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Abstract: The integration of Artificial Intelligence (AI) in materials engineering has revolutionized the 

process of material selection and property prediction. Among various AI methods, Artificial Neural 

Networks (ANNs) have emerged as powerful tools capable of modeling complex nonlinear relationships 

between material composition, processing parameters, and mechanical or thermal properties. This 

review presents a comprehensive analysis of recent advances in AI-based material informatics, focusing 

on ANN-driven approaches for predicting properties such as tensile strength, hardness, and thermal 

conductivity, and for recommending suitable materials in engineering design. The study examines key 

methodologies, dataset sources, preprocessing techniques, and ANN architectures used across the 

literature. Additionally, it compares hybrid frameworks that integrate ANNs with multi-criteria decision-

making (MCDM) techniques for intelligent material recommendation. Challenges such as data scarcity, 

model interpretability, and generalization across diverse material classes are critically discussed. 

Finally, the paper outlines potential research directions, including the integration of deep learning, 

uncertainty quantification, and cloud-based deployment for scalable material intelligence systems. This 

review aims to provide insights into current trends, technological developments, and future opportunities 

for AI-driven material selection and property prediction systems in mechanical and materials 

engineering. 
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I. INTRODUCTION 

Material selection and property prediction are among the most critical processes in engineering design, directly 

influencing the performance, safety, cost, and sustainability of final products. With the rapid increase in the number of 

available engineering materials—ranging from advanced alloys to polymer composites—traditional manual selection 

methods based on experience and charts have become inefficient and prone to error [1]. The growing complexity of 

material data and design constraints has driven the shift towards data-driven techniques and computational intelligence, 

marking the emergence of materials informatics [2]. This approach leverages artificial intelligence (AI) and machine 

learning (ML) to process large datasets, uncover hidden relationships, and predict material behavior under various 

conditions [3]. 

Among these AI techniques, Artificial Neural Networks (ANNs) have gained considerable attention due to their strong 

capability to model nonlinear and multivariate dependencies between input features such as composition, 

microstructure, and processing parameters, and target properties like hardness, tensile strength, and corrosion resistance 

[4], [5]. ANNs have been successfully applied in predicting the mechanical and thermal properties of metals [6], 

ceramics [7], polymers [8], and composites [9]. Researchers have also combined ANNs with optimization algorithms 

such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) to fine-tune material performance for 

specific applications [10]. Furthermore, hybrid frameworks integrating ANN models with Multi-Criteria Decision-
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Making (MCDM) methods such as TOPSIS, AHP, and VIKOR have demonstrated improved performance in intelligent 

material selection [11], [12]. 

However, the deployment of ANN-based material prediction systems still faces multiple challenges, including data 

scarcity, overfitting, limited interpretability, and lack of generalization across diverse material systems [13]. The need 

for standardized, high-quality datasets and explainable AI models is now a key research direction in materials science 

[14]. Uncertainty quantification and model interpretability are becoming essential to ensure trust in AI predictions [15]. 

Recent studies have also explored the integration of deep learning models such as Convolutional Neural Networks 

(CNNs) and Graph Neural Networks (GNNs) for structure–property mapping, offering new possibilities for material 

discovery [16], [17]. 

This review aims to provide a comprehensive understanding of AI-based material selection and property prediction 

using Artificial Neural Networks. It highlights key datasets, ANN architectures, preprocessing techniques, and 

performance evaluation metrics adopted in the literature [18]. Additionally, it reviews hybrid and decision-support 

frameworks that combine ANN predictions with optimization and ranking algorithms [19]. Finally, the paper discusses 

existing challenges and proposes future research directions focused on deep learning integration, cloud-based 

deployment, and the development of explainable and adaptive ANN systems for industrial applications [20]. 

