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Abstract: This project explores the integration of Artificial Intelligence (AI) with traditional Vastu 

principles to create smart, harmonious architectural designs. By leveraging AI techniques such as 

machine learning, computer vision, and natural language processing, the system optimizes spatial 

layouts and automates Vastu compliance checks, offering personalized recommendations that enhance 

user comfort, energy balance, and cultural relevance. The approach bridges modern technology with 

ancient architectural wisdom, enabling efficient, aesthetically pleasing, and spiritually aligned living 

spaces tailored to individual preferences. This fusion of AI and Vastu is poised to revolutionize interior 

design by making it more intelligent, adaptive, and culturally sensitive. The platform offers personalized 

recommendations by learning user preferences and adapts designs for energy efficiency and 

environmental sustainability. The 30 tactics we identified are aimed to serve as an initial reference guide 

for further exploration into Green AI from a software engineering perspec- tive, and assist in designing 

sustainable ML-enabled systems. The platform offers personalized recommendations by learning user 

preferences andadapts designs for energy efficiency and environmental sustainability. 

 

CCS CONCEPTS 

• Software and its engineering → Designing software; Soft- ware architectures;  

• Social and professional topics → Sus- tainability;  

• Computing methodologies → Machine learning. 

 

Keywords: Software architecture, architectural tactics, ML-enabled systems, environmental 

sustainability, Green AI. 

 

Lay Abstract: Machine learning (ML) is a technology field that wants to provide software with 

functionality similar to human- like intelligence, e.g., for understanding text or describing images. 

However, creating and using systems with ML needs a lot more computing power than non-ML systems, 

which is bad for the envi- ronment. Companies therefore need concrete advice on how they can create 

ML systems that are environmentally sustainable. In this paper, we provide a catalog of 30 green 

architectural tactics for these systems. An architectural tactic is a high-level design technique to improve 

software quality, in our case environmental sustainability. To achieve this, we analyzed 51 scientific 

papers and later discussed with 3 experts to improve and extend our catalog. If many companies start 

using these tactics, the energy footprint of systems with ML can be greatly reduced. 

 

I. INTRODUCTION 

This project focuses on combining Artificial Intelligence with Vastu Shastra, an ancient Indian system of architecture 

that emphasizes harmonious spatial design to promote well-being. Using AI techniques like machine learning and 

computer vision, the system will automate the process of checking Vastu compliance in architectural plans, saving time 

and reducing errors compared to manual methods. It will intelligently suggest optimized layouts that improve energy 

flow, comfort, and aesthetic appeal based on individual user preferences and sustainability goals. 
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The integration of virtual reality will allow users to virtually walk through and interact with proposed designs, making 

the design process more immersive and collaborative. This approach modernizes traditional Vastu wisdom by 

enhancing it with data-driven decision-making and personalized design adaptation, ultimately helping architects, 

interior designers, and homeowners create smart, sustainable living spaces that respect cultural values. 

Additionally, the project will incorporate a user-friendly interface that accommodates both professionals and 

laypersons, making Vastu-compliant design accessible to a broader audience. By learning from user feedback and 

evolving design trends, the system will continuously improve its recommendations, ensuring relevance and adaptability 

over time. This dynamic, AI-driven platform not only enhances architectural creativity and efficiency but also supports 

cultural preservation by keeping traditional principles alive in contemporary built environments. 

Holistically evaluating the impact of an ML-enabled system on en- vironmental sustainability is challenging because 

the system goes through several stages during its life cycle, from ML model develop- ment to deployment, 

maintenance, and evolution of the ML-enabled system. However, the negative environmental impact of ML is usu- ally 

directly related to the required high computational power, i.e., the amount of energy required to train and run ML 

models [25]. Computational power is typically evaluated via energy consump- tion measured in joules (J) or kilowatt-

hours (kWh), computing power via floating-point operations per second (FLOPS), GPU/CPU utilization as a 

percentage, GPU/CPU hours, response time, or car- bon emissions [20]. Additional factors beyond software-related 

computational power like hardware manufacturing, transportation, or e-waste are harder to quantify and outside the 

study scope.  

ML models present unique challenges for the development of ML-enabled systems due to their data-dependent nature, 

dynamic behavior, and lack of transparency [33]. These unique character- istics of ML have affected the fields of 

software engineering and software architecture, leading to an emerging focus on software architecture for ML-enabled 

systems or SA4ML. SA4ML aims to develop principles, practices, and tools for improving the develop- ment of ML-

enabled systems [39]. Papers on patterns and tactics for ML-enabled systems have started to appear [19, 62], but they 

concentrate primarily on developing effective ML-enabled systems while lacking the environmental perspective. 

Despite the increasing interest in the environmental impact of ML [56], it is still challenging to obtain a comprehensive 

overview of the recommended best practices for developing green ML-enabled systems. To gain a deeper 

understanding of the effectiveness and usefulness of different practices, we explore the intersection of Green AI and 

software architecture by identifying green architec- tural tactics for ML-enabled systems. We achieve this through a 

literature-based synthesis and a subsequent focus group review with software architecture experts working on SA4ML 

to validate and extend the initial collection of tactics. In our study, we address the following research questions: 

• RQ1: Which green architectural tactics for ML-enabled sys- tems can we synthesize from scientific literature? 

• RQ2: How do SA4ML experts perceive our synthesized col- lection of tactics? 

