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Abstract: This project explores the integration of Artificial Intelligence (AI) with traditional Vastu
principles to create smart, harmonious architectural designs. By leveraging Al techniques such as
machine learning, computer vision, and natural language processing, the system optimizes spatial
layouts and automates Vastu compliance checks, offering personalized recommendations that enhance
user comfort, energy balance, and cultural relevance. The approach bridges modern technology with
ancient architectural wisdom, enabling efficient, aesthetically pleasing, and spiritually aligned living
spaces tailored to individual preferences. This fusion of AI and Vastu is poised to revolutionize interior
design by making it more intelligent, adaptive, and culturally sensitive. The platform offers personalized
recommendations by learning user preferences and adapts designs for energy efficiency and
environmental sustainability. The 30 tactics we identified are aimed to serve as an initial reference guide
for further exploration into Green Al from a sofiware engineering perspec- tive, and assist in designing
sustainable ML-enabled systems. The platform offers personalized recommendations by learning user
preferences andadapts designs for energy efficiency and environmental sustainability.

CCS CONCEPTS

* Software and its engineering — Designing software, Soft- ware architectures;
* Social and professional topics — Sus- tainability;

» Computing methodologies — Machine learning.

Keywords: Software architecture, architectural tactics, ML-enabled systems, environmental
sustainability, Green Al.

Lay Abstract: Machine learning (ML) is a technology field that wants to provide sofiware with
functionality similar to human- like intelligence, e.g., for understanding text or describing images.
However, creating and using systems with ML needs a lot more computing power than non-ML systems,
which is bad for the envi- ronment. Companies therefore need concrete advice on how they can create
ML systems that are environmentally sustainable. In this paper, we provide a catalog of 30 green
architectural tactics for these systems. An architectural tactic is a high-level design technique to improve
software quality, in our case environmental sustainability. To achieve this, we analyzed 51 scientific
papers and later discussed with 3 experts to improve and extend our catalog. If many companies start
using these tactics, the energy footprint of systems with ML can be greatly reduced.

L. INTRODUCTION
This project focuses on combining Artificial Intelligence with Vastu Shastra, an ancient Indian system of architecture
that emphasizes harmonious spatial design to promote well-being. Using Al techniques like machine learning and
computer vision, the system will automate the process of checking Vastu compliance in architectural plans, saving time
and reducing errors compared to manual methods. It will intelligently suggest optimized layouts that improve energy
flow, comfort, and aesthetic appeal based on individual user preferences and sustainability goals.
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The integration of virtual reality will allow users to virtually walk through and interact with proposed designs, making
the design process more immersive and collaborative. This approach modernizes traditional Vastu wisdom by
enhancing it with data-driven decision-making and personalized design adaptation, ultimately helping architects,
interior designers, and homeowners create smart, sustainable living spaces that respect cultural values.

Additionally, the project will incorporate a user-friendly interface that accommodates both professionals and
laypersons, making Vastu-compliant design accessible to a broader audience. By learning from user feedback and
evolving design trends, the system will continuously improve its recommendations, ensuring relevance and adaptability
over time. This dynamic, Al-driven platform not only enhances architectural creativity and efficiency but also supports
cultural preservation by keeping traditional principles alive in contemporary built environments.

Holistically evaluating the impact of an ML-enabled system on en- vironmental sustainability is challenging because
the system goes through several stages during its life cycle, from ML model develop- ment to deployment,
maintenance, and evolution of the ML-enabled system. However, the negative environmental impact of ML is usu- ally
directly related to the required high computational power, i.e., the amount of energy required to train and run ML
models [25]. Computational power is typically evaluated via energy consump- tion measured in joules (J) or kilowatt-
hours (kWh), computing power via floating-point operations per second (FLOPS), GPU/CPU utilization as a
percentage, GPU/CPU hours, response time, or car- bon emissions [20]. Additional factors beyond software-related
computational power like hardware manufacturing, transportation, or e-waste are harder to quantify and outside the
study scope.