 

II. PROBLEM STATEMENT 

Despite significant advancements in Artificial Neural Networks (ANNs) for material property prediction, several 

challenges persist in achieving accurate, explainable, and data-driven material selection. Current models often rely on 

limited or inconsistent datasets, lack proper uncertainty quantification, and provide minimal interpretability for 

industrial decision-making. There is a need for an integrated AI framework that combines accurate property prediction, 

transparent model reasoning, and intelligent decision support to enable reliable material selection for engineering 

applications. 

 

OBJECTIVE 

 To study various material parameters such as density, hardness, tensile strength, thermal conductivity, cost, and 

manufacturability for developing a comprehensive dataset. 

 To implement data preprocessing techniques including handling missing values, normalization, and feature 

selection to improve model performance. 

 To design an Artificial Neural Network (ANN) model capable of predicting material properties, specifically 

tensile strength, from given input parameters. 

 To develop a material comparison and recommendation system that selects the most suitable material based on 

mechanical, thermal, and economic criteria. 

 

III. LITERATURE SURVEY 

The traditional methods of material selection have long relied on manual data charts, empirical formulas, and expert 

experience. Although effective for small datasets, such approaches struggle with high-dimensional material databases 

that include multiple mechanical, thermal, and environmental parameters [1]. The emergence of materials informatics 

has significantly transformed this landscape by combining computational simulations, high-throughput experiments, 

and artificial intelligence to extract insights from large-scale data [2]. These data-centric methods enable faster 

identification of materials with desired properties while reducing the time and cost involved in experimental testing [3]. 

One of the most powerful approaches within materials informatics is the Artificial Neural Network (ANN). The ANN’s 

ability to capture nonlinear relationships has been successfully demonstrated in several material property prediction 

studies. Agrawal and Choudhary [4] developed an ANN model to predict the tensile and yield strength of aluminum 

alloys, achieving high correlation coefficients compared to conventional regression methods. Similarly, Liu et al. [5] 

applied neural networks to additive manufacturing datasets to estimate part density and surface finish with excellent 

accuracy. Singh et al. [6] extended this work by modeling the tensile strength of structural steels, showing that the ANN 
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approach outperformed both support vector regression and decision trees. 

In the field of ceramics, Chen and Zhao [7] applied ANN-based models for predicting fracture toughness and hardness 

using compositional and processing data. Their model achieved a lower mean absolute error compared to traditional 

empirical models. For polymeric materials, Yadav and Shukla [8] utilized an ANN to predict thermal conductivity 

under varying filler concentrations, which proved highly useful for optimizing thermally conductive polymer 

composites. Subramanian et al. [9] developed an ANN framework to predict composite strength under different fiber 

orientations, contributing to improved design of fiber-reinforced structures. 

Hybrid systems integrating ANN with optimization techniques have also gained attention. Chen et al. [10] combined 

ANNs with Genetic Algorithms (GA) to optimize heat treatment parameters for enhanced material hardness. This 

combination proved more effective than standalone ANN models. Similarly, Sharma and Mehta [11] introduced an 

ANN-MCDM model that integrated multi-criteria decision-making with neural predictions, resulting in more accurate 

material ranking for engineering applications. Kumar and Singh [12] further improved this hybrid methodology by 

combining the Analytic Hierarchy Process (AHP) with ANN to select sustainable materials considering strength, cost, 

and environmental impact. 

Despite these developments, challenges such as limited training datasets, noise in experimental data, and overfitting 

remain persistent [13]. Kim et al. [13] highlighted that data scarcity limits ANN generalization to unseen material 

systems, emphasizing the need for robust datasets and transfer learning. Zhang et al. [14] discussed the importance of 

explainable AI (XAI) for material informatics, arguing that transparency in model predictions is essential for industrial 

adoption. To improve trustworthiness, Rupp [15] proposed incorporating uncertainty quantification techniques into 

ANN frameworks, allowing engineers to understand confidence intervals around predictions. 