Our contribution is a collection of 30 green architectural tactics for ML-enabled systems. To structure the collection, we 

organize the tactics into six categories that map to different aspects of ML- enabled systems development. Given that a 

tactic is a design tech- nique used to improve a specific quality attribute [7], we expect our contribution to guide 

practitioners to make more environmentally sustainable decisions when engineering ML-enabled systems. 

 

II. BACKGROUND AND RELATED WORK 

We first provide an overview of important concepts such as ML- enabled systems, environmental sustainability, and 

architectural tactics, and then discuss related work in the area. 

2.1 ML-Enabled Systems 

ML is a sub-field of AI that concentrates on developing algorithms capable of learning from data [46]. ML models are 

trained on in- put data to produce a desired outcome without being explicitly programmed to do so: they automatically 

identify connections in the data and learn complex patterns [14]. These learned patterns can then be used to make 

predictions or decisions for new, previ- ously unseen data. According to Amershi et al. [3], building an ML model 

usually follows a specific development process with feedback loops: understanding business goals, preparing the data, 

designing the model, training the model, testing the model, deploying the model in the production environment, and 

finally managing and monitoring it during usage. 
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While ML models can be used for stand-alone data science or analytics activities, they are also frequently embedded 

into larger software systems. The term ML-enabled system therefore refers to a software system that includes at least 

one ML component [33]. Due to the special characteristics of machine learning, integrating ML components into 

software systems comes with additional chal- lenges in terms of software architecture and design, e.g., strong 

dependencies on training data, lack of transparency for ML com- ponent behavior, and abrupt changes in the prediction 

quality of ML components [33]. Ensuring quality is therefore an important and complicated activity for ML-enabled 

systems, with many qual- ity attributes (QAs) to consider [17]. The unique characteristics of ML model and system 

development have also given rise to special system-level QAs, which include, e.g., prediction accuracy, explain- ability, 

monitorability, sustainability, prediction cost, training cost, and training latency [21, 43, 49, 57]. 

 

2.2 Environmental Sustainability of ML 

Holistically evaluating the impact of an ML-enabled system on en- vironmental sustainability is challenging because 

the system goes through several stages during its life cycle, from ML model develop- ment to deployment, 

maintenance, and evolution of the ML-enabled system. However, the negative environmental impact of ML is usu- ally 

directly related to the required high computational power, i.e., the amount of energy required to train and run ML 

models [25]. Computational power is typically evaluated via energy consump- tion measured in joules (J) or kilowatt-

hours (kWh), computing power via floating-point operations per second (FLOPS), GPU/CPU utilization as a 

percentage, GPU/CPU hours, response time, or car- bon emissions [20]. Additional factors beyond software-related 

computational power like hardware manufacturing, transportation, or e-waste are harder to quantify and outside the 

study scope. 

The development stage of ML models is usually regarded as the most energy-intensive phase within the life cycle of 

ML-enabled systems [25], especially for systems using generative AI, such as in the form of large language models 

(LLMs) [24], since these models require large amounts of data. However, increasing the number of data points is also 

used as a general strategy to train more accurate ML models, which makes data preprocessing and model training 

consume more energy [63]. Training data may also be complex and multidimensional, which is why data cleaning, 

labeling, and feature engineering can be energy-intensive [64]. Along with the increased amount of data, ML model 

size and complexity also in- crease. As a result, the model training and tuning phases are very energy-intensive, 

especially if multiple rounds of testing are re- quired [47]. For example, many deep learning models are often trained 

for long periods of time, ranging from dozens to thousands of hours, sometimes using powerful but energy-intensive 

hardware such as GPUs or other processing units optimized for ML work- loads [8]. While ML training receives the 

majority of attention, each development stage in the ML development process has its own concerns and opportunities 

related to energy consumption and en- vironmental sustainability. Therefore, evaluating the sustainability of ML 

requires a holistic view of the ML life cycle [63]. 

 

2.3 Green Architectural Tactics 

Synthesizing generalizable design decisions to achieve certain QAs is an important practice in the software architecture 

community to enable the reuse of architecture knowledge. 

 
Figure 1: Study Design and Execution 

 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology 

                           International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 1, November 2025 

Copyright to IJARSCT DOI: 10.48175/IJARSCT-29629   201 

www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 
One concept in this space is an architectural tactic (or tactic in short form), i.e., a high-level design decision focusing on 

achieving a single QA for a software system [7]. Tactics differ from design patterns [15]. Patterns typically are more 

concrete and cover multiple decisions, tactics, and QAs, often through trade-offs that impact some QAs positively and 

others negatively. In this sense, tactics are high-level building blocks from which patterns are composed, but choosing 

an architecture pattern can also guide the selection of complementary architectural tactics [18]. Harrison and Avgeriou 

[18] discuss the relationship between tactics and patterns in greater detail. 

Architectural tactics often improve one primary QA and are typically organized in QA-related collections such as 

security or performance tactics [40]. However, tactics may also have a positive influence on other secondary QAs, even 

though these QAs may not be the main focus of the tactic. For example, a tactic aimed at improving performance via 

less resource-intensive computation and faster response times will often also improve energy efficiency. In the context 

of ML-enabled systems, we focus on green tactics, i.e., tactics that have a positive impact on environmental 

sustainability, usually in the form of improving energy or carbon efficiency. All architectural tactics are design 

decisions that positively impact a QA of a system or part of a system, and can manifest themselves within different 

scopes. For example, we later introduce the tactics Remove redundant data (T2) and Decrease model complexity (T9). 