ML models present unique challenges for the development of ML-enabled systems due to their data-dependent nature,
dynamic behavior, and lack of transparency [33]. These unique character- istics of ML have affected the fields of
software engineering and software architecture, leading to an emerging focus on software architecture for ML-enabled
systems or SA4ML. SA4ML aims to develop principles, practices, and tools for improving the develop- ment of ML-
enabled systems [39]. Papers on patterns and tactics for ML-enabled systems have started to appear [19, 62], but they
concentrate primarily on developing effective ML-enabled systems while lacking the environmental perspective.
Despite the increasing interest in the environmental impact of ML [56], it is still challenging to obtain a comprehensive
overview of the recommended best practices for developing green ML-enabled systems. To gain a deeper
understanding of the effectiveness and usefulness of different practices, we explore the intersection of Green Al and
software architecture by identifying green architec- tural tactics for ML-enabled systems. We achieve this through a
literature-based synthesis and a subsequent focus group review with software architecture experts working on SA4ML
to validate and extend the initial collection of tactics. In our study, we address the following research questions:

* RQ1: Which green architectural tactics for ML-enabled sys- tems can we synthesize from scientific literature?

* RQ2: How do SA4ML experts perceive our synthesized col- lection of tactics?

Our contribution is a collection of 30 green architectural tactics for ML-enabled systems. To structure the collection, we
organize the tactics into six categories that map to different aspects of ML- enabled systems development. Given that a
tactic is a design tech- nique used to improve a specific quality attribute [7], we expect our contribution to guide
practitioners to make more environmentally sustainable decisions when engineering ML-enabled systems.

II. BACKGROUND AND RELATED WORK
We first provide an overview of important concepts such as ML- enabled systems, environmental sustainability, and
architectural tactics, and then discuss related work in the area.
2.1 ML-Enabled Systems
ML is a sub-field of Al that concentrates on developing algorithms capable of learning from data [46]. ML models are
trained on in- put data to produce a desired outcome without being explicitly programmed to do so: they automatically
identify connections in the data and learn complex patterns [14]. These learned patterns can then be used to make
predictions or decisions for new, previ- ously unseen data. According to Amershi et al. [3], building an ML model
usually follows a specific development process with feedback loops: understanding business goals, preparing the data,
designing the model, training the model, testing the model, deploying the model in the production environment, and
finally managing and monitoring it during usage.
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While ML models can be used for stand-alone data science or analytics activities, they are also frequently embedded
into larger software systems. The term ML-enabled system therefore refers to a software system that includes at least
one ML component [33]. Due to the special characteristics of machine learning, integrating ML components into
software systems comes with additional chal- lenges in terms of software architecture and design, e.g., strong
dependencies on training data, lack of transparency for ML com- ponent behavior, and abrupt changes in the prediction
quality of ML components [33]. Ensuring quality is therefore an important and complicated activity for ML-enabled
systems, with many qual- ity attributes (QAs) to consider [17]. The unique characteristics of ML model and system
development have also given rise to special system-level QAs, which include, e.g., prediction accuracy, explain- ability,
monitorability, sustainability, prediction cost, training cost, and training latency [21, 43, 49, 57].

2.2 Environmental Sustainability of ML

Holistically evaluating the impact of an ML-enabled system on en- vironmental sustainability is challenging because
the system goes through several stages during its life cycle, from ML model develop- ment to deployment,
maintenance, and evolution of the ML-enabled system. However, the negative environmental impact of ML is usu- ally
directly related to the required high computational power, i.e., the amount of energy required to train and run ML
models [25]. Computational power is typically evaluated via energy consump- tion measured in joules (J) or kilowatt-
hours (kWh), computing power via floating-point operations per second (FLOPS), GPU/CPU utilization as a
percentage, GPU/CPU hours, response time, or car- bon emissions [20]. Additional factors beyond software-related
computational power like hardware manufacturing, transportation, or e-waste are harder to quantify and outside the
study scope.

The development stage of ML models is usually regarded as the most energy-intensive phase within the life cycle of
ML-enabled systems [25], especially for systems using generative Al, such as in the form of large language models
(LLMs) [24], since these models require large amounts of data. However, increasing the number of data points is also
used as a general strategy to train more accurate ML models, which makes data preprocessing and model training
consume more energy [63]. Training data may also be complex and multidimensional, which is why data cleaning,
labeling, and feature engineering can be energy-intensive [64]. Along with the increased amount of data, ML model
size and complexity also in- crease. As a result, the model training and tuning phases are very energy-intensive,
especially if multiple rounds of testing are re- quired [47]. For example, many deep learning models are often trained
for long periods of time, ranging from dozens to thousands of hours, sometimes using powerful but energy-intensive
hardware such as GPUs or other processing units optimized for ML work- loads [8]. While ML training receives the
majority of attention, each development stage in the ML development process has its own concerns and opportunities
related to energy consumption and en- vironmental sustainability. Therefore, evaluating the sustainability of ML
requires a holistic view of the ML life cycle [63].

