
I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Copyright to IJARSCT DOI: 10.48175/IJARSCT-29716 111

www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

An Empirical Evaluation of a Model-Based Test

Data Generation Framework for Reducing System

Integration Delays
Datta Snehith Dupakuntla Naga

Abstract: Modern software engineering has introduced a manual bottleneck in the setup of test data that

slows down the Continuous Integration and Continuous Delivery (CI/CD) cycles, hence long integration

cycles with the system and increased risks on quality. This paper empirically evaluates a novel Python-

based model-driven framework designed to automatically generate complex relational state-aware test

data. Parsing declarative models of data entities and their constraints will help us develop an approach

to automatically create valid and semantically appropriate test datasets for large-scale enterprise

projects from the financial and healthcare domains within their CI/CD pipelines. Changes in some of the

key metrics were analyzed by way of a longitudinal case study, i.e., before and after implementation. It

takes only 15 minutes compared to 8 hours earlier, leading to a reduction of 97% in time spent setting up

the test environment. Also, by keeping data safe and ready, the plan helped cut down on 60% of

production flaws tied to data problems. This fix made it possible to fully automate after-deployment

checks and greatly improved the test range.

Keywords: Model-Based Testing, Test Data Generation, Continuous Integration, Continuous Delivery,

CI/CD, DevOps, Software Quality, Automation

I. INTRODUCTION

The spread of agile methods and the global use of DevOps have changed the way software engineering is viewed. Now,

Continuous Integration/Continuous Deployment (CI/CD) pipelines are seen as the normal way to speed up software

delivery. They greatly improve release frequency and reduce the time it takes for changes to happen. However, as the

software development lifecycle (SDLC) across all stages becomes more automated, one core challenge still persists

manually and ad-hoc in nature of test data management (TDM). Mainly consider the test data by itself to indicate the

major reason for delay to keep with fast automated cycle development in system integration development [1]. This

paper looks at this problem by offering and testing a new, state-aware, model-based setup for automatic test data

creation [2]. This framework is on demand because of high-quality and relevant test data through system behavior and

state transitions, which improve the root quality of the software, and would consider eliminating integration delays with

that.

II. THE INDUSTRY-WIDE PROBLEM

Huge time and cost expenditure, direct compromise of software quality, and specific problems in running sector to

sector—these are the classified three main parts of this dominant problem in the industry. Data management is now

considered the major obstacle for reliable software delivery.

2.1 Time and Cost Sink

While doing manual testing data may be accurate or not and take a lot of time for both developer and QA to complete.

They find after lots of search testers spend non-productive time between 44% and 46% on finding, rechecking,

controlling and setting up test data. All this manual effort introduces a slow down delivery cycle, increases the chance

of mistakes, and still does not mark the volume and variety of data as per requirement by modern sprint testing [4].

Apart from time, it is more expensive to fix defects found during testing than addressing it during the design phase.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Copyright to IJARSCT DOI: 10.48175/IJARSCT-29716 112

www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

While CI/CD can speed up the development and deployment process, test data provisioning has not kept pace. It shows

to prevent organizations from realizing the full benefits of automation[5].

The issue arises from the unintended consequences of the success of CI/CD and DevOps methodologies. However, the

faster the automated pipelines run, the greater the need for new data [2]. The manual way cannot scale fast to meet this

place, hence the recurring source of friction and turning into a bottleneck. The outcome is slow, with the worst feedback

loop, ultimately the heart of continuous delivery. In this case, the challenge with CI/CD is directly a function of the

inability to automate an essential dependency—provisioning test data [6]. This eventually limits higher-form

automation because it depends on a primitive manual process.

2.2 Compromised Software Quality

The lousy test data effect goes way past time and money. It goes straight to beat up on the quality and reliability of the

end software product. Bad or wrong data always adds up to major holes in test coverage where key defects get

promoted into production. It also creates bad test results with false positives-tests that report a bug exists when it does

not which waste developer time-and false negatives, tests do not find the real bugs that continue to be present. This

issue is worse for performance and security testing because those are areas that require dependent test data that mirrors

actual conditions and attack vectors.

This situation can be described as a self-fulfilling negative spiral.The lack of sufficient test data will result in

insufficient testing and undetected defects [1], which are those defects escape into the "production" environment, they

are going to require additional maintenance which requires development resources; increases cost, extends project

timeline; software that doesn’t meet the user's expectations receives poor reviews and loses market share. The real

problem is not just finding all the bugs; but rather is an overall degradation of the entire Quality Assurance process; and

as such, what was once a purely technical issue has now become a business risk with long term strategic implications.

