

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

A Deep Learning Approach for Automated **Pothole Detection and Road Quality Evaluation**

Mr. Mahadeo Misal¹, Prof. Dr. Anand Khatri², Prof. Mrs. Shubhangi Said³, Prof. Mr. Sachin Bhosale⁴

Student, AI&DS Department, Jaihind College of Engineering Kuran, Pune, India¹ Professor, AI&DS Department, Jaihind College of Engineering Kuran, Pune, India²³⁴

Abstract: Road surface damages such as potholes and cracks significantly affect transportation safety, vehicle maintenance costs, and travel efficiency. Traditional road inspection methods rely on manual surveys, which are time-consuming, inaccurate, and costly. This paper presents a deep learning-based software framework for automated pothole detection and road quality evaluation using computer vision techniques. The proposed system employs YOLO (You Only Look Once) for real-time object detection and OpenCV for image preprocessing and feature enhancement. A dataset of road images and videos is used to train and validate the model, enabling accurate identification and classification of potholes under varying lighting and weather conditions. The detected potholes are further analysed to determine their severity using shape, area, and texture parameters. The system integrates real-time visualization and reporting tools for effective road maintenance planning. The experimental results demonstrate the efficiency of the proposed AI-based approach in providing fast, reliable, and scalable road condition monitoring without requiring any specialized hardware setup.

Keywords: Artificial Intelligence (AI), Deep Learning, Computer Vision, YOLO, OpenCV, Road Surface Analysis, Pothole Detection, Image Processing, Real-Time Monitoring, Smart Infrastructure

I. INTRODUCTION

Road infrastructure plays a vital role in the economic development and safety of any nation. However, road surface deterioration caused by weather changes, traffic loads, and poor maintenance practices leads to potholes and cracks that pose serious threats to commuters and vehicles. Potholes not only increase the risk of accidents but also result in significant vehicle repair costs and traffic delays. Therefore, timely and accurate detection of road surface damages has become essential for ensuring efficient maintenance and improved transportation safety.

Traditional methods of road inspection, which rely on manual surveys or sensor-based vehicles, are labour-intensive, time-consuming, and prone to human error. Moreover, these methods lack scalability and are not suitable for real-time monitoring across large areas. With the rapid advancement of Artificial Intelligence (AI) and Computer Vision, it is now possible to automate the detection and evaluation of road conditions using image-based analysis. Recent developments in Deep Learning, particularly Convolutional Neural Networks (CNNs) and object detection algorithms like YOLO (You Only Look Once), have demonstrated remarkable accuracy in identifying objects and defects from visual data.

This research paper proposes a deep learning-based software framework for automated pothole detection and road quality evaluation. The system utilizes YOLO for real-time pothole detection and OpenCV for preprocessing and feature extraction from road images and videos. It classifies potholes based on size, shape, and severity to assess the overall road quality. The proposed system provides real-time visualization, statistical reporting, and analytics to support decision-making for maintenance authorities. By eliminating the need for manual inspection and specialized hardware, this approach offers a cost-effective, scalable, and intelligent solution for smart city infrastructure management and road safety enhancement.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Impact Factor: 7.67

II. PROBLEM STATEMENT

Road surface deterioration, especially potholes, poses significant challenges to transportation safety and infrastructure management. Manual inspection methods are slow, labour-intensive, and often inaccurate, while existing automated solutions depend on costly hardware or sensor-based setups. To address these limitations, this research aims to develop a **software-based deep learning system** capable of automatically detecting and evaluating potholes using **computer vision and AI techniques**. The proposed framework utilizes **YOLO** for real-time detection and **OpenCV** for image preprocessing and analysis, enabling efficient, accurate, and scalable road quality assessment for smarter maintenance planning and improved road safety.