2.3 Green Architectural Tactics
Synthesizing generalizable design decisions to achieve certain QAs is an important practice in the software architecture
community to enable the reuse of architecture knowledge.

Literature-based synthesis (RQ1) Focus group (RQ2)

Final contribution

Analyzing Green Al |_p|synthesizing green tactics +26 Discussing and refining |y Synthesizing green tactics +4
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&= rF ML-enabled systems
. T T
51 solution papers from = Phases of the ML # 3 gxperts on software 5 additiona
Al why \_—T;q\ development life cycle A L A for ML ——p papers
Yerdepchia etal. {2023) " = K abled systems

Figure 1: Study Design and Execution
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One concept in this space is an architectural tactic (or tactic in short form), i.e., a high-level design decision focusing on
achieving a single QA for a software system [7]. Tactics differ from design patterns [15]. Patterns typically are more
concrete and cover multiple decisions, tactics, and QAs, often through trade-offs that impact some QAs positively and
others negatively. In this sense, tactics are high-level building blocks from which patterns are composed, but choosing
an architecture pattern can also guide the selection of complementary architectural tactics [18]. Harrison and Avgeriou
[18] discuss the relationship between tactics and patterns in greater detail.

Architectural tactics often improve one primary QA and are typically organized in QA-related collections such as
security or performance tactics [40]. However, tactics may also have a positive influence on other secondary QAs, even
though these QAs may not be the main focus of the tactic. For example, a tactic aimed at improving performance via
less resource-intensive computation and faster response times will often also improve energy efficiency. In the context
of ML-enabled systems, we focus on green tactics, i.e., tactics that have a positive impact on environmental
sustainability, usually in the form of improving energy or carbon efficiency. All architectural tactics are design
decisions that positively impact a QA of a system or part of a system, and can manifest themselves within different
scopes. For example, we later introduce the tactics Remove redundant data (T2) and Decrease model complexity (T9).
These tactics do not focus on the complete software system, but rather focus solely on the data (T2) and model (T9) as
their scope. This interpretation is in line with the definition of software architecture as the set of significant design
decisions [22].

2.4 Related Work

Architectural tactics are a popular medium to convey design knowl- edge in the software engineering research
community. A recent mapping study by Marquez et al. [40] identified a total of 91 pri- mary studies. However, the
authors criticized that most studies use the concept of tactics in a way that is not in line with the original definition, and
that it is often unclear from which data sources the tactics were synthesized. They also state that they found little
evidence of the use of architectural tactics in industry.

While sustainability or energy efficiency are not explicitly cov- ered by the primary studies discussed by Marquez et al.
[40], some authors have proposed green tactics for different domains. Procac- cianti et al. [44] and Vos et al. [58]
synthesized tactics for optimizing the energy efficiency of software running in the (public) cloud. Simi- larly,
Chinnappan et al. [11] and Malavolta et al. [34] conceptualized tactics for energy-aware robotics software. While these
could be situationally useful for ML-enabled systems in such domains, it is important to have tactics that take the
specifics of ML into account. By now, many publications exist on the general topic of Green Al. A recent review by
Verdecchia et al. [56] collected 98 studies in this fast-growing field. However, the majority of these publications
concentrate on understanding the mechanisms related to the energy efficiency of ML and do not provide their findings
in an easily accessible and actionable form. Moreover, the existing techniques are distributed among many different
publications, making their holistic consideration difficult. In this sense, a collection of concrete tactics that practitioners
can use to make ML-enabled systems more sustainable does not currently exist. One work that starts to produce
actionable guidance is a study by Shanbhag et al. [48]: they used the concept of design patterns to synthesize eight
“energy patterns” for deep learning projects from an analysis of Stack Overflow posts. The patterns were subsequently
validated with a questionnaire survey with 14 practitioners. While their catalog is a promising step in the right direction,
our study aimed for a broader scope and coverage: we included all forms of ML, derived our tactics from scientific
literature, and took a holistic look at the life cycle of ML-enabled systems. This ultimately led to the 30 green tactics we
synthesized, which also include the 8 energy patterns from Shanbhag et al. [48].