2.3 Challenges in Highly Regulated Domains

The issue described above occurs frequently, however in finance and healthcare, the bottleneck can become

significantly worse due to the regulatory environment in these areas, which govern how private and secure personal

data must be handled (for example, General Data Protection Regulation, and Health Insurance Portability and

Accountability Act). Therefore, using production data for testing will not only be legally dangerous, it may also create

operational risks. The organizations mentioned have to maintain consistency, and accuracy of the data, as well as the

referential integrity, of data across complex legacy systems as well as new applications. Therefore, creating compliant
synthetic data is an operational and legal necessity; however, typical approaches typically fail to meet either the

requirements of compliance and provide adequate representation of the complexities of business scenarios and

transitions between states.

Table 1: The Bottleneck of Manual Test Data Management.Table shows a full comparison of the inefficiencies

included in the manual; test data management in a traditional way against the automated framework.

Attribute of TDM Manual/Traditional Approach Automated/Model-Based Framework

Time to Provision Weeks or Months "Just in time"

Cost High manual labor and maintenance costs Reduced costs, with high ROI

Quality Gaps in coverage, false

positives/negatives

High coverage, reliable outcomes

Security/Compliance High risk from using sensitive production

data

Privacy-preserving synthetic data

Scalability Poor, cannot keep up with CI/CD High, can generate massive volumes for testing

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in

ISSN: 2581-9429

III. THE NOVEL METHODOLOG

The proposed approach also addresses this limitation through the use of a combination of Model

with state-aware data generation [2], as opposed to merely using a rule

test data, thus enabling the automation framework to generate test data that is both contextually relevant and

semantically correct in order to accurately represent the complex interactions of systems.

Figure 1: A New Methodology: An Automated Data Generation Tool

automatically generate test data for complex, relational, and state aware tests by utilizing declarative models to

understand complex data relationships and business rules in order to

3.1 Core Principles

It is founded on the disciplined approach of the Model

utilizes an architecture of the system—a formal representation of i

machines or UML diagrams—for automatic test case generation [1]. This approach increases coverage and reduces

manual effort as well as maintenance overhead in a very organized manner. The novelty lies in applyi

methodology not only for generating test cases but also for generating test data. Thus, the produced data will not be

random; rather, it will relate to the expected behavior and state changes of the system [8]. This approach is very useful

when there are many possible states or behaviors within complex systems.

3.2 A State-Aware Approach to Data Generation

The suggested structure uses a "state-aware" approach, vital for judging complicated, multi

old ways that create data without considering the current state of use, here, model

produces data matching the system's present state ensuring the truth of the data and maintaining the referential integrity

among all linked data models[3]. This is using an ongoing a repeating process:

1. Model Establishment: An initial model is built. Such models can be Entity Relationship Models (ERM's),

Statecharts etc., to demonstrate how system states relate to each other, how user interface actions relate t

other, and what data is needed by these system states to transition between them [8].

2. Iterative Data Generation: A constraint solver generates test data based on the requirements of a specific

state or branch. This is accomplished through the constraint solver by treating the current model state as a

constant rather than a variable; which reduces the computational e

3. Dynamic Execution and State Update:

system dynamically; therefore, creating a new state of the system [8]. That new state is then documented and

will be the basis for generating data for the subsequent iteration, thus enabling the framework to systematically

discover and generate data for future states.

3.3 Framework Architecture and CI/CD Integration

As a modular, component that can be provide servi

major architectural building blocks include a Model Creation Module for setting system and data models, a Generation

Engine responsible for state-aware data generation, and an Application Program

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

DOI: 10.48175/IJARSCT-29716

THE NOVEL METHODOLOGY: A MODEL-BASED FRAMEWORK

The proposed approach also addresses this limitation through the use of a combination of Model-Based Testing (MBT)

aware data generation [2], as opposed to merely using a rule-based method or a statistical method to generate

test data, thus enabling the automation framework to generate test data that is both contextually relevant and

semantically correct in order to accurately represent the complex interactions of systems.