These tactics do not focus on the complete software system, but rather focus solely on the data (T2) and model (T9) as 

their scope. This interpretation is in line with the definition of software architecture as the set of significant design 

decisions [22]. 

 

2.4 Related Work 

Architectural tactics are a popular medium to convey design knowl- edge in the software engineering research 

community. A recent mapping study by Márquez et al. [40] identified a total of 91 pri- mary studies. However, the 

authors criticized that most studies use the concept of tactics in a way that is not in line with the original definition, and 

that it is often unclear from which data sources the tactics were synthesized. They also state that they found little 

evidence of the use of architectural tactics in industry. 

While sustainability or energy efficiency are not explicitly cov- ered by the primary studies discussed by Márquez et al. 

[40], some authors have proposed green tactics for different domains. Procac- cianti et al. [44] and Vos et al. [58] 

synthesized tactics for optimizing the energy efficiency of software running in the (public) cloud. Simi- larly, 

Chinnappan et al. [11] and Malavolta et al. [34] conceptualized tactics for energy-aware robotics software. While these 

could be situationally useful for ML-enabled systems in such domains, it is important to have tactics that take the 

specifics of ML into account. By now, many publications exist on the general topic of Green AI. A recent review by 

Verdecchia et al. [56] collected 98 studies in this fast-growing field. However, the majority of these publications 

concentrate on understanding the mechanisms related to the energy efficiency of ML and do not provide their findings 

in an easily accessible and actionable form. Moreover, the existing techniques are distributed among many different 

publications, making their holistic consideration difficult. In this sense, a collection of concrete tactics that practitioners 

can use to make ML-enabled systems more sustainable does not currently exist. One work that starts to produce 

actionable guidance is a study by Shanbhag et al. [48]: they used the concept of design patterns to synthesize eight 

“energy patterns” for deep learning projects from an analysis of Stack Overflow posts. The patterns were subsequently 

validated with a questionnaire survey with 14 practitioners. While their catalog is a promising step in the right direction, 

our study aimed for a broader scope and coverage: we included all forms of ML, derived our tactics from scientific 

literature, and took a holistic look at the life cycle of ML-enabled systems. This ultimately led to the 30 green tactics we 

synthesized, which also include the 8 energy patterns from Shanbhag et al. [48]. 

 

III. STUDY DESIGN AND EXECUTION 

We designed our study with a qualitative research approach orga- nized in two steps (see Fig. 1). In the first step, we 

used scientific literature on Green AI to synthesize green architectural tactics for ML-enabled systems (RQ1). To 

structure the tactics, we formed categories and iteratively refined the collection. Once the collection reached sufficient 

maturity, we carried out the second step, in which we conducted a focus group with three SA4ML experts (RQ2). This 

allowed us to validate and further refine the collection of tactics. 
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A focus group is a qualitative method to collect opinion-based data about a specific topic through a systematic 

discussion with participants knowledgeable about the topic [28]. The number of participants needs to be small enough 

for everyone to contribute, and a researcher has to carefully moderate the exchange, typically by following a predefined 

protocol with questions. Based on such a group setting, exchanges between participants can stimulate new ideas and 

lead to stronger consensus. Using the focus group results, the collection was substantially improved and extended. 

  

3.1 Literature-Based Synthesis (RQ1) 

The data collection for the first part of the study was based on a recent systematic literature review on Green AI by 

Verdecchia et al. [56]. They queried the publisher-agnostic search engines Google Scholar, Scopus, and Web of 

Science, and complemented this with an iterative snowballing process, leading to a total of 98 primary studies. These 

studies were categorized into observational, solu- tion, and position articles. The solution category included papers 

providing techniques or tools to address Green AI issues, e.g., to improve the energy efficiency of ML models or 

components. Be- cause these papers represent promising sources for architectural tactics, we used all 51 papers from 

this category as the start for our synthesis. Papers from the other two categories (observational and position) did not 

contain relevant information to synthesize actionable techniques. 

Following the guidelines of Bowen [9], all 51 selected papers were evaluated with qualitative data analysis methods, 

mainly document analysis and content analysis. As a first step, the main researcher performed a document analysis for 

each paper that included skim- ming, reading, and interpretation, which was followed by a content analysis to identify 

and synthesize green tactics for ML-enabled systems. This content analysis was guided by the “Awesome Tac- tic” 

template [32] from the Archive of Awesome and Dark Tactics (AADT). AADT is a curated, open-source knowledge 

base that pro- vides information on tactics for various domains that can have either a positive or negative impact on 

software quality. The AADT template for tactics is grounded in foundational literature about architectural tactics and 

includes fields such as tactic intent, partic- ipant, context, primary QA, secondary QAs, and measured impact. Using 

descriptive coding methods [36], the synthesized tactics were organized into categories representing different aspects of 

the devel- opment life cycle of ML-enabled systems. The analysis took place in an iterative manner, with frequent 

reviews and exchanges between researchers in the spirit of continuous refinement. 

