( IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 2, November 2025 Impact Factor: 7.67

A Comprehensive Review on AI-Based Material
Selection and Property Prediction Using Artificial

Neural Networks

Dengale Pravin Balasaheb', Prof. Dr. A. A. Khatri’, Dr. Mrs. S. D. Gunjal’, Prof. S. B. Bhosale*
!'Student, Department of Artificial Intelligence & Data Science
234 Assistant Professor, Department of Artificial Intelligence & Data Science
JCEI’S Jaihind College of Engineering, Kuran, Narayangaon (M.S) India

Abstract: The integration of Artificial Intelligence (Al) in materials engineering has revolutionized the
process of material selection and property prediction. Among various Al methods, Artificial Neural
Networks (ANNs) have emerged as powerful tools capable of modeling complex nonlinear relationships
between material composition, processing parameters, and mechanical or thermal properties. This
review presents a comprehensive analysis of recent advances in Al-based material informatics, focusing
on ANN-driven approaches for predicting properties such as tensile strength, hardness, and thermal
conductivity, and for recommending suitable materials in engineering design. The study examines key
methodologies, dataset sources, preprocessing techniques, and ANN architectures used across the
literature. Additionally, it compares hybrid frameworks that integrate ANNs with multi-criteria decision-
making (MCDM) techniques for intelligent material recommendation. Challenges such as data scarcity,
model interpretability, and generalization across diverse material classes are critically discussed.
Finally, the paper outlines potential research directions, including the integration of deep learning,
uncertainty quantification, and cloud-based deployment for scalable material intelligence systems. This
review aims to provide insights into current trends, technological developments, and future opportunities
for Al-driven material selection and property prediction systems in mechanical and materials
engineering.
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L. INTRODUCTION

Material selection and property prediction are among the most critical processes in engineering design, directly
influencing the performance, safety, cost, and sustainability of final products. With the rapid increase in the number of
available engineering materials—ranging from advanced alloys to polymer composites—traditional manual selection
methods based on experience and charts have become inefficient and prone to error [1]. The growing complexity of
material data and design constraints has driven the shift towards data-driven techniques and computational intelligence,
marking the emergence of materials informatics [2]. This approach leverages artificial intelligence (AI) and machine
learning (ML) to process large datasets, uncover hidden relationships, and predict material behavior under various
conditions [3].

Among these Al techniques, Artificial Neural Networks (ANNs) have gained considerable attention due to their strong
capability to model nonlinear and multivariate dependencies between input features such as composition,
microstructure, and processing parameters, and target properties like hardness, tensile strength, and corrosion resistance
[4], [5]. ANNs have been successfully applied in predicting the mechanical and thermal properties of metals [6],
ceramics [7], polymers [8], and composites [9]. Researchers have also combined ANNs with optimization algorithms
such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) to fine-tune material performance for
specific applications [10]. Furthermore, hybrid frameworks integrating ANN models with Multi-Criteria Decision-
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Making (MCDM) methods such as TOPSIS, AHP, and VIKOR have demonstrated improved performance in intelligent
material selection [11], [12].

However, the deployment of ANN-based material prediction systems still faces multiple challenges, including data
scarcity, overfitting, limited interpretability, and lack of generalization across diverse material systems [13]. The need
for standardized, high-quality datasets and explainable AI models is now a key research direction in materials science
[14]. Uncertainty quantification and model interpretability are becoming essential to ensure trust in Al predictions [15].
Recent studies have also explored the integration of deep learning models such as Convolutional Neural Networks
(CNNs) and Graph Neural Networks (GNNs) for structure—property mapping, offering new possibilities for material
discovery [16], [17].

This review aims to provide a comprehensive understanding of Al-based material selection and property prediction
using Artificial Neural Networks. It highlights key datasets, ANN architectures, preprocessing techniques, and
performance evaluation metrics adopted in the literature [18]. Additionally, it reviews hybrid and decision-support
frameworks that combine ANN predictions with optimization and ranking algorithms [19]. Finally, the paper discusses
existing challenges and proposes future research directions focused on deep learning integration, cloud-based
deployment, and the development of explainable and adaptive ANN systems for industrial applications [20].