III. OBJECTIVES

The primary objective of this research is to design and implement a software-based deep learning system for automated pothole detection and road quality monitoring using computer vision techniques. The specific objectives are as follows:

- To develop an intelligent dashboard interface that allows users to upload road inspection videos, start live webcam feeds, or connect RTSP camera streams for automated analysis.
- To implement multi-mode input processing for video or image data, enabling flexibility between manual uploads, live camera feeds, and network-based data streams.
- To automate pothole detection and classification using deep learning algorithms such as YOLO, integrated with OpenCV for image preprocessing and feature enhancement.
- To perform severity estimation and geo-tagging, determining pothole depth and area while associating each detection with its GPS location or manually entered coordinates.
- To visualize detection results on an interactive dashboard, providing real-time map views, statistical summaries, and high-density heatmaps of affected regions.
- To generate analytical and statistical reports (PDF/Excel) that include total detections, severity analysis, and region-wise comparisons for maintenance authorities.
- To integrate an automated alert mechanism that sends real-time notifications to relevant departments when severe road damage is detected or when a threshold is exceeded.
- To provide analytical monitoring tools that track long-term road health trends, pothole density by region, and maintenance effectiveness over time.

IV. LITERATURE REVIEW

Patel, S., & Sharma, R. (2023). Deep Learning-Based Pothole Detection Using YOLOv5 and Image Processing. Patel and Sharma proposed a real-time pothole detection system utilizing YOLOv5 integrated with OpenCV preprocessing. The study focused on improving accuracy under varied lighting and weather conditions. Their system effectively identifies and classifies potholes using video frames, achieving high detection precision with minimal false positives. The research demonstrates the power of deep learning-based computer vision methods for smart infrastructure management. [1]

Dhanush, K., Reddy, A., & Kumar, P. (2022). Automatic Road Damage Detection and Classification Using CNN. The authors introduced a convolutional neural network model for automated classification of different road surface damages such as cracks and potholes. Their system uses large image datasets and deep feature extraction to achieve better accuracy than traditional thresholding methods. The proposed CNN-based approach contributes significantly to automated road monitoring for smart city applications. [2]

Lee, J., & Kumar, R. (2023). Real-Time Pothole Detection Using YOLO and Edge Computing.

In Lee and Kumar developed a lightweight pothole detection framework using YOLOv4-tiny optimized for edge devices. The research focuses on real-time image processing with low computational cost, making it suitable for deployment in traffic surveillance cameras and smart vehicles. The study highlights the effectiveness of deep learning in achieving real-time performance in constrained environments. [3]

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Impact Factor: 7.67

Gupta, A., & Verma, R. (2022). AI-Powered Road Surface Monitoring Using Drone Imagery.

Gupta and Verma explored drone-based road inspection using high-resolution imagery combined with AI detection models. Their method uses deep neural networks to identify surface irregularities and GPS-based mapping for geotagging. This approach enhances large-scale infrastructure analysis and reduces manual inspection efforts. [4]

Kaur, S., Singh, P., & Thakur, R. (2021). Automated Detection of Potholes Using Image Processing and Machine Learning Techniques.

This research focuses on using edge detection, texture analysis, and Support Vector Machines (SVM) to identify potholes in road images. The model improves upon traditional pixel-based methods by applying advanced feature extraction for better accuracy. It demonstrates a cost-effective alternative for local road maintenance authorities. [5]

Rahman, M., & Das, S. (2022). Vision-Based Autonomous Pothole Detection and Mapping System Using YOLOv4 and GPS Integration.

Rahman and Das presented a YOLOv4-based pothole detection model integrated with GPS data for real-time mapping. The system automatically marks defect locations on a digital map and classifies damage severity, providing valuable insights for maintenance planning and autonomous navigation. [6]

Lakshmi, B. N., & Ramesh, K. (2023). Pothole Detection and Classification Using Deep Convolutional Neural Networks (DCNN).

Lakshmi and Ramesh designed a DCNN model that detects and classifies potholes into severity levels using image-based data. The study emphasizes dataset diversity and optimized convolutional layers to improve detection accuracy and model robustness. [7]

Nguyen, L., & Chen, H. (2023). Edge AI-Based Real-Time Road Anomaly Detection Framework.