 

3.2 Focus Group (RQ2) 

In the second part of the study, we conducted a focus group with three experts in software architecture for ML-enabled 

systems (SA4ML). As is common with focus groups [28], we used purposive sampling to recruit participants from our 

network whom we knew to be very knowledgeable and experienced about the topic. All three experts were in senior, 

research-related roles with extensive expertise in software architecture, ML-enabled systems, and soft- ware 

sustainability. One participant worked at a university and two participants at a research institute. The experts did not 

have ML engineering roles in industry, but all of them had extensive knowl- edge of the state of ML engineering in 

industry through frequent collaborations and projects with companies or public organizations that developed or 

acquired ML-enabled systems. Two authors were present during the focus group as moderators. The session took place 

as a video call of roughly 75 minutes, which was recorded for later analysis with everyone’s permission. 

Following a protocol with questions, the moderators presented the collection of synthesized green tactics and 

encouraged an open discussion to receive feedback. One aim was to validate the tac- tics’ soundness, relevance, and 

applicability to industry scenarios. Additionally, the protocol included open questions to find out if important tactics 

applied in industry were missing. This led to an in-depth discussion about the tactics and their categorization. The 

participants suggested several additional publications to extend the collection. These papers were included in the 

research to extract possible tactics from them. 

Afterward, the recording of the focus group was analyzed to identify the key themes of the discussion. The main topics 

were written down and used to improve the tactics identified in the first step of the study. All the feedback received 

about the identified tactics was considered, and, if applicable, the tactics were modified accordingly. The additional 

papers suggested by the participants were analyzed using the same document and content analysis ap- proach described 
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in Section 3.1 to synthesize additional green tactics for ML-enabled systems. In particular, the focus group added the 

following contributions: 

Extension of the catalog: as mentioned, the experts suggested additional papers that led to the identification of four new 

tactics. 

 
Figure 2: Catalog of the 30 Synthesized Green Architectural Tactics for ML-Enabled Systems 

Refinements of descriptions and categories: the descriptions and categorization of the tactics benefited from the insights 

pro- vided by the experts, which observed that: (i) while all tactics are architecture-relevant, many are more model-

focused, i.e., related to the ML model rather than the system as a whole. Overall, the tactics are quite diverse and focus 

on data management, process aspects, or design vs. implementation aspects to various degrees; (ii) most tactics target 

energy efficiency as a primary QA, but some also focus on other QAs or include important trade-offs with secondary 

QAs; (iii) some tactics are specific to certain ML techniques and, as such, are not universally applicable to achieve 

energy efficiency. This led to renaming some tactics from “Use . . . ” to “Consider . . . ”. For example, Consider transfer 

learning (T16) can reduce energy consumption, but it is not always applicable; so one might say that, if applicable, T16 

is preferred to increase energy efficiency. 

Observations and reflections for future work: the experts provided interesting observations and reflections that point to 

pos- sible follow-up work. These are discussed in Section 5. 

 

3.3 Threats to Validity 

According to Verdecchia et al. [55], threats to validity are often considered as an afterthought in the SE community, and 

trade-offs among threats to validity are often neglected. For this study, we prioritized the soundness and relevance of 

the collection. There- fore, we consciously accepted limitations in our study design that decreased external validity, 

e.g., completeness and generalizability, but improved internal validity, e.g., soundness and consistency. 

In this regard, one threat to validity is that our data collection relied on the literature review of Verdecchia et al. [56]. 

While the authors followed a sound protocol with extensive snowballing, their initial search terms were focused on 

Green AI in general, and did not include terms related to ML-enabled systems or software ar- chitecture. This could 

have led to some papers relevant to green architectural tactics for ML-enabled systems not being found. How- ever, the 

subsequent focus group partly mitigated this threat by suggesting additional literature. 

The focus group method can also be prone to some threats to validity. Because it involves relatively few participants, 

the general- izability of the results can be impacted. However, this also allows an in-depth discussion of the topic with 

rich, qualitative reflections. Additionally, we ensured that the participants were prestigious experts on the topic, with 

extensive experience and expertise. 

Lastly, qualitative research can be prone to subjective biases that can influence the results. To mitigate this, the 

collection of tactics was not only validated by the focus group, but also extensively reviewed and refined by the 
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research team until consensus was reached. During these iterative refinements, great care was taken to preserve clarity 

and consistency, e.g., through proofreading of a refined tactic by someone else. Three researchers were involved in the 

in-depth synthesis and refinement of the tactics, with the rest providing high-level feedback. All in all, we do not claim 

com- pleteness for our final collection of tactics, but we demonstrate a representative list of actionable and relevant 

tactics that can sup- port practitioners in creating more environmentally sustainable ML-enabled systems. 

  

IV. RESULTS 

The initial literature-based synthesis before the focus group dis- cussion resulted in 26 tactics. Based on the focus 

group, we val- idated these tactics and identified four additional tactics via the literature suggested by the experts (T11, 

T20, T27, and T28). Our final collection therefore consists of 30 green architectural tactics for ML-enabled systems. 

They are organized into six categories: data-centric, algorithm design, model optimization, model training, deployment, 

and management. These categories correspond to the different types of artifacts and phases relevant to the life cycle of 

ML-enabled systems so that tactics can be selected based on current status or for certain parts of the system. A 

summary of the resulting tactics is shown in Fig. 2. The collection is also available in the on- line repository that 

accompanies this paper1 and in the Archive of Awesome and Dark Tactics.2 To illustrate and explain the used tac- tic 

template, we present one example in full detail below (see Fig. 3 for the visual template). The remaining tactics will be 

presented in short summaries in their respective category subsections. 