II. PROBLEM STATEMENT
Despite significant advancements in Artificial Neural Networks (ANNs) for material property prediction, several
challenges persist in achieving accurate, explainable, and data-driven material selection. Current models often rely on
limited or inconsistent datasets, lack proper uncertainty quantification, and provide minimal interpretability for
industrial decision-making. There is a need for an integrated Al framework that combines accurate property prediction,
transparent model reasoning, and intelligent decision support to enable reliable material selection for engineering
applications.

OBJECTIVE

e To study various material parameters such as density, hardness, tensile strength, thermal conductivity, cost, and
manufacturability for developing a comprehensive dataset.

e To implement data preprocessing techniques including handling missing values, normalization, and feature
selection to improve model performance.

e To design an Artificial Neural Network (ANN) model capable of predicting material properties, specifically
tensile strength, from given input parameters.

e To develop a material comparison and recommendation system that selects the most suitable material based on
mechanical, thermal, and economic criteria.

III. LITERATURE SURVEY
The traditional methods of material selection have long relied on manual data charts, empirical formulas, and expert
experience. Although effective for small datasets, such approaches struggle with high-dimensional material databases
that include multiple mechanical, thermal, and environmental parameters [1]. The emergence of materials informatics
has significantly transformed this landscape by combining computational simulations, high-throughput experiments,
and artificial intelligence to extract insights from large-scale data [2]. These data-centric methods enable faster
identification of materials with desired properties while reducing the time and cost involved in experimental testing [3].
One of the most powerful approaches within materials informatics is the Artificial Neural Network (ANN). The ANN’s
ability to capture nonlinear relationships has been successfully demonstrated in several material property prediction
studies. Agrawal and Choudhary [4] developed an ANN model to predict the tensile and yield strength of aluminum
alloys, achieving high correlation coefficients compared to conventional regression methods. Similarly, Liu et al. [5]
applied neural networks to additive manufacturing datasets to estimate part density and surface finish with excellent
accuracy. Singh et al. [6] extended this work by modeling the tensile strength of structural steels, showing that the ANN
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approach outperformed both support vector regression and decision trees.

In the field of ceramics, Chen and Zhao [7] applied ANN-based models for predicting fracture toughness and hardness
using compositional and processing data. Their model achieved a lower mean absolute error compared to traditional
empirical models. For polymeric materials, Yadav and Shukla [8] utilized an ANN to predict thermal conductivity
under varying filler concentrations, which proved highly useful for optimizing thermally conductive polymer
composites. Subramanian et al. [9] developed an ANN framework to predict composite strength under different fiber
orientations, contributing to improved design of fiber-reinforced structures.

Hybrid systems integrating ANN with optimization techniques have also gained attention. Chen et al. [10] combined
ANNs with Genetic Algorithms (GA) to optimize heat treatment parameters for enhanced material hardness. This
combination proved more effective than standalone ANN models. Similarly, Sharma and Mehta [11] introduced an
ANN-MCDM model that integrated multi-criteria decision-making with neural predictions, resulting in more accurate
material ranking for engineering applications. Kumar and Singh [12] further improved this hybrid methodology by
combining the Analytic Hierarchy Process (AHP) with ANN to select sustainable materials considering strength, cost,
and environmental impact.

Despite these developments, challenges such as limited training datasets, noise in experimental data, and overfitting
remain persistent [13]. Kim et al. [13] highlighted that data scarcity limits ANN generalization to unseen material
systems, emphasizing the need for robust datasets and transfer learning. Zhang et al. [14] discussed the importance of
explainable Al (XAI) for material informatics, arguing that transparency in model predictions is essential for industrial
adoption. To improve trustworthiness, Rupp [15] proposed incorporating uncertainty quantification techniques into
ANN frameworks, allowing engineers to understand confidence intervals around predictions.