II1. STUDY DESIGN AND EXECUTION

We designed our study with a qualitative research approach orga- nized in two steps (see Fig. 1). In the first step, we
used scientific literature on Green Al to synthesize green architectural tactics for ML-enabled systems (RQ1). To
structure the tactics, we formed categories and iteratively refined the collection. Once the collection reached sufficient
maturity, we carried out the second step, in which we conducted a focus group with three SA4ML experts (RQ2). This
allowed us to validate and further refine the collection of tactics.
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A focus group is a qualitative method to collect opinion-based data about a specific topic through a systematic
discussion with participants knowledgeable about the topic [28]. The number of participants needs to be small enough
for everyone to contribute, and a researcher has to carefully moderate the exchange, typically by following a predefined
protocol with questions. Based on such a group setting, exchanges between participants can stimulate new ideas and
lead to stronger consensus. Using the focus group results, the collection was substantially improved and extended.

3.1 Literature-Based Synthesis (RQ1)

The data collection for the first part of the study was based on a recent systematic literature review on Green Al by
Verdecchia et al. [56]. They queried the publisher-agnostic search engines Google Scholar, Scopus, and Web of
Science, and complemented this with an iterative snowballing process, leading to a total of 98 primary studies. These
studies were categorized into observational, solu- tion, and position articles. The solution category included papers
providing techniques or tools to address Green Al issues, e.g., to improve the energy efficiency of ML models or
components. Be- cause these papers represent promising sources for architectural tactics, we used all 51 papers from
this category as the start for our synthesis. Papers from the other two categories (observational and position) did not
contain relevant information to synthesize actionable techniques.

Following the guidelines of Bowen [9], all 51 selected papers were evaluated with qualitative data analysis methods,
mainly document analysis and content analysis. As a first step, the main researcher performed a document analysis for
each paper that included skim- ming, reading, and interpretation, which was followed by a content analysis to identify
and synthesize green tactics for ML-enabled systems. This content analysis was guided by the “Awesome Tac- tic”
template [32] from the Archive of Awesome and Dark Tactics (AADT). AADT is a curated, open-source knowledge
base that pro- vides information on tactics for various domains that can have either a positive or negative impact on
software quality. The AADT template for tactics is grounded in foundational literature about architectural tactics and
includes fields such as tactic intent, partic- ipant, context, primary QA, secondary QAs, and measured impact. Using
descriptive coding methods [36], the synthesized tactics were organized into categories representing different aspects of
the devel- opment life cycle of ML-enabled systems. The analysis took place in an iterative manner, with frequent
reviews and exchanges between researchers in the spirit of continuous refinement.

3.2 Focus Group (RQ2)
In the second part of the study, we conducted a focus group with three experts in software architecture for ML-enabled
systems (SA4ML). As is common with focus groups [28], we used purposive sampling to recruit participants from our
network whom we knew to be very knowledgeable and experienced about the topic. All three experts were in senior,
research-related roles with extensive expertise in software architecture, ML-enabled systems, and soft- ware
sustainability. One participant worked at a university and two participants at a research institute. The experts did not
have ML engineering roles in industry, but all of them had extensive knowl- edge of the state of ML engineering in
industry through frequent collaborations and projects with companies or public organizations that developed or
acquired ML-enabled systems. Two authors were present during the focus group as moderators. The session took place
as a video call of roughly 75 minutes, which was recorded for later analysis with everyone’s permission.

Following a protocol with questions, the moderators presented the collection of synthesized green tactics and
encouraged an open discussion to receive feedback. One aim was to validate the tac- tics’ soundness, relevance, and
applicability to industry scenarios. Additionally, the protocol included open questions to find out if important tactics
applied in industry were missing. This led to an in-depth discussion about the tactics and their categorization. The
participants suggested several additional publications to extend the collection. These papers were included in the
research to extract possible tactics from them.

Afterward, the recording of the focus group was analyzed to identify the key themes of the discussion. The main topics
were written down and used to improve the tactics identified in the first step of the study. All the feedback received
about the identified tactics was considered, and, if applicable, the tactics were modified accordingly. The additional
papers suggested by the participants were analyzed using the same document and content analysis ap- proach described
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in Section 3.1 to synthesize additional green tactics for ML-enabled systems. In particular, the focus group added the
following contributions:

