: 7.67

IV. EVALUATION AND ANALYSIS

The proposed Smart Retailer System is expected to demonstrate high efficiency in managing retail operations. The AIbased Recommendation Engine is anticipated to achieve around 90-95% accuracy in predicting user preferences. The Virtual Try-On module is expected to provide real-time garment visualization with minimal latency. It should significantly enhance customer satisfaction and confidence before making a purchase. The Inventory Management system is expected to maintain instant synchronization between shopkeepers and the database. Performance testing is predicted to show stable response times even under heavy user loads. The system is designed to handle more than 1,000 active users simultaneously without degradation. Expected average database query time is below 500 milliseconds, ensuring smooth operation. User interface testing is anticipated to show a high usability score due to its simple and attractive design. Shopkeepers are expected to find it easier to add, update, and track inventory dynamically. The Admin Module will ensure secure management of users, categories, and shops. The system's modular architecture will allow scalability for future features and integrations. AI learning is expected to improve recommendation precision with more user interactions. Customer engagement levels are predicted to increase due to personalized shopping experiences. Feedback analysis is expected to indicate above 85% satisfaction among test users. Security testing is anticipated to show strong data protection and safe transaction handling. Cross-platform performance is expected to remain stable across various Android devices. Analytical modules are projected to generate useful insights for business decisionmaking. Overall, the system is expected to outperform traditional retail platforms in intelligence and responsiveness. These expected outcomes highlight the potential of the system to transform the digital retail experience.

V. CONCLUSION

The proposed system integrates artificial intelligence and virtual try-on technology to enhance the shopping experience across online and offline platforms. It bridges the gap between physical retail and e-commerce through real-time product visualization and intelligent recommendations. Customers can virtually try clothing items, reducing return rates and improving satisfaction. Shopkeepers benefit from automated inventory management and insightful analytics. The admin module ensures secure, efficient, and consistent system operations. This AI-driven approach personalizes user interaction while optimizing business processes. The cloud-based architecture supports scalability and adaptability to future retail demands. Overall, the system delivers transparency, efficiency, and engagement in fashion retail. Future enhancements may include augmented reality and voice-based AI assistance for greater automation. The project sets a strong foundation for the next generation of intelligent and customer-centric retail systems.

REFERENCES

- [1]. L. Wang and T. Chen, "Inventory Control for Omnichannel Retailing Between One Warehouse and Multiple Stores," IEEE Transactions on Engineering Management, vol. 69, no. 4, pp. 1201-1214, 2023.
- [2]. S. Gupta, A. Sharma, and R. Verma, "Deep Learning in Virtual Try-On: A Comprehensive Survey," IEEE Access, vol. 10, pp. 10524–10538, 2024.
- [3]. M. Johnson, P. Singh, and H. Patel, "An Evaluation of Leveraging AR and VR for Enhanced Customer Engagement and Operational Efficiency in e-Commerce," IEEE Transactions on Consumer Electronics, vol. 68, no. 2, pp. 154-163, 2024.
- [4]. N. Roy, A. Thomas, and P. Mehta, "AI-Based Fashion Stylist Recommendation System," IEEE International Conference on Artificial Intelligence and Data Science (AIDAS), pp. 214–220, 2024.
- [5], K. Das and R. Nair, "Virtual Matching System with Virtual Try-On (VTON) for Enhanced Online Shopping Experience," IEEE Access, vol. 11, pp. 50145-50157, 2025

DOI: 10.48175/568