: An Automated Data Generation Tool - Python based, model driven tool to

automatically generate test data for complex, relational, and state aware tests by utilizing declarative models to

understand complex data relationships and business rules in order to generate valid test data sets upon request

It is founded on the disciplined approach of the Model-Based Testing (MBT), a rigorous method of software testing that

a formal representation of its behavior, most commonly expressed as state

for automatic test case generation [1]. This approach increases coverage and reduces

manual effort as well as maintenance overhead in a very organized manner. The novelty lies in applyi

methodology not only for generating test cases but also for generating test data. Thus, the produced data will not be

random; rather, it will relate to the expected behavior and state changes of the system [8]. This approach is very useful

when there are many possible states or behaviors within complex systems.

Aware Approach to Data Generation

aware" approach, vital for judging complicated, multi-step business tasks. Unlike

reate data without considering the current state of use, here, model-based test setup dynamically

produces data matching the system's present state ensuring the truth of the data and maintaining the referential integrity

his is using an ongoing a repeating process:

An initial model is built. Such models can be Entity Relationship Models (ERM's),

Statecharts etc., to demonstrate how system states relate to each other, how user interface actions relate t

other, and what data is needed by these system states to transition between them [8].

A constraint solver generates test data based on the requirements of a specific

state or branch. This is accomplished through the constraint solver by treating the current model state as a

constant rather than a variable; which reduces the computational effort required to solve the problem.

Dynamic Execution and State Update:The generated test data is utilized as part of the model to execute the

system dynamically; therefore, creating a new state of the system [8]. That new state is then documented and

l be the basis for generating data for the subsequent iteration, thus enabling the framework to systematically

discover and generate data for future states.

3.3 Framework Architecture and CI/CD Integration

As a modular, component that can be provide service which may be applied to any running CI/CD pipeline[6].The

major architectural building blocks include a Model Creation Module for setting system and data models, a Generation

aware data generation, and an Application Programming Interface used for provisioning to

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 113

Impact Factor: 7.67

BASED FRAMEWORK

Based Testing (MBT)

istical method to generate

test data, thus enabling the automation framework to generate test data that is both contextually relevant and

Python based, model driven tool to

automatically generate test data for complex, relational, and state aware tests by utilizing declarative models to

generate valid test data sets upon request

Based Testing (MBT), a rigorous method of software testing that

ts behavior, most commonly expressed as state

for automatic test case generation [1]. This approach increases coverage and reduces

manual effort as well as maintenance overhead in a very organized manner. The novelty lies in applying such modeling

methodology not only for generating test cases but also for generating test data. Thus, the produced data will not be

random; rather, it will relate to the expected behavior and state changes of the system [8]. This approach is very useful

step business tasks. Unlike

based test setup dynamically

produces data matching the system's present state ensuring the truth of the data and maintaining the referential integrity

An initial model is built. Such models can be Entity Relationship Models (ERM's),

Statecharts etc., to demonstrate how system states relate to each other, how user interface actions relate to each

A constraint solver generates test data based on the requirements of a specific

state or branch. This is accomplished through the constraint solver by treating the current model state as a

ffort required to solve the problem.

The generated test data is utilized as part of the model to execute the

system dynamically; therefore, creating a new state of the system [8]. That new state is then documented and

l be the basis for generating data for the subsequent iteration, thus enabling the framework to systematically

ce which may be applied to any running CI/CD pipeline[6].The

major architectural building blocks include a Model Creation Module for setting system and data models, a Generation

ming Interface used for provisioning to

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in

ISSN: 2581-9429

deliver such data to the testing environment [3]. Complexifying long attribute sets of data profiles and their

relationships is pushed toward simplification by using declarative models

Figure 2: Framework Architecture Flow -

usable test data integrated directly into the testing workflow.

This framework shall be implemented as part of the CI/CD pipeline implemented

integration testing. This would ensure that the test data is up

the codes. It shall make possible the automation setup of test data just

required element under continuous testing [5]. The method denotes an essentially changed development workflow

approach from ‘data for testing’ to ‘testing with data.’ Test data is being transformed from the perspective of a static

object created for use in testing, passively awaiting management and control by the tester, into an active, on demand

tool used by testers in their work [9]. The transformation of the way we view test data has the positive effect of

allowing a new methodology of "test driven data creation", in which tester requirements are automatically satisfied

through the automation of data creation; thereby, reducing manual labor associated with creating test data and ensuring

that data creation meets the requirements of

IV. EMPIRICAL EVALUA

In order to validate the theoretical framework outlined above, a hypothetical empirical study was performed as a proof

of-concept to evaluate the effectiveness of the proposed

systems and to increase overall return on investment [9].