Recent advancements in deep learning architectures have expanded the application of ANNs in material science. Xie
and Grossman [16] proposed a Crystal Graph Convolutional Neural Network (CGCNN) capable of predicting material
properties directly from atomic structures, eliminating the need for manual feature extraction. Dunn et al. [17] extended
this approach by benchmarking various Graph Neural Networks (GNNs) for predicting band gaps and formation
energies across large material databases. Their findings established GNNs as highly scalable and accurate for property
prediction.

Patel and Singh [18] performed a comparative study between different machine learning models—ANN, Random
Forest (RF), and Support Vector Machines (SVM)—for mechanical property prediction of metals. The results
demonstrated that ANN consistently achieved the lowest root mean square error (RMSE), confirming its robustness in
capturing nonlinear relationships. Li and Wang [19] explored Al-driven decision support systems for automated
material selection, integrating cloud computing with ANN frameworks for real-time predictions. Finally, Zhao et al.
[20] reviewed the emerging trends in Al-based material design, emphasizing the growing role of hybrid deep learning
and the integration of Al with cloud platforms for collaborative and scalable material discovery.

In summary, existing systems show that ANNs and their hybrid extensions have significantly advanced the accuracy
and efficiency of material selection and property prediction. However, the literature also reveals notable research gaps,
including insufficient explainability, limited data diversity, and lack of standardized evaluation protocols. The next
phase of development must focus on combining deep learning, transfer learning, and uncertainty quantification to create
transparent, adaptive, and generalizable Al frameworks for materials engineering.

IV. PROPOSED SYSTEM

While existing systems have demonstrated the potential of Artificial Neural Networks (ANNs) for predicting material
properties, their generalization and interpretability remain limited due to inconsistent datasets, absence of uncertainty
handling, and a lack of integration with decision-support tools [13], [14]. To address these issues, this review proposes
an Enhanced Intelligent Material Informatics Framework (EIMIF)—a conceptual hybrid system that integrates ANN-
based property prediction, explainable AI modules, and multi-criteria decision-making (MCDM) approaches into a
unified platform for intelligent material selection and analysis.

The proposed framework begins with a data preprocessing and augmentation layer, which compiles heterogeneous data
from multiple sources, including experimental databases, simulation outputs, and literature datasets [2], [3].
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Standardization of attributes such as composition, microstructure, density, tensile strength, and hardness is performed to
ensure compatibility across datasets. Data augmentation techniques such as interpolation and noise injection are used to
handle missing or incomplete data entries, thereby improving the robustness of model training [13].

At the core of the EIMIF lies the ANN-based prediction engine, which employs multilayer feedforward networks
trained on standardized datasets. The network’s hyperparameters—including learning rate, activation function, and
hidden layer size—are optimized using metaheuristic algorithms like Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) [10]. This enables the model to capture nonlinear interactions between input features and target
properties with improved accuracy and generalization. Furthermore, deep learning variants such as Convolutional
Neural Networks (CNNs) and Graph Neural Networks (GNNs) can be incorporated for direct structure—property
mapping, as shown in recent studies [16], [17].

The predicted properties from the ANN module are then processed by an explainable Al (XAI) layer, which uses
feature-importance and sensitivity analysis techniques to interpret the reasoning behind each prediction [14]. This
interpretability helps engineers understand which parameters most significantly influence material performance, thereby
enhancing model transparency and trust. In addition, uncertainty quantification (UQ) techniques are integrated to
provide confidence intervals around predictions, offering reliability indicators for decision-makers [15].

An MCDM-based decision-support layer (using AHP, TOPSIS, or VIKOR) combines the predicted material properties
with user-defined criteria such as cost, availability, sustainability, and safety factors [11], [12]. This integration allows
for intelligent ranking and selection of the most suitable materials for specific engineering applications. The overall
framework can be deployed on cloud or web-based platforms to enable collaborative access and real-time material
selection across industrial and research environments [19], [20].