Extension of the catalog: as mentioned, the experts suggested additional papers that led to the identification of four new

tactics.
Green Architectural Tactics for ML-Enabled Systems
Data-centric Algorithm design Model optimization Model training Deployment Management
T1: Apply sampling Te: Choose an energy- T12: Set energy T18: Use gquantization- T21: Consider federated T28: Use informed
technigues efficient algorithm consumption as a model aware training learning adaptation®
T2: Remove redundant  T7: Choose a lightweight constraint T19: Uze checkpoints T22: Use computation T29: Retrain the model
data algorithm alternative T13: Considergraph during training partitioning if neaded
T3: Reduce number of 183 Decrease madel substitution T20: Design for T23: Apply cloud fog T30: Monitor
data features camplexity T14:Enhance model memery censtraints® network architecture computing power
T4: Use input T9: Consider sparsity T24: Use energy-
quantization reinforcement learning  T15: Consider energy- efficient hardware
T5: Use data projection far energy efficiency aware pruning T25: Use power capping
T10: Use dynamic T16: Consider transfer T26: Use energy-aware
parameter adaptation earning scheduling
T11: Use built-in library T17: Consider T27: Minimize
functions* knowledge distillation referencing to data*
The symbaol ¥ means the tactic was found with the help of the focus group.

Figure 2: Catalog of the 30 Synthesized Green Architectural Tactics for ML-Enabled Systems
Refinements of descriptions and categories: the descriptions and categorization of the tactics benefited from the insights
pro- vided by the experts, which observed that: (i) while all tactics are architecture-relevant, many are more model-
focused, i.e., related to the ML model rather than the system as a whole. Overall, the tactics are quite diverse and focus
on data management, process aspects, or design vs. implementation aspects to various degrees; (ii) most tactics target
energy efficiency as a primary QA, but some also focus on other QAs or include important trade-offs with secondary
QAs; (iii) some tactics are specific to certain ML techniques and, as such, are not universally applicable to achieve
energy efficiency. This led to renaming some tactics from “Use . . . ” to “Consider . . . ”. For example, Consider transfer
learning (T16) can reduce energy consumption, but it is not always applicable; so one might say that, if applicable, T16
is preferred to increase energy efficiency.

Observations and reflections for future work: the experts provided interesting observations and reflections that point to
pos- sible follow-up work. These are discussed in Section 5.

3.3 Threats to Validity
According to Verdecchia et al. [55], threats to validity are often considered as an afterthought in the SE community, and
trade-offs among threats to validity are often neglected. For this study, we prioritized the soundness and relevance of
the collection. There- fore, we consciously accepted limitations in our study design that decreased external validity,
e.g., completeness and generalizability, but improved internal validity, e.g., soundness and consistency.

In this regard, one threat to validity is that our data collection relied on the literature review of Verdecchia et al. [56].
While the authors followed a sound protocol with extensive snowballing, their initial search terms were focused on
Green Al in general, and did not include terms related to ML-enabled systems or software ar- chitecture. This could
have led to some papers relevant to green architectural tactics for ML-enabled systems not being found. How- ever, the
subsequent focus group partly mitigated this threat by suggesting additional literature.

The focus group method can also be prone to some threats to validity. Because it involves relatively few participants,
the general- izability of the results can be impacted. However, this also allows an in-depth discussion of the topic with
rich, qualitative reflections. Additionally, we ensured that the participants were prestigious experts on the topic, with
extensive experience and expertise.

Lastly, qualitative research can be prone to subjective biases that can influence the results. To mitigate this, the
collection of tactics was not only validated by the focus group, but also extensively reviewed and refined by the
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research team until consensus was reached. During these iterative refinements, great care was taken to preserve clarity
and consistency, e.g., through proofreading of a refined tactic by someone else. Three researchers were involved in the
in-depth synthesis and refinement of the tactics, with the rest providing high-level feedback. All in all, we do not claim
com- pleteness for our final collection of tactics, but we demonstrate a representative list of actionable and relevant
tactics that can sup- port practitioners in creating more environmentally sustainable ML-enabled systems.

IV. RESULTS

The initial literature-based synthesis before the focus group dis- cussion resulted in 26 tactics. Based on the focus
group, we val- idated these tactics and identified four additional tactics via the literature suggested by the experts (T11,
T20, T27, and T28). Our final collection therefore consists of 30 green architectural tactics for ML-enabled systems.
They are organized into six categories: data-centric, algorithm design, model optimization, model training, deployment,
and management. These categories correspond to the different types of artifacts and phases relevant to the life cycle of
ML-enabled systems so that tactics can be selected based on current status or for certain parts of the system. A
summary of the resulting tactics is shown in Fig. 2. The collection is also available in the on- line repository that
accompanies this paperl and in the Archive of Awesome and Dark Tactics.2 To illustrate and explain the used tac- tic
template, we present one example in full detail below (see Fig. 3 for the visual template). The remaining tactics will be
presented in short summaries in their respective category subsections.