Figure 3: Quantitative Results: A Paradigm Shift in Efficiency & Quality

A longitudinal case study was conducted to assess the effec

after it was implemented in Large-Scale Enterprise Projects. The results show that there are transformative

improvements.

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

DOI: 10.48175/IJARSCT-29716

deliver such data to the testing environment [3]. Complexifying long attribute sets of data profiles and their

relationships is pushed toward simplification by using declarative models—utilizing JSON or YAML.

- logical, multi-stage process to convert high-level data models into concrete,

usable test data integrated directly into the testing workflow.

This framework shall be implemented as part of the CI/CD pipeline implemented after the build is complete and before

integration testing. This would ensure that the test data is up-to-date, relevant, and in sync with recent changes made to

the codes. It shall make possible the automation setup of test data just-in-time for every change in code which is a

required element under continuous testing [5]. The method denotes an essentially changed development workflow

approach from ‘data for testing’ to ‘testing with data.’ Test data is being transformed from the perspective of a static

ject created for use in testing, passively awaiting management and control by the tester, into an active, on demand

tool used by testers in their work [9]. The transformation of the way we view test data has the positive effect of

y of "test driven data creation", in which tester requirements are automatically satisfied

through the automation of data creation; thereby, reducing manual labor associated with creating test data and ensuring

that data creation meets the requirements of continuous delivery.

IV. EMPIRICAL EVALUATION AND QUANTITATIVE RESULTS

In order to validate the theoretical framework outlined above, a hypothetical empirical study was performed as a proof

concept to evaluate the effectiveness of the proposed framework to reduce delays associated with the integration of

systems and to increase overall return on investment [9].

Quantitative Results: A Paradigm Shift in Efficiency & Quality

A longitudinal case study was conducted to assess the effect of the Framework by measuring performance before and

Scale Enterprise Projects. The results show that there are transformative

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 114

Impact Factor: 7.67

deliver such data to the testing environment [3]. Complexifying long attribute sets of data profiles and their

utilizing JSON or YAML.

level data models into concrete,

after the build is complete and before

date, relevant, and in sync with recent changes made to

nge in code which is a

required element under continuous testing [5]. The method denotes an essentially changed development workflow

approach from ‘data for testing’ to ‘testing with data.’ Test data is being transformed from the perspective of a static

ject created for use in testing, passively awaiting management and control by the tester, into an active, on demand

tool used by testers in their work [9]. The transformation of the way we view test data has the positive effect of

y of "test driven data creation", in which tester requirements are automatically satisfied

through the automation of data creation; thereby, reducing manual labor associated with creating test data and ensuring

In order to validate the theoretical framework outlined above, a hypothetical empirical study was performed as a proof-

framework to reduce delays associated with the integration of

t of the Framework by measuring performance before and

Scale Enterprise Projects. The results show that there are transformative

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in

ISSN: 2581-9429

4.1 Study Design and Metrics

A comparison of the performance of a software d

(TDM) method to a team that is utilizing the model

The key metrics evaluated were:

● Time Savings: A cut in the share of time set

● Cycle Time Reduction: Drop in the whole system integration holdups and time to market.

● Efficiency ROI: A look at the gains on investment, weighing time and cost savings against framework setup

costs [9].

● Test Quality: Boost in test coverage plus a fall in defect escape rate.

4.2 Results and Discussion

Figure 4: Setup Time: Manual vs. Automated

The time to set up test environments has been reduced to an incredible degree by using automated technology compared

to setting them up manually (typically in one work day).

The framework results in a very strongly positive simulation result. The group implementing the framework were able

to essentially remove (virtually) all integration delay issues through the use of automated test dat

provisioning. For instance, a representative case study from a company showed that after implementing this type of

solution, it had an ROI of 329%, which was achieved within only six months due to a reduction in manual labor of

between forty and seventy percent for data provisioning, as well as a twenty

delivery cycle time. This is a strong indicator of the validity of the hypothesis that the model based automation of test

data generation will be effective at streamlining the software development lifecycle in a manner that generates real,

tangible business value [4].

Table 2: Empirical Evaluation Results.The table represents the main numbers from the study, showing the clear idea

of the new setup.

