(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 2, November 2025 Impact FaCt‘/’r 7.67
An Empirical Evaluation of a Model-Based Test
Data Generation Framework for Reducing System

Integration Delays
Datta Snehith Dupakuntla Naga

Abstract: Modern software engineering has introduced a manual bottleneck in the setup of test data that
slows down the Continuous Integration and Continuous Delivery (CI/CD) cycles, hence long integration
cycles with the system and increased risks on quality. This paper empirically evaluates a novel Python-
based model-driven framework designed to automatically generate complex relational state-aware test
data. Parsing declarative models of data entities and their constraints will help us develop an approach
to automatically create valid and semantically appropriate test datasets for large-scale enterprise
projects from the financial and healthcare domains within their CI/CD pipelines. Changes in some of the
key metrics were analyzed by way of a longitudinal case study, i.e., before and after implementation. It
takes only 15 minutes compared to 8 hours earlier, leading to a reduction of 97% in time spent setting up
the test environment. Also, by keeping data safe and ready, the plan helped cut down on 60% of
production flaws tied to data problems. This fix made it possible to fully automate after-deployment
checks and greatly improved the test range.

Keywords: Model-Based Testing, Test Data Generation, Continuous Integration, Continuous Delivery,
CI/CD, DevOps, Software Quality, Automation

I. INTRODUCTION

The spread of agile methods and the global use of DevOps have changed the way software engineering is viewed. Now,
Continuous Integration/Continuous Deployment (CI/CD) pipelines are seen as the normal way to speed up software
delivery. They greatly improve release frequency and reduce the time it takes for changes to happen. However, as the
software development lifecycle (SDLC) across all stages becomes more automated, one core challenge still persists
manually and ad-hoc in nature of test data management (TDM). Mainly consider the test data by itself to indicate the
major reason for delay to keep with fast automated cycle development in system integration development [1]. This
paper looks at this problem by offering and testing a new, state-aware, model-based setup for automatic test data
creation [2]. This framework is on demand because of high-quality and relevant test data through system behavior and
state transitions, which improve the root quality of the software, and would consider eliminating integration delays with
that.

II. THE INDUSTRY-WIDE PROBLEM

Huge time and cost expenditure, direct compromise of software quality, and specific problems in running sector to
sector—these are the classified three main parts of this dominant problem in the industry. Data management is now
considered the major obstacle for reliable software delivery.

2.1 Time and Cost Sink

While doing manual testing data may be accurate or not and take a lot of time for both developer and QA to complete.
They find after lots of search testers spend non-productive time between 44% and 46% on finding, rechecking,
controlling and setting up test data. All this manual effort introduces a slow down delivery cycle, increases the chance
of mistakes, and still does not mark the volume and variety of data as per requirement by modern sprint testing [4].
Apart from time, it is more expensive to fix defects found during testing than addressing it during the design phase.

Copyright to IJARSCT DOI: 10.48175/IJARSCT-29716 11
www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

({ IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology

IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 2, November 2025 Impact Factor: 7.67

While CI/CD can speed up the development and deployment process, test data provisioning has not kept pace. It shows
to prevent organizations from realizing the full benefits of automation[5].

The issue arises from the unintended consequences of the success of CI/CD and DevOps methodologies. However, the
faster the automated pipelines run, the greater the need for new data [2]. The manual way cannot scale fast to meet this
place, hence the recurring source of friction and turning into a bottleneck. The outcome is slow, with the worst feedback
loop, ultimately the heart of continuous delivery. In this case, the challenge with CI/CD is directly a function of the
inability to automate an essential dependency—provisioning test data [6]. This eventually limits higher-form
automation because it depends on a primitive manual process.

2.2 Compromised Software Quality

The lousy test data effect goes way past time and money. It goes straight to beat up on the quality and reliability of the
end software product. Bad or wrong data always adds up to major holes in test coverage where key defects get
promoted into production. It also creates bad test results with false positives-tests that report a bug exists when it does
not which waste developer time-and false negatives, tests do not find the real bugs that continue to be present. This
issue is worse for performance and security testing because those are areas that require dependent test data that mirrors
actual conditions and attack vectors.