OTHER RELATED QAs:
Accuracy, Data Representativeness MEASLU
IMPACT:
Feduced
. Energy
ACTIC INTENT: TARGET QA Consumption
Use a subset of the S During Trainin
griginal input data Energy Efficiency 9 9
SOFTWARE
E ___________ > ERT'F‘”:T' FEATURE:
/\ el Data Preprocessing
PARTICIPANT:

Data Scientist
CONTEXT:

Machine Learning

Figure 3: Tactic Template for Apply Sampling Techniques (T1)

The tactic Apply sampling techniques (T1) primarily intends to improve energy efficiency (Target QA), but also
impacts accuracy and data representativeness (Other Related QAs). In the template, the impact for the Target QA is
always positive, but for Other Related QAs, it can also be negative, e.g., T1 can reduce accuracy. The Tactic Intent
summarizes the general technique that is applied, i.e., “use a subset of the original input data” for T1. In the Context of
“machine learning”, the targeted Artifact of T1 is “data”. Other tactics target, e.g., models, training algorithms, or
deployment infrastructure in- stead. The related Software Feature of T1 is “data preprocessing”, with other tactics
focusing on, e.g., model training or inference. T1 is usually applied by the Participant “data scientist”. For tactics with
empirical evidence, the Measured Impact is reported, i.e., “reduced energy consumption during training” for T1. The
textual template also includes the references to the respective studies.
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4.1 Data-Centric
This category includes tactics that process input data for ML models to promote energy efficiency, shown as tactics T1-
T5 in Table 1.

Table 1: Data-Centric Green Tactics for ML-Enabled Systems

Tactic Description Target QA Source
T1: Apply Use a smaller subset ofthe  Energy [24][81]
sampling original input dataset efficiency
techmques
T2: Remove Detect and remove Energy [5][13]
redundant data redundant data from the efficiency

original mput data
T3: Reduce Reduce the number of Energy [54]
number of data input data features vsed efficiency
features
T4: Use input Convert input data to Accuracy* [11[28]
quantization smaller precision
T5: Usedata Project data into a Performance® _[45]
projection lower-ditnensional

embedding

The * means energy efficiency was considered a secondary QA
T1: Apply sampling techniques. The size of the input data has a positive correlation with the energy consumption of
com- puting [4]. Therefore, reducing the size of the input data can have a positive impact on the energy efficiency of
ML. Sampling tech- niques, such as simple random sampling or systematic sampling, offer different approaches to
selecting a subset of the input data. Verdecchia et al. [54] employed stratified sampling to reduce the number of data
points. Stratified sampling means randomly select- ing data points from homogeneous subgroups of the original dataset.
This technique resulted in savings in energy consumption [54].
T2: Remove redundant data. This tactic aims to decrease the size of the input data, which consequently reduces the size
of the model. Identifying and removing redundant data for ML models can decrease computing time, the number of
computations, energy consumption, and memory space. Redundant data refers to those data points that do not
contribute significantly to the accuracy of the model. Therefore, removing these unimportant data points does not
sacrifice much accuracy. Removing redundant data reduces the energy consumption of training and inference [13, 52].
T3: Reduce number of data features. A large number of data features in the ML model can lead to high computing
power re- quirements during training and inference. Typically, ML scenarios involve a huge number of features or
variables that describe the input data. However, not all of these features are necessary for the model to make accurate
predictions. Therefore, reducing the number of input data features can lead to improved energy effi- ciency while
maintaining accuracy. This reduction can be achieved by selecting only a subset of all the available data features [54].
T4: Use input quantization. Input quantization in ML refers to converting the data to a smaller precision, e.g., reducing
the number of bits used to represent the data. According to a study by Abreu et al. [1], using 10-bit precision is
sufficient for achieving accuracy in ML models, and using more does not contribute to accuracy.
Therefore, using higher precision in this case is a waste of resources. Data quantization can also be used in federated
learning to reduce energy consumption and memory access [26]. Using precise data values through input quantization
can even have a positive impact on the accuracy of the ML model by reducing overfitting.
T5: Use data projection: Data projection means transforming data into a lower-dimensional embedding. Reducing the
dimensionality of input data shrinks the dimensionality of deep neural networks (DNN), which leads to improved
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performance of the model. Using data projection as a preprocessing step can result in energy improvements without
sacrificing performance or accuracy [45].