 
Figure 3: Tactic Template for Apply Sampling Techniques (T1) 

The tactic Apply sampling techniques (T1) primarily intends to improve energy efficiency (Target QA), but also 

impacts accuracy and data representativeness (Other Related QAs). In the template, the impact for the Target QA is 

always positive, but for Other Related QAs, it can also be negative, e.g., T1 can reduce accuracy. The Tactic Intent 

summarizes the general technique that is applied, i.e., “use a subset of the original input data” for T1. In the Context of 

“machine learning”, the targeted Artifact of T1 is “data”. Other tactics target, e.g., models, training algorithms, or 

deployment infrastructure in- stead. The related Software Feature of T1 is “data preprocessing”, with other tactics 

focusing on, e.g., model training or inference. T1 is usually applied by the Participant “data scientist”. For tactics with 

empirical evidence, the Measured Impact is reported, i.e., “reduced energy consumption during training” for T1. The 

textual template also includes the references to the respective studies. 
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4.1 Data-Centric 

This category includes tactics that process input data for ML models to promote energy efficiency, shown as tactics T1-

T5 in Table 1. 

Table 1: Data-Centric Green Tactics for ML-Enabled Systems 

 
The * means energy efficiency was considered a secondary QA 

T1: Apply sampling techniques. The size of the input data has a positive correlation with the energy consumption of 

com- puting [4]. Therefore, reducing the size of the input data can have a positive impact on the energy efficiency of 

ML. Sampling tech- niques, such as simple random sampling or systematic sampling, offer different approaches to 

selecting a subset of the input data. Verdecchia et al. [54] employed stratified sampling to reduce the number of data 

points. Stratified sampling means randomly select- ing data points from homogeneous subgroups of the original dataset. 

This technique resulted in savings in energy consumption [54]. 

T2: Remove redundant data. This tactic aims to decrease the size of the input data, which consequently reduces the size 

of the model. Identifying and removing redundant data for ML models can decrease computing time, the number of 

computations, energy consumption, and memory space. Redundant data refers to those data points that do not 

contribute significantly to the accuracy of the model. Therefore, removing these unimportant data points does not 

sacrifice much accuracy. Removing redundant data reduces the energy consumption of training and inference [13, 52]. 

T3: Reduce number of data features. A large number of data features in the ML model can lead to high computing 

power re- quirements during training and inference. Typically, ML scenarios involve a huge number of features or 

variables that describe the input data. However, not all of these features are necessary for the model to make accurate 

predictions. Therefore, reducing the number of input data features can lead to improved energy effi- ciency while 

maintaining accuracy. This reduction can be achieved by selecting only a subset of all the available data features [54]. 

T4: Use input quantization. Input quantization in ML refers to converting the data to a smaller precision, e.g., reducing 

the number of bits used to represent the data. According to a study by Abreu et al. [1], using 10-bit precision is 

sufficient for achieving accuracy in ML models, and using more does not contribute to accuracy. 

Therefore, using higher precision in this case is a waste of resources. Data quantization can also be used in federated 

learning to reduce energy consumption and memory access [26]. Using precise data values through input quantization 

can even have a positive impact on the accuracy of the ML model by reducing overfitting. 

T5: Use data projection: Data projection means transforming data into a lower-dimensional embedding. Reducing the 

dimensionality of input data shrinks the dimensionality of deep neural networks (DNN), which leads to improved 
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performance of the model. Using data projection as a preprocessing step can result in energy improvements without 

sacrificing performance or accuracy [45]. 

 

4.2 Algorithm Design 

Tactics in the algorithm design category refer to decisions that are made when designing the ML model. This category 

consists of six different tactics (T6-T11) that are shown in Table 2. 

Table 2: Green Tactics Related to Algorithm Design 

 
The * means energy efficiency was considered a secondary QA 

T6: Choose an energy-efficient algorithm. Different ML al- gorithms have different levels of energy consumption and 

com- putational power. For example, K-nearest neighbor (KNN) algo- rithms have a much higher energy consumption 

than Random Forest (RF) [54]. High energy consumption does not necessarily mean that the algorithms perform better 

or achieve higher accuracy levels than low-energy algorithms. Thus, choosing suitable, energy- efficient algorithms that 

achieve wanted outcomes can reduce the energy consumption of ML models [25]. 

T7: Choose a lightweight algorithm alternative. Some al- gorithms may have lightweight alternatives. Using these 

lighter models can have a lower energy consumption without sacrificing other important QAs. For example, spiking 

neural networks (SNN) are seen as a lightweight and energy-efficient alternative to convo- lutional neural networks 

(CNN). CNN models can be converted to SNN without a significant loss of accuracy or performance [50]. 

T8: Decrease model complexity. Complex ML models have been shown to have high energy consumption, and 

therefore scal- ing down the model complexity can contribute to environmental sustainability. Simplifying the model 

structure can lead to faster training and inference times, making it more efficient to deploy and use in real-world 
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applications. For example, using a simple three-layered Convolutional Neural Network architecture [38] and shallower 

Decision Trees [2] has shown to be energy-efficient while still providing high levels of precision. 