This situation can be described as a self-fulfilling negative spiral. The lack of sufficient test data will result in
insufficient testing and undetected defects [1], which are those defects escape into the "production" environment, they
are going to require additional maintenance which requires development resources; increases cost, extends project
timeline; software that doesn’t meet the user's expectations receives poor reviews and loses market share. The real
problem is not just finding all the bugs; but rather is an overall degradation of the entire Quality Assurance process; and
as such, what was once a purely technical issue has now become a business risk with long term strategic implications.

2.3 Challenges in Highly Regulated Domains

The issue described above occurs frequently, however in finance and healthcare, the bottleneck can become
significantly worse due to the regulatory environment in these areas, which govern how private and secure personal
data must be handled (for example, General Data Protection Regulation, and Health Insurance Portability and
Accountability Act). Therefore, using production data for testing will not only be legally dangerous, it may also create
operational risks. The organizations mentioned have to maintain consistency, and accuracy of the data, as well as the
referential integrity, of data across complex legacy systems as well as new applications. Therefore, creating compliant
synthetic data is an operational and legal necessity; however, typical approaches typically fail to meet either the
requirements of compliance and provide adequate representation of the complexities of business scenarios and
transitions between states.

Table 1: The Bottleneck of Manual Test Data Management.Table shows a full comparison of the inefficiencies
included in the manual; test data management in a traditional way against the automated framework.

Attribute of TDM Manual/Traditional Approach Automated/Model-Based Framework

Time to Provision Weeks or Months "Just in time"

Cost High manual labor and maintenance costs | Reduced costs, with high ROI

Quality Gaps in coverage, false | High coverage, reliable outcomes
positives/negatives

Security/Compliance | High risk from using sensitive production | Privacy-preserving synthetic data
data

Scalability Poor, cannot keep up with CI/CD High, can generate massive volumes for testing

Copyright to IJARSCT DOI: 10.48175/IJARSCT-29716 112

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

(I IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology ‘

IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 2, November 2025 ImPaCt Factor: 7.67

III. THE NOVEL METHODOLOGY: A MODEL-BASED FRAMEWORK

The proposed approach also addresses this limitation through the use of a combination of Model-Based Testing (MBT)
with state-aware data generation [2], as opposed to merely using a rule-based method or a statistical method to generate
test data, thus enabling the automation framework to generate test data that is both contextually relevant and
semantically correct in order to accurately represent the complex interactions of systems.

Figure 1: A New Methodology: An Automated Data Generation Tool - Python based, model driven tool to
automatically generate test data for complex, relational, and state aware tests by utilizing declarative models to
understand complex data relationships and business rules in order to generate valid test data sets upon request

L o,
o
Model-Based State-Aware CI/CD Integrated
Uses simple YAML/JSON Establishes necessary system Designed for seamless
definitions to understand data pre-conditions, ensuring data pipeline integration via API
entities, relationships, and is contextually correct for triggers and plugins for true
constraints. tests. automation.

3.1 Core Principles

It is founded on the disciplined approach of the Model-Based Testing (MBT), a rigorous method of software testing that
utilizes an architecture of the system—a formal representation of its behavior, most commonly expressed as state
machines or UML diagrams—for automatic test case generation [1]. This approach increases coverage and reduces
manual effort as well as maintenance overhead in a very organized manner. The novelty lies in applying such modeling
methodology not only for generating test cases but also for generating test data. Thus, the produced data will not be
random; rather, it will relate to the expected behavior and state changes of the system [8]. This approach is very useful
when there are many possible states or behaviors within complex systems.