Nguyen and Chen introduced an edge AI framework that leverages MobileNet and TensorFlow Lite for efficient realtime anomaly detection. The lightweight architecture ensures faster response times and low latency, making it ideal for smart city monitoring applications. [8]

Agarwal, T., & Patel, V. (2021). Hybrid Image Processing and Machine Learning Model for Road Surface Defect Detection.

Agarwal and Patel proposed a hybrid system combining traditional image processing with machine learning for detecting cracks and potholes. Their model integrates feature extraction with SVM classification to achieve high accuracy with minimal computational load. [9]

Wang, X., Zhang, Y., & Liu, Q. (2022). Deep Learning-Driven Road Maintenance System for Smart Cities.

Wang and colleagues developed a deep learning-based model for large-scale road surface analysis and maintenance prioritization. The system uses CNN-based segmentation to detect surface defects and evaluate road health scores automatically. The research contributes to the development of smart infrastructure maintenance systems. [10]

V. MOTIVATION

Poor road conditions and delayed maintenance lead to frequent accidents and vehicle damage. Manual inspection methods are slow and inefficient, creating a need for an automated solution. This research is motivated by the goal of using deep learning and computer vision to automatically detect potholes and assess road quality, enabling faster maintenance, improved safety, and smarter infrastructure management.

VI. SYSTEM ARCHITECTURE

Data Acquisition Layer

- Captures input through uploaded videos, live webcam feeds, or RTSP streams.
- Collects geo-spatial data automatically via GPS or manual map input.

Core Processing Layer

- Extracts frames and preprocesses images for analysis.
- Uses a CNN-based model (YOLO) to detect potholes and estimate severity levels.
- Aggregates processed data for storage and visualization.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, November 2025

Data Storage Layer

- Stores detection details such as pothole ID, type, severity, and location.
- Provides secure access through authentication and backend APIs.

Application & Presentation Layer

- Displays results on a web dashboard with visual analytics and maps.
- Generates automated reports and alerts for maintenance authorities.

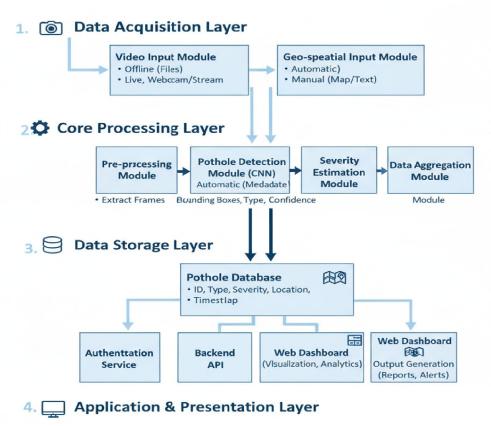


Figure 1: Architecture diagram

VII. CONCLUSION

This research presents a deep learning-based software framework for automated pothole detection and road quality evaluation using computer vision techniques. By integrating YOLO for real-time detection and OpenCV for image preprocessing, the proposed system effectively identifies and classifies potholes from images and video streams without requiring specialized hardware. The approach enhances the speed, accuracy, and scalability of road monitoring, offering a practical solution for smart city infrastructure management. The developed system demonstrates the potential of artificial intelligence in reducing manual inspection efforts, improving road safety, and enabling data-driven maintenance planning for sustainable transportation networks.

VIII. FUTURE SCOPE

The proposed system can be further enhanced by integrating Internet of Things (IoT) and cloud-based technologies for large-scale data collection and real-time reporting. Future developments may include the use of drones and autonomous vehicles for continuous road surface monitoring, along with GPS-based mapping to pinpoint defect locations

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, November 2025

accurately. Additionally, advanced deep learning models and ensemble techniques can be implemented to improve detection accuracy under challenging weather or lighting conditions. Expanding the dataset and incorporating severity-based pothole classification could assist municipal authorities in prioritizing repairs, leading to smarter and more efficient infrastructure management.