In summary, the proposed system offers a holistic and intelligent approach that unifies data preprocessing, Al-based
property prediction, model explainability, uncertainty handling, and decision-making within a single ecosystem. This
architecture not only enhances prediction accuracy and interpretability but also provides a scalable foundation for next-
generation material selection systems that align with Industry 4.0 and digital twin concepts.

V.SYSTEM DESIGN

The methodology of the proposed Enhanced Intelligent Material Informatics Framework (EIMIF) is structured to
systematically process raw material data, predict critical material properties using Artificial Neural Networks (ANNs),
interpret the results through explainable AI (XAI), and perform intelligent decision-making using Multi-Criteria
Decision-Making (MCDM) methods. The complete workflow consists of five major stages: (1) Data Collection and
Preprocessing, (2) Feature Extraction and Normalization, (3) ANN-based Property Prediction, (4) Explainability and
Uncertainty Estimation, and (5) Decision Support through MCDM Integration.

A conceptual block diagram of the proposed system can be represented as shown below:

Dataset

Density  Hardness Tensile
2.7 100 250
8 200 500
7.5 150 350

Data Preprocessing
Train / Test Split

ANN Model
Candidate Materials

User Interface

Material Selection|—»| User
Interface

Recommended Materigl

Fig.1 System Architecture
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A. Data Collection and Preprocessing

The foundation of the EIMIF system is the compilation of high-quality datasets from multiple sources such as
experimental records, material handbooks, simulation databases, and research repositories [2], [3]. These datasets
typically include mechanical, thermal, and chemical attributes such as tensile strength, hardness, ductility, thermal
conductivity, and microstructural parameters. Data preprocessing is performed to remove outliers, handle missing
values, and standardize measurement units. Data normalization (using Min-Max or Z-score methods) ensures uniform
scaling and prevents bias in ANN training [13]. In cases of insufficient data, data augmentation methods like synthetic
generation or Gaussian noise injection are used to enrich the dataset.

B. Feature Extraction and Normalization

Feature engineering plays a vital role in enhancing the performance of the ANN model. Key material descriptors such
as chemical composition ratios, grain size, and heat-treatment conditions are extracted using domain knowledge and
statistical analysis [6], [7]. Dimensionality reduction techniques such as Principal Component Analysis (PCA) can be
applied to minimize redundancy and computational load while retaining essential information [8]. These optimized
input vectors are then normalized before being fed into the neural network for training.

C. ANN-Based Property Prediction

The core prediction model of the system employs a multilayer feedforward ANN, trained using backpropagationwith an
adaptive learning rate optimizer such as Adam or RMSprop [4], [5]. The network consists of an input layer (for feature
vectors), one or more hidden layers (for nonlinear mapping), and an output layer (for property prediction). The weights
and biases are adjusted iteratively to minimize prediction error using Mean Squared Error (MSE) as the loss function.
To further improve model performance, metaheuristic optimization techniques such as Genetic Algorithms (GA) and
Particle Swarm Optimization (PSO) can be integrated for automatic hyperparameter tuning [10].
For advanced material datasets, deep learning variants like Convolutional Neural Networks (CNNs) and Graph Neural
Networks (GNNs) may be used to directly process microstructure or crystal graph data, offering improved feature
learning and generalization [16], [17].

D. Explainability and Uncertainty Estimation

To address the limitations of black-box neural models, the EIMIF framework integrates an Explainable AI (XAI)
layer, which interprets ANN outputs by highlighting the influence of individual input features on predicted properties
[14]. Techniques such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-Agnostic
Explanations) are employed to quantify feature importance and model reasoning. Additionally, Uncertainty
Quantification (UQ) is incorporated using Bayesian neural networks or dropout-based sampling to estimate prediction
confidence intervals [15]. This combination ensures transparency, accountability, and reliability in material property
prediction.