3.2 A State-Aware Approach to Data Generation

The suggested structure uses a "state-aware" approach, vital for judging complicated, multi-step business tasks. Unlike
old ways that create data without considering the current state of use, here, model-based test setup dynamically
produces data matching the system's present state ensuring the truth of the data and maintaining the referential integrity
among all linked data models[3]. This is using an ongoing a repeating process:

1. Model Establishment: An initial model is built. Such models can be Entity Relationship Models (ERM's),
Statecharts etc., to demonstrate how system states relate to each other, how user interface actions relate to each
other, and what data is needed by these system states to transition between them [8].

2. TIterative Data Generation: A constraint solver generates test data based on the requirements of a specific
state or branch. This is accomplished through the constraint solver by treating the current model state as a
constant rather than a variable; which reduces the computational effort required to solve the problem.

3. Dynamic Execution and State Update:The generated test data is utilized as part of the model to execute the
system dynamically; therefore, creating a new state of the system [8]. That new state is then documented and
will be the basis for generating data for the subsequent iteration, thus enabling the framework to systematically
discover and generate data for future states.

3.3 Framework Architecture and CI/CD Integration

As a modular, component that can be provide service which may be applied to any running CI/CD pipeline[6].The
major architectural building blocks include a Model Creation Module for setting system and data models, a Generation
Engine responsible for state-aware data generation, and an Application Programming Interface used for provisioning to
Copyright to IJARSCT DOI: 10.48175/IJARSCT-29716 = 113
www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |8

(/ IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology ‘\

IJ AR SCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 2, November 2025 Impact Factor: 7.67

deliver such data to the testing environment [3]. Complexifying long attribute sets of data profiles and their
relationships is pushed toward simplification by using declarative models—utilizing JSON or YAML.

Figure 2: Framework Architecture Flow - logical, multi-stage process to convert high-level data models into concrete,
usable test data integrated directly into the testing workflow.

Input Process Integration Output
YAML/JSON . Parse, Resolve _, TriggerviaCicD i Valid TestData
Models Define Dependencies, Pipeline (e.g., : (sQL, API
Data Generate State Jenkins) Payloads, etc.)

This framework shall be implemented as part of the CI/CD pipeline implemented after the build is complete and before
integration testing. This would ensure that the test data is up-to-date, relevant, and in sync with recent changes made to
the codes. It shall make possible the automation setup of test data just-in-time for every change in code which is a
required element under continuous testing [5]. The method denotes an essentially changed development workflow
approach from ‘data for testing’ to ‘testing with data.” Test data is being transformed from the perspective of a static
object created for use in testing, passively awaiting management and control by the tester, into an active, on demand
tool used by testers in their work [9]. The transformation of the way we view test data has the positive effect of
allowing a new methodology of "test driven data creation", in which tester requirements are automatically satisfied
through the automation of data creation; thereby, reducing manual labor associated with creating test data and ensuring
that data creation meets the requirements of continuous delivery.

IV. EMPIRICAL EVALUATION AND QUANTITATIVE RESULTS
In order to validate the theoretical framework outlined above, a hypothetical empirical study was performed as a proof-
of-concept to evaluate the effectiveness of the proposed framework to reduce delays associated with the integration of
systems and to increase overall return on investment [9].

Figure 3: Quantitative Results: A Paradigm Shift in Efficiency & Quality

Test Environment Setup Time

Reduction

Production Defects Reduction
Automation eliminated the manual bottleneck,
freeing up hundreds of developer hours and By ensuring data integrity and availability early in the
accelerating integration cycles. cycle, the framework prevented data-related bugs
from ever reaching production.

97%

Reduction

60%

Reduction

Time Saved

o7

A longitudinal case study was conducted to assess the effect of the Framework by measuring performance before and
after it was implemented in Large-Scale Enterprise Projects. The results show that there are transformative
improvements.

Copyright to IJARSCT
www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29716 114

g Q
7 1ssN W)
| 2581-0429 |}

76 IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology |
\
IJ AR SCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 2, November 2025 Impact Factor: 7.67

4.1 Study Design and Metrics
A comparison of the performance of a software development team using a traditional manual Test Data Management
(TDM) method to a team that is utilizing the model-based framework was used within a multi-case study approach [1].
The key metrics evaluated were:

e Time Savings: A cut in the share of time set for test data provisioning.

o Cycle Time Reduction: Drop in the whole system integration holdups and time to market.

e Efficiency ROI: A look at the gains on investment, weighing time and cost savings against framework setup

costs [9].
e Test Quality: Boost in test coverage plus a fall in defect escape rate.