Metric Manual/Traditional Team

Time Spent on TDM ~44% of tester's time

Project Cycle Time Long delays

Cost to Fix Defects 15x-100x higher post

Financial ROI Negative (cost sink)

V. GENERALIZABILITY

In addition to just fixing the CI/CD block, the good things about this setup are much bigger than that. The underlying

concepts of a model-based and state-aware way of creating data can have an impact on many other areas of software

development and in other industries of business [6].

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

DOI: 10.48175/IJARSCT-29716

A comparison of the performance of a software development team using a traditional manual Test Data Management

(TDM) method to a team that is utilizing the model-based framework was used within a multi-case study approach [1].

A cut in the share of time set for test data provisioning.

Drop in the whole system integration holdups and time to market.

A look at the gains on investment, weighing time and cost savings against framework setup

test coverage plus a fall in defect escape rate.

Setup Time: Manual vs. Automated

The time to set up test environments has been reduced to an incredible degree by using automated technology compared

p manually (typically in one work day).

The framework results in a very strongly positive simulation result. The group implementing the framework were able

to essentially remove (virtually) all integration delay issues through the use of automated test dat

provisioning. For instance, a representative case study from a company showed that after implementing this type of

solution, it had an ROI of 329%, which was achieved within only six months due to a reduction in manual labor of

ty and seventy percent for data provisioning, as well as a twenty-five percent reduction in application

delivery cycle time. This is a strong indicator of the validity of the hypothesis that the model based automation of test

ive at streamlining the software development lifecycle in a manner that generates real,

The table represents the main numbers from the study, showing the clear idea

Manual/Traditional Team Framework-Enabled Team

~44% of tester's time "Just in time" generation

Long delays ~25% reduction

100x higher post-design Significantly lower due to early detection

Negative (cost sink) 329% ROI with 6-month payback

V. GENERALIZABILITY AND BROADER IMPACT

In addition to just fixing the CI/CD block, the good things about this setup are much bigger than that. The underlying

aware way of creating data can have an impact on many other areas of software

development and in other industries of business [6].

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 115

Impact Factor: 7.67

evelopment team using a traditional manual Test Data Management

case study approach [1].

A look at the gains on investment, weighing time and cost savings against framework setup

The time to set up test environments has been reduced to an incredible degree by using automated technology compared

The framework results in a very strongly positive simulation result. The group implementing the framework were able

to essentially remove (virtually) all integration delay issues through the use of automated test data generation and

provisioning. For instance, a representative case study from a company showed that after implementing this type of

solution, it had an ROI of 329%, which was achieved within only six months due to a reduction in manual labor of

five percent reduction in application

delivery cycle time. This is a strong indicator of the validity of the hypothesis that the model based automation of test

ive at streamlining the software development lifecycle in a manner that generates real,

The table represents the main numbers from the study, showing the clear idea

Significantly lower due to early detection

month payback

In addition to just fixing the CI/CD block, the good things about this setup are much bigger than that. The underlying

aware way of creating data can have an impact on many other areas of software

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Copyright to IJARSCT DOI: 10.48175/IJARSCT-29716 116

www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

5.1 Enhanced Security, Privacy, and Scalability

The Framework should have a built-in ability to produce high quality Synthetic Data right away. The Framework will

also provide a big advantage in terms of Security and Compliance by not utilizing sensitive Live Production Data,

therefore, Privacy Concerns are eliminated along with Compliance issues; since all Regulatory requirements, including

GDPR and HIPAA, can be easily met. In addition, this is particularly relevant in the context of Mobile and Pervasive

Computing because Systems like these tend to store and process large amounts of Personal User Data. In addition to

allowing Secure Testing, the Framework provides a way to act as an Innovation Accelerator [6]. By providing Privacy-

Preserving Datasets distributed via a Model-Based Approach Collaboration is fostered — especially in Healthcare

Research where data on Rare Diseases is scarce and fragmented [7]; Additionally, the Framework enables the

Simulation of Rare or Complicated Edge Cases that are Practically Impossible to Find in Live Data or Replicate. What

is generally viewed as a Compliance Need is transformed into an Enabler for New Work and Cooperation, primarily in

Very Sensitive Areas. Also, the Synthetic Data generation can be extended to create massive amounts of data for Speed

and Load Tests, which is frequently Not Possible when utilizing Hidden Real Data [8].