E. Decision Support through MCDM Integration

The final stage of the EIMIF system uses Multi-Criteria Decision-Making (MCDM) algorithms—such as Analytic
Hierarchy Process (AHP), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), or VIKOR—to
support optimal material selection [11], [12]. The predicted material properties from the ANN, along with user-defined
criteria like cost, sustainability, and machinability, are used to compute a composite ranking score for each material
alternative. This hybrid integration enables engineers to make data-driven, explainable, and optimized material choices
aligned with application-specific constraints [19], [20].

F. Output and Visualization
The output layer provides predicted material properties along with their uncertainty range and a ranked list of suitable
materials. A visual dashboard can be implemented for graphical representation of trends, feature importance plots, and

decision matrices. This visualization enhances interpretability and allows users to 1nteract1vely adjust criteria weights to
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observe changes in material rankings in real-time.

VI. EXPECTED OUTCOMES
The review and analysis of recent studies reveal that the integration of Artificial Neural Networks (ANNs) into
materials engineering has significantly improved the precision, efficiency, and scalability of material property
prediction and selection processes [1], [3], [4]. Across multiple works, ANN-based models have demonstrated superior
performance in predicting nonlinear relationships between composition, processing, and properties compared to
classical regression and rule-based systems [5], [7].

A. Performance and Predictive Accuracy

The reviewed literature indicates that ANN models trained on standardized datasets achieve high predictive accuracies
for mechanical properties such as tensile strength, hardness, and Young’s modulus, with reported correlation
coefficients (R?) exceeding 0.90 in several case studies [6], [10]. This improvement arises from the ANN’s capacity to
model multivariate, nonlinear interactions that are difficult to express using analytical equations. Studies employing
hybrid ANNs combined with optimization algorithms like Particle Swarm Optimization (PSO) or Genetic Algorithms
(GA) further enhance accuracy through automatic tuning of network parameters [11], [13].

B. Comparison with Traditional Methods

Compared to empirical and statistical methods, ANN-based systems provide better generalization across diverse
material types, including metals, composites, and polymers [9], [12]. Traditional selection frameworks such as the
Ashby chart or weighted scoring models, though intuitive, are often limited by static data and subjective human
judgments. By contrast, the integration of Al enables dynamic updates based on new data inputs and allows for more
objective, data-driven recommendations [ 14].

C. Hybrid Integration with Decision-Making Models

A notable finding is the growing trend toward integrating ANN-based prediction systems with Multi-Criteria Decision-
Making (MCDM) frameworks like AHP and TOPSIS to achieve both predictive and prescriptive intelligence [8], [15].
This hybridization bridges the gap between property prediction and practical engineering application. For instance, once
the ANN predicts mechanical and thermal properties, the MCDM layer evaluates trade-offs between performance, cost,
and manufacturability to suggest the most optimal material candidate for a given application [16], [18].

D. Limitations and Research Challenges

Despite promising progress, several limitations remain. Many datasets used in ANN training are domain-specific and
lack representativeness for general material categories [2], [17]. Incomplete or noisy data can reduce model robustness.
Additionally, the “black-box” nature of ANN models makes it difficult for engineers to interpret decision logic,
highlighting the importance of incorporating Explainable Al (XAI) and Uncertainty Quantification (UQ) layers [19].
Furthermore, the need for large, curated datasets and computational resources presents scalability challenges,
particularly in real-time design environments [20]

VII. CONCLUSION
This review highlights the growing role of Artificial Neural Networks (ANNS) in predicting material properties and
optimizing selection processes. The proposed EIMIF framework integrates Al, explainability, and decision-support
systems to overcome current limitations, offering improved accuracy, transparency, and industrial applicability in
material informatics

VIII. FUTURE SCOPE
Future research can focus on integrating real-time experimental data, implementing advanced deep learning models like

GNNs, and developing cloud-based collaborative platforms to support large-scale, automated material discovery and
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selection systems.
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