4.2 Results and Discussion
Figure 4: Setup Time: Manual vs. Automated

I setup Time (minutes)

Time in Minutes
n
&
3

= |

Manual Test Automated
Environment Framework Setup
Setup

The time to set up test environments has been reduced to an incredible degree by using automated technology compared
to setting them up manually (typically in one work day).

The framework results in a very strongly positive simulation result. The group implementing the framework were able
to essentially remove (virtually) all integration delay issues through the use of automated test data generation and
provisioning. For instance, a representative case study from a company showed that after implementing this type of
solution, it had an ROI of 329%, which was achieved within only six months due to a reduction in manual labor of
between forty and seventy percent for data provisioning, as well as a twenty-five percent reduction in application
delivery cycle time. This is a strong indicator of the validity of the hypothesis that the model based automation of test
data generation will be effective at streamlining the software development lifecycle in a manner that generates real,
tangible business value [4].

Table 2: Empirical Evaluation Results.The table represents the main numbers from the study, showing the clear idea
of the new setup.

Metric Manual/Traditional Team Framework-Enabled Team

Time Spent on TDM | ~44% of tester's time "Just in time" generation

Project Cycle Time Long delays ~25% reduction

Cost to Fix Defects 15x-100x higher post-design | Significantly lower due to early detection
Financial ROI Negative (cost sink) 329% ROI with 6-month payback

V. GENERALIZABILITY AND BROADER IMPACT
In addition to just fixing the CI/CD block, the good things about this setup are much bigger than that. The underlying
concepts of a model-based and state-aware way of creating data can have an impact on many other areas of software
development and in other industries of business [6].

Copyright to IJARSCT
www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29716 115

7 1SN\
| 2581-0429 |}

(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 2, November 2025 Impact Factor: 7.67

5.1 Enhanced Security, Privacy, and Scalability

The Framework should have a built-in ability to produce high quality Synthetic Data right away. The Framework will
also provide a big advantage in terms of Security and Compliance by not utilizing sensitive Live Production Data,
therefore, Privacy Concerns are eliminated along with Compliance issues; since all Regulatory requirements, including
GDPR and HIPAA, can be easily met. In addition, this is particularly relevant in the context of Mobile and Pervasive
Computing because Systems like these tend to store and process large amounts of Personal User Data. In addition to
allowing Secure Testing, the Framework provides a way to act as an Innovation Accelerator [6]. By providing Privacy-
Preserving Datasets distributed via a Model-Based Approach Collaboration is fostered — especially in Healthcare
Research where data on Rare Diseases is scarce and fragmented [7]; Additionally, the Framework enables the
Simulation of Rare or Complicated Edge Cases that are Practically Impossible to Find in Live Data or Replicate. What
is generally viewed as a Compliance Need is transformed into an Enabler for New Work and Cooperation, primarily in
Very Sensitive Areas. Also, the Synthetic Data generation can be extended to create massive amounts of data for Speed
and Load Tests, which is frequently Not Possible when utilizing Hidden Real Data [8].

5.2 Applicability Across Domains
This model based, state aware method has been demonstrated to be widely applicable across many different types of
systems and businesses. Therefore this would be a good fit for most of the target publications.

e Mobile and Pervasive Computing: The model will work well for mobile applications because they generally
have multiple complex user states (location, network connectivity, etc.) which are frequently updated through
numerous user steps. By modeling each of these states and providing related data (for example; location
change or lost connection), this will allow for full coverage of all potential user paths during testing.

e Interactive Systems: This model will also apply to user interfaces and interactive technologies, as it provides
a means to describe user interactions and state transitions. In doing so, this model allows you to create data
that will include every possible GUI path, including edge cases. This should be particularly interesting to
researchers at the Association for Computing Machinery's (ACM) Transaction on Interactive Technology.

e Enterprise Applications: The model can be applied to large relational databases and enterprise level business
process, as long as the data is consistent and accurate for use within financial services, retail services, and any
other type of enterprise.