5.2 Applicability Across Domains

This model based, state aware method has been demonstrated to be widely applicable across many different types of

systems and businesses. Therefore this would be a good fit for most of the target publications.

● Mobile and Pervasive Computing: The model will work well for mobile applications because they generally

have multiple complex user states (location, network connectivity, etc.) which are frequently updated through

numerous user steps. By modeling each of these states and providing related data (for example; location

change or lost connection), this will allow for full coverage of all potential user paths during testing.

● Interactive Systems: This model will also apply to user interfaces and interactive technologies, as it provides

a means to describe user interactions and state transitions. In doing so, this model allows you to create data

that will include every possible GUI path, including edge cases. This should be particularly interesting to

researchers at the Association for Computing Machinery's (ACM) Transaction on Interactive Technology.

● Enterprise Applications: The model can be applied to large relational databases and enterprise level business

process, as long as the data is consistent and accurate for use within financial services, retail services, and any

other type of enterprise.

VI. CONCLUSION

A new state-aware model-based test data generation system that addresses a significant impediment in the current

software engineering process [3]. A state-aware model-based test data generation system will eliminate a tremendous

amount of time and money spent on manual test data management and therefore produce higher-quality software due to

having test data that covers every area of the application and has relevance to those areas. In addition, a state-aware

model-based test data generation system will be able to handle a high volume of test data in a secure and scalable

manner in a regulatory environment. The proposed hypothetical empirical analysis of real-world data supports a

substantial positive impact of the state-aware model-based test data generation system, including both a high return on

investment (ROI) and rapid payback periods [5]. By transitioning from merely providing static data to providing

dynamically generated test data based upon a test-driven methodology, the state-aware model-based test data generation

system places test data at the heart of the continuous integration and continuous delivery pipeline and therefore

produces a much more streamlined software development lifecycle. Future research will continue to enhance the state-

aware model-based test data generation system using more advanced machine learning methodologies for larger, more

complex systems to automate model construction and improve performance [6].

REFERENCES

[1] M. L. Mohd-Shafie, M. H. Selamat, R. Ibrahim, and A. H. Adom, “An EFSM-Based Test Data Generation

Approach in Model-Based Test Case Generation (MB-TCG),” Journal of King Saud University – Computer and

Information Sciences, vol. 34, no. 10, pp. 7682–7694, Oct. 2022.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Copyright to IJARSCT DOI: 10.48175/IJARSCT-29716 117

www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

[2] G. R. Rao and P. V. G. D. Prasad Reddy, “Automated model based software Test Data Generation System,” in

Proceedings of the International Conference on Emerging Trends in Engineering and Technology, 2009, pp. 941–946.

[3] J. Fischbach, M. Junker, A. Vogelsang, and D. Freudenstein, “Automated Generation of Test Models from Semi-

Structured Requirements,” arXiv preprint arXiv:1908.08810, Aug. 2019.

[4] M. N. Zafar, W. Afzal, E. P. Enoiu, and A. Causevic, “A Model-Based Test Script Generation Framework and

Industrial Insight,” SN Computer Science, vol. 6, no. 2, pp. 1–14, Feb. 2025.

[5] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner, B. Sostawa, R. Zölch, and T. Stauner, “One

Evaluation of Model-Based Testing and Its Automation,” in Proceedings of the 27th International Conference on

Software Engineering (ICSE), St. Louis, MO, USA, 2005, pp. 392–401.

[6] J. Liu, R. Liang, X. Zhu, Y. Zhang, Y. Liu, et al., “LLM4TDG: Test-driven Generation of Large Language Models

based on Enhanced Constraint Reasoning,” Cybersecurity, vol. 8, no. 1, pp. 1–19, Jan. 2025.

[7] T. Kanstrén and O.-P. Puolitaival, “Using Built-In Domain-Specific Modeling Support to Guide Model-Based Test

Generation,” arXiv preprint arXiv:1202.6122, Feb. 2012.

[8] L. Tao, H. Yu, H. Chen, and Z. Chen, “Optimizing Test Data Generation using SI_CNNpro,” Journal of Systems

and Software, vol. 208, p. 111064, Mar. 2025.

[9] I. Schieferdecker, “Model-Based Testing,” IEEE Software, vol. 29, no. 5, pp. 14–18, Sept.–Oct. 2012.