4.2 Algorithm Design
Tactics in the algorithm design category refer to decisions that are made when designing the ML model. This category
consists of six different tactics (T6-T11) that are shown in Table 2.
Table 2: Green Tactics Related to Algorithm Design

Tactic Description Target QA Source
T6&: Choose an Choose the most Energy [25]
energy-efficient  energy-efficient algorithm  efficiency
algorithm that achieves sufficient
level of accuracy
T7: Choosea If possible, choose lighter ~ Energy [50]
lightweight alternatives of existing efficiency
algorithm algorithms
alternative
T8: Decrease Decrease the complexity Energy [21[38]
model of an ML model efficiency
complexity
T9: Consider Use reinforcement Energy 270371
remforcement learming to optimize efficiency
learning for energy efficiency at run
energy time
efficiency
T10: Use Design parameters that Energy [16]
dyvnamic are dynamically adapted efficiency
paratneter based on the input data
adaptation

T11: Use built-in__TJse built-in libraries for
library functions ML models if possible

Performance® [48]

The * means energy efficiency was considered a secondary QA

T6: Choose an energy-efficient algorithm. Different ML al- gorithms have different levels of energy consumption and
com- putational power. For example, K-nearest neighbor (KNN) algo- rithms have a much higher energy consumption
than Random Forest (RF) [54]. High energy consumption does not necessarily mean that the algorithms perform better
or achieve higher accuracy levels than low-energy algorithms. Thus, choosing suitable, energy- efficient algorithms that
achieve wanted outcomes can reduce the energy consumption of ML models [25].

T7: Choose a lightweight algorithm alternative. Some al- gorithms may have lightweight alternatives. Using these
lighter models can have a lower energy consumption without sacrificing other important QAs. For example, spiking
neural networks (SNN) are seen as a lightweight and energy-efficient alternative to convo- lutional neural networks
(CNN). CNN models can be converted to SNN without a significant loss of accuracy or performance [50].

T8: Decrease model complexity. Complex ML models have been shown to have high energy consumption, and
therefore scal- ing down the model complexity can contribute to environmental sustainability. Simplifying the model
structure can lead to faster training and inference times, making it more efficient to deploy and use in real-world
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applications. For example, using a simple three-layered Convolutional Neural Network architecture [38] and shallower
Decision Trees [2] has shown to be energy-efficient while still providing high levels of precision.

T9: Consider reinforcement learning for energy efficiency. Algorithms can be designed to optimize energy efficiency
through reinforcement learning. Reinforcement learning receives feedback on its actions and adjusts its behavior
accordingly. Reinforcement learning models can be used to identify the most energy-efficient options in real time and
make informed decisions based on that information [27, 37]. Additionally, other QAs can also be targeted for
optimization, e.g., accuracy or CPU/RAM usage.

T10: Use dynamic parameter adaptation. Dynamic parameter adaptation means that the hyperparameters of an ML
model are dynamically adapted based on the input data, instead of determining the exact parameters values in the
algorithm. For example, Garcia- Martin et al. [16] used an nmin adaptation method for very fast decision trees. The
nmin method allows the algorithm to grow faster in those branches where there is more confidence in creating a split,
and delaying the split on the less confident branches. This method resulted in decreased energy consumption.

T11: Use built-in library functions. Apply built-in library functions in the ML model instead of writing custom
implementa- tions. The existing built-in library functions are usually optimized and well-tested, which is why they may
have improved perfor- mance and energy efficiency compared to custom-made functions. For example, these built-in
libraries can be used for tensor opera- tions [48].

4.3 Model Optimization
The model optimization category includes all the tactics that are re- lated to the model optimization stage of the ML
model development process. These tactics (T12-T17) are shown in Table 3.
T12: Set energy consumption as a model constraint. This tac- tic sets a predetermined energy consumption threshold for
the ML model optimization process. The optimization takes into account the energy consumption of the model during
both the optimization and training phases. The objective is to train the model in a way that it stays within the specified
energy consumption threshold. This approach views model optimization as an optimization prob- lem, where for
instance hyperparameters and the model itself are optimized based on predetermined limits [59, 66].
T13: Consider graph substitution. In the context of deep neural networks (DNN), substitution refers to replacing a large
model with a smaller one that performs a similar task. Energy- aware substitution, however, means replacing energy-
intensive nodes of DNNs with less energy-consuming nodes. For example,