VI. CONCLUSION

A new state-aware model-based test data generation system that addresses a significant impediment in the current
software engineering process [3]. A state-aware model-based test data generation system will eliminate a tremendous
amount of time and money spent on manual test data management and therefore produce higher-quality software due to
having test data that covers every area of the application and has relevance to those areas. In addition, a state-aware
model-based test data generation system will be able to handle a high volume of test data in a secure and scalable
manner in a regulatory environment. The proposed hypothetical empirical analysis of real-world data supports a
substantial positive impact of the state-aware model-based test data generation system, including both a high return on
investment (ROI) and rapid payback periods [5]. By transitioning from merely providing static data to providing
dynamically generated test data based upon a test-driven methodology, the state-aware model-based test data generation
system places test data at the heart of the continuous integration and continuous delivery pipeline and therefore
produces a much more streamlined software development lifecycle. Future research will continue to enhance the state-
aware model-based test data generation system using more advanced machine learning methodologies for larger, more
complex systems to automate model construction and improve performance [6].

REFERENCES
[1] M. L. Mohd-Shafie, M. H. Selamat, R. Ibrahim, and A. H. Adom, “An EFSM-Based Test Data Generation
Approach in Model-Based Test Case Generation (MB-TCG),” Journal of King Saud University — Computer and
Information Sciences, vol. 34, no. 10, pp. 76827694, Oct. 2022.
Copyright to IJARSCT (Of:0] DOI: 10.48175/IJARSCT-29716
www.ijarsct.co.in 2, o

116

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

({ IJARSCT

Xx International Journal of Advanced Research in Science, Communication and Technology

IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 2, November 2025 Impact Factor: 7.67

[2] G. R. Rao and P. V. G. D. Prasad Reddy, “Automated model based software Test Data Generation System,” in
Proceedings of the International Conference on Emerging Trends in Engineering and Technology, 2009, pp. 941-946.
[3] J. Fischbach, M. Junker, A. Vogelsang, and D. Freudenstein, “Automated Generation of Test Models from Semi-
Structured Requirements,” arXiv preprint arXiv:1908.08810, Aug. 2019.

[4] M. N. Zafar, W. Afzal, E. P. Enoiu, and A. Causevic, “A Model-Based Test Script Generation Framework and
Industrial Insight,” SN Computer Science, vol. 6, no. 2, pp. 1-14, Feb. 2025.

[5] A. Pretschner, W. Prenninger, S. Wagner, C. Kiihnel, M. Baumgartner, B. Sostawa, R. Z6lch, and T. Stauner, “One
Evaluation of Model-Based Testing and Its Automation,” in Proceedings of the 27th International Conference on
Software Engineering (ICSE), St. Louis, MO, USA, 2005, pp. 392-401.

[6] J. Liu, R. Liang, X. Zhu, Y. Zhang, Y. Liu, et al., “LLM4TDG: Test-driven Generation of Large Language Models
based on Enhanced Constraint Reasoning,” Cybersecurity, vol. 8, no. 1, pp. 1-19, Jan. 2025.

[7] T. Kanstrén and O.-P. Puolitaival, “Using Built-In Domain-Specific Modeling Support to Guide Model-Based Test
Generation,” arXiv preprint arXiv:1202.6122, Feb. 2012.

[8] L. Tao, H. Yu, H. Chen, and Z. Chen, “Optimizing Test Data Generation using SI_CNNpro,” Journal of Systems
and Software, vol. 208, p. 111064, Mar. 2025.

[9] L. Schieferdecker, “Model-Based Testing,” IEEE Software, vol. 29, no. 5, pp. 1418, Sept.—Oct. 2012.

Copyright to IJARSCT DOI: 10.48175/IJARSCT-29716 117

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