Recent advancements in deep learning architectures have expanded the application of ANNs in material science. Xie 

and Grossman [16] proposed a Crystal Graph Convolutional Neural Network (CGCNN) capable of predicting material 

properties directly from atomic structures, eliminating the need for manual feature extraction. Dunn et al. [17] extended 

this approach by benchmarking various Graph Neural Networks (GNNs) for predicting band gaps and formation 

energies across large material databases. Their findings established GNNs as highly scalable and accurate for property 

prediction. 

Patel and Singh [18] performed a comparative study between different machine learning models—ANN, Random 

Forest (RF), and Support Vector Machines (SVM)—for mechanical property prediction of metals. The results 

demonstrated that ANN consistently achieved the lowest root mean square error (RMSE), confirming its robustness in 

capturing nonlinear relationships. Li and Wang [19] explored AI-driven decision support systems for automated 

material selection, integrating cloud computing with ANN frameworks for real-time predictions. Finally, Zhao et al. 

[20] reviewed the emerging trends in AI-based material design, emphasizing the growing role of hybrid deep learning 

and the integration of AI with cloud platforms for collaborative and scalable material discovery. 

In summary, existing systems show that ANNs and their hybrid extensions have significantly advanced the accuracy 

and efficiency of material selection and property prediction. However, the literature also reveals notable research gaps, 

including insufficient explainability, limited data diversity, and lack of standardized evaluation protocols. The next 

phase of development must focus on combining deep learning, transfer learning, and uncertainty quantification to create 

transparent, adaptive, and generalizable AI frameworks for materials engineering. 

 

IV. PROPOSED SYSTEM 

While existing systems have demonstrated the potential of Artificial Neural Networks (ANNs) for predicting material 

properties, their generalization and interpretability remain limited due to inconsistent datasets, absence of uncertainty 

handling, and a lack of integration with decision-support tools [13], [14]. To address these issues, this review proposes 

an Enhanced Intelligent Material Informatics Framework (EIMIF)—a conceptual hybrid system that integrates ANN-

based property prediction, explainable AI modules, and multi-criteria decision-making (MCDM) approaches into a 

unified platform for intelligent material selection and analysis. 

The proposed framework begins with a data preprocessing and augmentation layer, which compiles heterogeneous data 

from multiple sources, including experimental databases, simulation outputs, and literature datasets [2], [3]. 
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Standardization of attributes such as composition, microstructure, density, tensile strength, and hardness is performed to 

ensure compatibility across datasets. Data augmentation techniques such as interpolation and noise injection are used to 

handle missing or incomplete data entries, thereby improving the robustness of model training [13]. 

At the core of the EIMIF lies the ANN-based prediction engine, which employs multilayer feedforward networks 

trained on standardized datasets. The network’s hyperparameters—including learning rate, activation function, and 

hidden layer size—are optimized using metaheuristic algorithms like Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO) [10]. This enables the model to capture nonlinear interactions between input features and target 

properties with improved accuracy and generalization. Furthermore, deep learning variants such as Convolutional 

Neural Networks (CNNs) and Graph Neural Networks (GNNs) can be incorporated for direct structure–property 

mapping, as shown in recent studies [16], [17]. 

The predicted properties from the ANN module are then processed by an explainable AI (XAI) layer, which uses 

feature-importance and sensitivity analysis techniques to interpret the reasoning behind each prediction [14]. This 

interpretability helps engineers understand which parameters most significantly influence material performance, thereby 

enhancing model transparency and trust. In addition, uncertainty quantification (UQ) techniques are integrated to 

provide confidence intervals around predictions, offering reliability indicators for decision-makers [15]. 

An MCDM-based decision-support layer (using AHP, TOPSIS, or VIKOR) combines the predicted material properties 

with user-defined criteria such as cost, availability, sustainability, and safety factors [11], [12]. This integration allows 

for intelligent ranking and selection of the most suitable materials for specific engineering applications. The overall 

framework can be deployed on cloud or web-based platforms to enable collaborative access and real-time material 

selection across industrial and research environments [19], [20]. 