T9: Consider reinforcement learning for energy efficiency. Algorithms can be designed to optimize energy efficiency 

through reinforcement learning. Reinforcement learning receives feedback on its actions and adjusts its behavior 

accordingly. Reinforcement learning models can be used to identify the most energy-efficient options in real time and 

make informed decisions based on that information [27, 37]. Additionally, other QAs can also be targeted for 

optimization, e.g., accuracy or CPU/RAM usage. 

T10: Use dynamic parameter adaptation. Dynamic parameter adaptation means that the hyperparameters of an ML 

model are dynamically adapted based on the input data, instead of determining the exact parameters values in the 

algorithm. For example, García- Martín et al. [16] used an nmin adaptation method for very fast decision trees. The 

nmin method allows the algorithm to grow faster in those branches where there is more confidence in creating a split, 

and delaying the split on the less confident branches. This method resulted in decreased energy consumption. 

T11: Use built-in library functions. Apply built-in library functions in the ML model instead of writing custom 

implementa- tions. The existing built-in library functions are usually optimized and well-tested, which is why they may 

have improved perfor- mance and energy efficiency compared to custom-made functions. For example, these built-in 

libraries can be used for tensor opera- tions [48]. 

 

4.3 Model Optimization 

The model optimization category includes all the tactics that are re- lated to the model optimization stage of the ML 

model development process. These tactics (T12-T17) are shown in Table 3. 

T12: Set energy consumption as a model constraint. This tac- tic sets a predetermined energy consumption threshold for 

the ML model optimization process. The optimization takes into account the energy consumption of the model during 

both the optimization and training phases. The objective is to train the model in a way that it stays within the specified 

energy consumption threshold. This approach views model optimization as an optimization prob- lem, where for 

instance hyperparameters and the model itself are optimized based on predetermined limits [59, 66]. 

T13: Consider graph substitution. In the context of deep neural networks (DNN), substitution refers to replacing a large 

model with a smaller one that performs a similar task. Energy- aware substitution, however, means replacing energy-

intensive nodes of DNNs with less energy-consuming nodes. For example, 

Table 3: Green Tactics Related to Model Optimization 

 
The * means energy efficiency was considered a secondary QA 
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Wang et al. [60] showed energy savings of 24% in their study of energy-aware graph substitution. 

T14: Enhance model sparsity. Enhancing the sparsity of an ML model means reducing the number of model parameters 

or setting their values to zero. For example, weight sparsification involves identifying and removing unnecessary or less 

important weights in a neural network. Enhancing model sparsity decreases the complexity of the model and 

consequently reduces requirements for storage and memory. Therefore, it also results in lower power consumption [69]. 

T15: Consider energy-aware pruning. Pruning is the process of reducing the complexity and size of an ML model by 

removing unnecessary or less important components, such as weight. In energy-aware pruning, energy consumption of 

a neural network is used to guide the pruning process to optimize for the best energy efficiency. With the estimated 

energy for each layer in a CNN model, the algorithm performs layer-by-layer pruning, starting from the layers with the 

highest energy consumption to the layers with the lowest energy consumption. For pruning each layer, it removes the 

weights that have the smallest joint impact on the output feature maps [66]. 

T16: Consider transfer learning. Transfer learning means using knowledge gained from a task (pre-trained model) and 

trans- ferring it to another similar task. This is feasible only if there is an existing pre-trained model available for use. 

The absence of or reduction in the effort for model training results in savings in energy consumption [23, 48]. 

T17: Consider knowledge distillation. Knowledge distillation is a technique where a large, complex model (teacher) is 

used to train a smaller, simpler model (student). The goal is to transfer the learned information from the teacher model 

to the student model, allowing the student model to achieve comparable performance while requiring fewer 

computational resources [48, 66]. 

 

4.4 Model Training 

Three tactics (T18-T20) are related to ML model training, and are shown in Table 4. 

Table 4: Green Tactics Related to Model Training 

 
The * means energy efficiency was considered as a secondary QA 

T18: Use quantization-aware training. Quantization-aware training is a technique used to train neural networks to 

convert data types to lower-precision ones. The idea is to use fixed-point or integer representations instead of the more 

commonly used higher precision floating-point representations. This improves the performance and energy efficiency 

of the model in federated learn- ing [26, 50]. 

T19: Use checkpoints during training. Training is an energy- intensive stage of the ML model life cycle, which may 

take long periods of time. Sometimes, a failure or a hardware error can ter- minate the training process before it is 

completed. In those cases, the training process has to be started from the beginning and all progress is lost. The use of 

checkpoints, however, can save progress in regular intervals and in case of a premature termination, the training process 

can continue from the last checkpoint [48]. 
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T20: Design for memory constraints. Model training requires memory, and sometimes memory leaks and OOM (out of 

memory) errors may occur during that process. If that happens, the knowl- edge gained during the prior training process 

is lost. By considering memory availability constraints and addressing possible OOM ex- ceptions, the model training 

pipeline can be designed to operate within the available memory limits. It reduces the likelihood of errors and prevents 

unnecessary energy consumption [48]. 

 

4.5 Deployment 

The deployment category contains tactics related to deploying an ML-enabled system such that it is more 

environmentally sustainable. These tactics (T21-T27) are shown in Table 5. 