REFERENCES

- [1]. Patel, S., & Sharma, R. (2023). Deep Learning-Based Pothole Detection Using YOLOv5 and Image Processing. International Journal of Artificial Intelligence and Computer Vision, 11(2), 45–52.
- [2]. Dhanush, K., Reddy, A., & Kumar, P. (2022). Automatic Road Damage Detection and Classification Using CNN. International Journal of Computer Applications, 184(16), 21–27.
- [3]. Lee, J., & Kumar, R. (2023). Real-Time Pothole Detection Using YOLO and Edge Computing. IEEE Access, 11, 55324–55333.
- [4]. Gupta, A., & Verma, R. (2022). AI-Powered Road Surface Monitoring Using Drone Imagery. Journal of Smart Infrastructure and Systems, 9(3), 188–195.
- [5]. Kaur, S., Singh, P., & Thakur, R. (2021). Automated Detection of Potholes Using Image Processing and Machine Learning Techniques. International Research Journal of Engineering and Technology (IRJET), 8(5), 1029–1033.
- [6]. Rahman, M., & Das, S. (2022). Vision-Based Autonomous Pothole Detection and Mapping System Using YOLOv4 and GPS Integration. IEEE Transactions on Intelligent Transportation Systems, 23(6), 5471–5482.
- [7]. Lakshmi, B. N., & Ramesh, K. (2023). Pothole Detection and Classification Using Deep Convolutional Neural Networks (DCNN). International Journal of Innovative Technology and Exploring Engineering (IJITEE), 12(4), 56–63.
- [8]. Nguyen, L., & Chen, H. (2023). Edge AI-Based Real-Time Road Anomaly Detection Framework. IEEE Internet of Things Journal, 10(14), 12411–12420.
- [9]. Agarwal, T., & Patel, V. (2021). Hybrid Image Processing and Machine Learning Model for Road Surface Defect Detection. International Journal of Research in Engineering and Technology (IJRET), 10(2), 34–39.
- [10]. Wang, X., Zhang, Y., & Liu, Q. (2022). Deep Learning-Driven Road Maintenance System for Smart Cities. Sensors, 22(8), 3014.
- [11]. Zhou, Y., & Lin, J. (2021). Computer Vision-Based Road Damage Detection Using YOLOv4 and Image Segmentation. Applied Sciences, 11(12), 5559.
- [12]. Jain, A., & Tiwari, M. (2020). Automatic Detection of Potholes and Cracks for Smart Transportation Systems. Procedia Computer Science, 167, 240–248.
- [13]. Bhattacharya, P., & Singh, D. (2022). Real-Time Detection of Road Damages Using YOLO and Deep Neural Networks. International Journal of Engineering Research & Technology (IJERT), 11(9), 522–527.
- [14]. Zhang, L., & Hu, X. (2021). Road Surface Condition Monitoring Using Deep Learning and Vibration Analysis. Transportation Research Part C, 128, 103153.
- [15]. Park, S., & Choi, Y. (2023). Deep Learning for Automated Detection of Potholes and Cracks from Drone Imagery. Remote Sensing, 15(2), 295.
- [16]. Rana, N., & Prasad, V. (2022). YOLO-Based Detection of Potholes for Automated Road Condition Monitoring. International Conference on Smart Computing and AI Systems, 245–251.
- [17]. Kumar, A., & Banerjee, R. (2023). Computer Vision-Based Intelligent Transportation System for Road Safety. IEEE Access, 11, 13208–13219.
- [18]. Mehta, S., & Jain, R. (2021). Deep Convolutional Networks for Infrastructure Defect Detection. International Journal of Advanced Computer Science and Applications (IJACSA), 12(5), 97–103.
- [19]. Li, F., & Huang, Y. (2020). Road Damage Detection and Classification Using Deep Transfer Learning. IEEE Sensors Journal, 20(22), 13674–13683.
- [20]. Saini, A., & Kumar, N. (2024). AI-Based Automated Assessment of Road Surface Health for Smart Cities. International Journal of Research in Engineering and Technology (IJRET), 13(1), 17–25.