In summary, the proposed system offers a holistic and intelligent approach that unifies data preprocessing, AI-based 

property prediction, model explainability, uncertainty handling, and decision-making within a single ecosystem. This 

architecture not only enhances prediction accuracy and interpretability but also provides a scalable foundation for next-

generation material selection systems that align with Industry 4.0 and digital twin concepts. 

 

V. SYSTEM DESIGN 

The methodology of the proposed Enhanced Intelligent Material Informatics Framework (EIMIF) is structured to 

systematically process raw material data, predict critical material properties using Artificial Neural Networks (ANNs), 

interpret the results through explainable AI (XAI), and perform intelligent decision-making using Multi-Criteria 

Decision-Making (MCDM) methods. The complete workflow consists of five major stages: (1) Data Collection and 

Preprocessing, (2) Feature Extraction and Normalization, (3) ANN-based Property Prediction, (4) Explainability and 

Uncertainty Estimation, and (5) Decision Support through MCDM Integration. 

A conceptual block diagram of the proposed system can be represented as shown below: 

 
Fig.1 System Architecture 
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A. Data Collection and Preprocessing 

The foundation of the EIMIF system is the compilation of high-quality datasets from multiple sources such as 

experimental records, material handbooks, simulation databases, and research repositories [2], [3]. These datasets 

typically include mechanical, thermal, and chemical attributes such as tensile strength, hardness, ductility, thermal 

conductivity, and microstructural parameters. Data preprocessing is performed to remove outliers, handle missing 

values, and standardize measurement units. Data normalization (using Min-Max or Z-score methods) ensures uniform 

scaling and prevents bias in ANN training [13]. In cases of insufficient data, data augmentation methods like synthetic 

generation or Gaussian noise injection are used to enrich the dataset. 

 

B. Feature Extraction and Normalization 

Feature engineering plays a vital role in enhancing the performance of the ANN model. Key material descriptors such 

as chemical composition ratios, grain size, and heat-treatment conditions are extracted using domain knowledge and 

statistical analysis [6], [7]. Dimensionality reduction techniques such as Principal Component Analysis (PCA) can be 

applied to minimize redundancy and computational load while retaining essential information [8]. These optimized 

input vectors are then normalized before being fed into the neural network for training. 

 

C. ANN-Based Property Prediction 

The core prediction model of the system employs a multilayer feedforward ANN, trained using backpropagationwith an 

adaptive learning rate optimizer such as Adam or RMSprop [4], [5]. The network consists of an input layer (for feature 

vectors), one or more hidden layers (for nonlinear mapping), and an output layer (for property prediction). The weights 

and biases are adjusted iteratively to minimize prediction error using Mean Squared Error (MSE) as the loss function. 

To further improve model performance, metaheuristic optimization techniques such as Genetic Algorithms (GA) and 

Particle Swarm Optimization (PSO) can be integrated for automatic hyperparameter tuning [10]. 

For advanced material datasets, deep learning variants like Convolutional Neural Networks (CNNs) and Graph Neural 

Networks (GNNs) may be used to directly process microstructure or crystal graph data, offering improved feature 

learning and generalization [16], [17]. 

 

D. Explainability and Uncertainty Estimation 

To address the limitations of black-box neural models, the EIMIF framework integrates an Explainable AI (XAI) 

layer, which interprets ANN outputs by highlighting the influence of individual input features on predicted properties 

[14]. Techniques such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-Agnostic 

Explanations) are employed to quantify feature importance and model reasoning. Additionally, Uncertainty 

Quantification (UQ) is incorporated using Bayesian neural networks or dropout-based sampling to estimate prediction 

confidence intervals [15]. This combination ensures transparency, accountability, and reliability in material property 

prediction. 