T21: Consider federated learning. Federated learning is an ML approach that aims to train a shared ML model on 

decentralized devices. Instead of sending raw data to a central server, federated learning trains the model directly on the 

devices where the data is generated, such as mobile phones or edge devices. Only the trained 

 Table 5: Green Tactics Related to Model Deployment 

 
The * means energy efficiency was considered a secondary QA 

model or updated model parameters are sent to a central server [26]. Federated learning decreases the resources needed 

for transferring large amounts of data to a central server, which results in improved energy efficiency. 

T22: Use computation partitioning. Computation partition- ing is the process of dividing the computations of a CNN 

between a mobile client and a cloud server. The goal is to optimize energy consumption and efficiency. The NeuPart 

framework [35] is an example of a partitioning approach. NeuPart divides computational tasks between the mobile 

device (client) and the remote server or data center (cloud) in real time based on energy consumption. By offioading 

computationally intensive tasks to the cloud and exe- cuting lighter tasks locally, NeuPart resulted in significant energy 

savings of up to 52% in cloud-based computations [35]. 

T23: Apply cloud fog network architecture. Edge devices are usually connected to distant cloud services. However, 

bringing the cloud closer to edge devices could be more energy efficient. A cloud fog network (CFN) is one way to 

achieve that [71]. CFN supports an architecture where deep neural network models are processed in servers between 
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end-devices and the cloud. For ex- ample, Yosuf et al. [71] present a CFN architecture that consists of four layers: IoT 

end devices, Access Fog (AF), Metro Fog (MF) and Cloud Datacenter (CDC). This architecture led to a 68% reduction 

in power consumption when compared to a traditional cloud data center architecture on average. 

T24: Use energy-efficient hardware. The emissions of ML are related to used hardware. This is why using energy-

efficient hardware to run ML models can reduce their power consumption. Energy-efficient hardware can include low-

energy components. For example, the Tensor Processing Units (TPUs) developed by Google are seen as an energy-

efficient alternative to CPUs and GPUs [25]. T25: Use power capping. Power capping is a technique used to limit the 

amount of power consumed by a device or system, such as a CPU, GPU, or server. It involves setting a maximum 

power consumption threshold for a device, and dynamically adjusting the power usage to ensure that it stays below that 

threshold. This is typically done to manage the power consumption and heat dissipa- tion of a device, and to prevent it 

from exceeding the power budget of a data center or other power-limited environment. Restricting the use of GPU 

resources can lead to reduced performance and longer execution times, but in certain configurations, it can also result in 

a significant reduction in energy consumption (up to 33%) with a moderate impact on performance [29]. 

T26: Use energy-aware scheduling. Energy-aware scheduling refers to a strategy that optimizes the scheduling of ML 

tasks. It dynamically schedules tasks or processes based on the current energy requirements and system conditions. The 

objective of an energy-aware dynamic scheduling policy is to make efficient use of available computational resources 

while still meeting energy budgets [52]. 

T27: Minimize referencing to data. ML models require read- ing and writing enormous amounts of data in the ML 

workflow. Reading data means retrieving information from storage, while writing data means storing or updating the 

information. These operations may increase unnecessary data movements and mem- ory usage, which influence the 

energy consumption of computing. To avoid non-essential referencing of data, data read and write operations must be 

designed carefully [48]. 

 

4.6 Management 

The management category includes tactics for managing the ML- enabled system and ML model after their 

deployment. Only three tactics (T28-T30) fall under this category and are shown in Table 6. 

Table 6: Green Tactics Related to Management 

 
The * means energy efficiency was considered a secondary QA 

T29: Retrain the model if needed. Retraining a model refers to the process of updating or modifying an existing ML 

model. In the long term, concept drift may affect the accuracy of existing ML models. Retraining the model, by for 

example training it again with new data, is better than building it again from scratch in terms of sustainability [42]. 

T30: Monitor computing power. Estimating and calculating the energy footprint of an ML model can help to reduce its 

compu- tational power consumption. Monitoring the energy consumption of an ML model over the long term helps to 

identify those compo- nents where energy is being inefficiently utilized. This can serve as a starting point for making 

improvements to reduce energy con- sumption. There has been a lack of easy-to-use tools to do that, but recently 
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researchers have provided frameworks on how to estimate or calculate the energy footprint of ML-enabled systems [10, 

30]. 

 

4.7 Targeted Quality Attributes 

The majority of the tactics (21 out of 30) unsurprisingly aim to improve energy efficiency as their primary QA. Energy 

efficiency was mostly measured by the energy consumption savings achieved with the tactic. However, there were also 

some tactics that aimed primarily at other QAs, with energy efficiency being improved as a side effect. The description 

of these QAs and the number of tactics targeting them can be found in Table 7. One example was performance (3 out of 

30), which was usually related to the time or throughput related to model training or inference. If the runtime or 

computational intensity can be reduced, this sometimes also influences energy efficiency positively. Additionally, some 

tactics had accuracy as their primary QA (3). While energy efficiency and accuracy are often regarded as a trade-off 

[66], our collection contains several tactics that try to increase both simultaneously. Lastly, recoverability (2) and 

resource utilization (1) appeared for a small number of tactics. 