 

E. Decision Support through MCDM Integration 

The final stage of the EIMIF system uses Multi-Criteria Decision-Making (MCDM) algorithms—such as Analytic 

Hierarchy Process (AHP), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), or VIKOR—to 

support optimal material selection [11], [12]. The predicted material properties from the ANN, along with user-defined 

criteria like cost, sustainability, and machinability, are used to compute a composite ranking score for each material 

alternative. This hybrid integration enables engineers to make data-driven, explainable, and optimized material choices 

aligned with application-specific constraints [19], [20]. 

 

F. Output and Visualization 

The output layer provides predicted material properties along with their uncertainty range and a ranked list of suitable 

materials. A visual dashboard can be implemented for graphical representation of trends, feature importance plots, and 

decision matrices. This visualization enhances interpretability and allows users to interactively adjust criteria weights to 
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observe changes in material rankings in real-time. 

 

VI. EXPECTED OUTCOMES 

The review and analysis of recent studies reveal that the integration of Artificial Neural Networks (ANNs) into 

materials engineering has significantly improved the precision, efficiency, and scalability of material property 

prediction and selection processes [1], [3], [4]. Across multiple works, ANN-based models have demonstrated superior 

performance in predicting nonlinear relationships between composition, processing, and properties compared to 

classical regression and rule-based systems [5], [7]. 

 

A. Performance and Predictive Accuracy 

The reviewed literature indicates that ANN models trained on standardized datasets achieve high predictive accuracies 

for mechanical properties such as tensile strength, hardness, and Young’s modulus, with reported correlation 

coefficients (R²) exceeding 0.90 in several case studies [6], [10]. This improvement arises from the ANN’s capacity to 

model multivariate, nonlinear interactions that are difficult to express using analytical equations. Studies employing 

hybrid ANNs combined with optimization algorithms like Particle Swarm Optimization (PSO) or Genetic Algorithms 

(GA) further enhance accuracy through automatic tuning of network parameters [11], [13]. 

 

B. Comparison with Traditional Methods 

Compared to empirical and statistical methods, ANN-based systems provide better generalization across diverse 

material types, including metals, composites, and polymers [9], [12]. Traditional selection frameworks such as the 

Ashby chart or weighted scoring models, though intuitive, are often limited by static data and subjective human 

judgments. By contrast, the integration of AI enables dynamic updates based on new data inputs and allows for more 

objective, data-driven recommendations [14]. 

 

C. Hybrid Integration with Decision-Making Models 

A notable finding is the growing trend toward integrating ANN-based prediction systems with Multi-Criteria Decision-

Making (MCDM) frameworks like AHP and TOPSIS to achieve both predictive and prescriptive intelligence [8], [15]. 

This hybridization bridges the gap between property prediction and practical engineering application. For instance, once 

the ANN predicts mechanical and thermal properties, the MCDM layer evaluates trade-offs between performance, cost, 

and manufacturability to suggest the most optimal material candidate for a given application [16], [18]. 

 

D. Limitations and Research Challenges 

Despite promising progress, several limitations remain. Many datasets used in ANN training are domain-specific and 

lack representativeness for general material categories [2], [17]. Incomplete or noisy data can reduce model robustness. 

Additionally, the “black-box” nature of ANN models makes it difficult for engineers to interpret decision logic, 

highlighting the importance of incorporating Explainable AI (XAI) and Uncertainty Quantification (UQ) layers [19]. 

Furthermore, the need for large, curated datasets and computational resources presents scalability challenges, 

particularly in real-time design environments [20] 

 

VII. CONCLUSION 

This review highlights the growing role of Artificial Neural Networks (ANNs) in predicting material properties and 

optimizing selection processes. The proposed EIMIF framework integrates AI, explainability, and decision-support 

systems to overcome current limitations, offering improved accuracy, transparency, and industrial applicability in 

material informatics 

 

VIII. FUTURE SCOPE 

Future research can focus on integrating real-time experimental data, implementing advanced deep learning models like 

GNNs, and developing cloud-based collaborative platforms to support large-scale, automated material discovery and 
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selection systems. 
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