Overall, 17 tactics (T1-T6, T8, T10, T12-T15, T17, T22, T23, T25 and T26) were evaluated in experimental settings to 

provide ev- idence for their impact on these QAs. Most of the papers also provided evaluations of possible trade-offs 

with other QAs. These trade-offs include, for example, accuracy and latency. The other remaining tactics (13) were 

more along the lines of experience-based suggestions to improve QAs and environmental sustainability, with- out 

rigorous evaluations. While the provided argumentation was convincing, future work needs to provide empirical 

evidence to quantify the impact. 

  

4.8 Scope of Architectural Tactics 

The majority of tactics in our collection (20 of 30) are associated with low-level phases of the ML development life 

cycle, namely T28: Use informed adaptation. ML models may experience drift that affects their functionality. In these 

cases, the models must be adapted to deal with the drift. Informed adaptation refers to a method of adapting the ML 

model only when drift is detected. There- fore, the frequency of adaptation is smaller than in blind, periodic adaptation. 

Informed adaptation reduces unnecessary adaptations, which consequently saves energy [42].  

data collection and processing, algorithm design, model optimiza- tion, and model training. In essence, these tactics are 

targeted at improving model quality instead of system quality. For example, tactics like Reduce the number of data 

features (T3) or Decrease model complexity (T8) could also be applied without a complete software system, i.e., for the 

training of a single ML model that is never integrated into a larger system. However, when these tactics are applied 

systematically at scale and continuously, they have strong architectural implications and significance. For example, 

although accuracy could be considered a model quality concern, the system actions taken in response to reduced 

accuracy as a trade-off for energy efficiency are architectural in nature. Moreover, some tac- tics from the early life 

cycle phases have a profound influence on architectural elements in the system, e.g., Consider reinforcement learning 

for energy efficiency (T9). For the categories deployment and management, the architectural significance of the tactics 

is more obvious, e.g., for Consider federated learning (T21), Apply cloud fog network architecture (T23), or Use 

informed adaptation (T28). All in all, the collection of tactics provides practitioners with holistic, architecture-centric 

means to improve the environmental sustainability of ML-enabled systems in all life cycle phases. 
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Table 7: Target Quality Attributes of the 30 Green Tactics 

 
 

V. DISCUSSION 

The collection of green architectural tactics obtained from our study provides guidance for architecting environmentally 

sustainable ML- enabled systems, and, as such, realize the societal promise that is expected of ML: minimizing its 

energy footprint. In the following, we report the main observations and reflections about our study. 

Due to their diversity, tactic selection requires domain- specific expertise. As mentioned earlier, the tactics in Fig. 1 

can- not be generalized to all use cases. For instance, some tactics are suitable for a specific algorithm type (e.g., 

Consider graph substitu- tion (T13) is only applicable to neural networks), while others are conditional to specific 

requirements (e.g., Consider transfer learn- ing (T16) requires a pre-trained model). Therefore, our catalog of tactics 

should not be interpreted as strict rules, but rather as rec- ommendations or available techniques for the architecture 

design of energy-efficient ML-enabled systems. In perspective, we believe that it would be beneficial for ML 

practitioners to have a catalog of tactics for specific use cases, such as using deep learning and its software architecture 

implications. 

Most tactics are model-related rather than focusing on the full architecture of ML-enabled systems. An important obser- 

vation also discussed in the focus group is that most tactics found in our study focus on the ML model rather than the 

architecture of ML-enabled systems, i.e., a specific component rather than substan- tial parts of the architecture. We 

argue that this is because the field is still maturing, and reusable architecture knowledge about ML- enabled systems is 

still in the making. Furthermore, a related open problem is being able to separate the energy efficiency of model that, in 

many cases, energy consumption of ML models can be reduced without substantial reduction in accuracy [12, 54, 65, 

70]. In general, given that energy consumption has become a major concern only recently and that ML-enabled systems 

are extremely energy demanding, we argue that future research should investigate possible trade-offs between energy 

efficiency and other QAs. Ana- lyzing interactions between multiple QAs could provide important insights into the 

design of ML-enabled systems. 

 

VI. CONCLUSIONS AND NEXT STEPS 

This paper provides a catalog of 30 green architectural tactics for ML-enabled systems organized in 6 categories, 

namely data-centric, algorithm design, model optimization, model training, deployment, and management. The tactics 

represent available techniques for designing energy-efficient ML-enabled systems. We integrated the collection into the 

Archive of Awesome and Dark Tactics.3 For transparency and reusability, we also provide a Zenodo repository.4 

Despite the growing understanding of the environmental im- pacts of ML, there is still no consensus on how to best 

achieve sustainability. Our study serves as a starting point for further re- search about green architectural tactics for 

ML-enabled systems. Future research is necessary to validate and extend the results of this study, and to explore more 

generalized tactics applicable to differ- ent ML algorithms and ML-enabled system concerns. Furthermore, more 
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research is required to evaluate the effectiveness of several green architectural tactics in practice. In line with this, we 

plan to re-engineer existing open-source ML-enabled systems based on the tactics and to measure energy efficiency to 

compare the original versus the modernized system. As an alternative, we may conduct a case study where practitioners 

develop an ML-enabled system using the tactics catalog. Based on this, the usage of concrete tactics is analyzed, 

experiences are documented, and the catalog is refined. Finally, with the energy crisis and the explosion of ML 

applications in all sectors, energy efficiency is gaining traction as an impor- tant QA. Accordingly, it is important to 

create tactics dedicated to raising awareness of the energy footprint of such systems. 
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