Table 3: Green Tactics Related to Model Optimization

Tactic Description Target QA Source
T12: Setenergy Consider energy Energy [29]1[66]
consumption as consumption as one efficiency
a model predetermined parameter
constraint for optimizing the ML

maodel
T13: Consider Eeplace energy-intensive Energy [60]
graph model parts with similar, efficiency
substitution but less

eNergy-consuming parts
T14: Enhance Reduce the number of Energy [68]
model sparsity model parameters or set efficiency

their values to zero
T15: Consider Prune neural networks Energy 671
energy-aware starting from the most efficiency
pruning energy-intensive layer
T16: Consider Use pre-trained ML Energy [23][48]
transfer learning  models for other similar efficiency

tasks

Use knowledge from a
large ML model to train a

Performance* [48][66]

T17: Consider
knowledge

distillation smaller model

The * means energy efficiency was considered a secondary QA
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Wang et al. [60] showed energy savings of 24% in their study of energy-aware graph substitution.

T14: Enhance model sparsity. Enhancing the sparsity of an ML model means reducing the number of model parameters
or setting their values to zero. For example, weight sparsification involves identifying and removing unnecessary or less
important weights in a neural network. Enhancing model sparsity decreases the complexity of the model and
consequently reduces requirements for storage and memory. Therefore, it also results in lower power consumption [69].
T15: Consider energy-aware pruning. Pruning is the process of reducing the complexity and size of an ML model by
removing unnecessary or less important components, such as weight. In energy-aware pruning, energy consumption of
a neural network is used to guide the pruning process to optimize for the best energy efficiency. With the estimated
energy for each layer in a CNN model, the algorithm performs layer-by-layer pruning, starting from the layers with the
highest energy consumption to the layers with the lowest energy consumption. For pruning each layer, it removes the
weights that have the smallest joint impact on the output feature maps [66].

T16: Consider transfer learning. Transfer learning means using knowledge gained from a task (pre-trained model) and
trans- ferring it to another similar task. This is feasible only if there is an existing pre-trained model available for use.
The absence of or reduction in the effort for model training results in savings in energy consumption [23, 48].

T17: Consider knowledge distillation. Knowledge distillation is a technique where a large, complex model (teacher) is
used to train a smaller, simpler model (student). The goal is to transfer the learned information from the teacher model
to the student model, allowing the student model to achieve comparable performance while requiring fewer
computational resources [48, 66].

4.4 Model Training
Three tactics (T18-T20) are related to ML model training, and are shown in Table 4.
Table 4: Green Tactics Related to Model Training

Tactic Description Target QA Source
T18: Use Convert high-precision Accuracy*
quantization- data tvpes to lower [26.
aware training precision during tratning 50]
T1%: Use Use checkpoints to avoid ~— Recoverability*
checkpoints a knowledge loss in case [48]
during traming of a premature

termination
T20: Design for Consider possible Recoverability™®
mMemory memory constraints [48]
constraints during training

The * means energy efficiency was considered as a secondary QA

T18: Use quantization-aware training. Quantization-aware training is a technique used to train neural networks to
convert data types to lower-precision ones. The idea is to use fixed-point or integer representations instead of the more
commonly used higher precision floating-point representations. This improves the performance and energy efficiency
of the model in federated learn- ing [26, 50].

T19: Use checkpoints during training. Training is an energy- intensive stage of the ML model life cycle, which may
take long periods of time. Sometimes, a failure or a hardware error can ter- minate the training process before it is
completed. In those cases, the training process has to be started from the beginning and all progress is lost. The use of
checkpoints, however, can save progress in regular intervals and in case of a premature termination, the training process
can continue from the last checkpoint [48].
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T20: Design for memory constraints. Model training requires memory, and sometimes memory leaks and OOM (out of
memory) errors may occur during that process. If that happens, the knowl- edge gained during the prior training process
is lost. By considering memory availability constraints and addressing possible OOM ex- ceptions, the model training
pipeline can be designed to operate within the available memory limits. It reduces the likelihood of errors and prevents
unnecessary energy consumption [48].

4.5 Deployment
The deployment category contains tactics related to deploying an ML-enabled system such that it is more
environmentally sustainable. These tactics (T21-T27) are shown in Table 5.
T21: Consider federated learning. Federated learning is an ML approach that aims to train a shared ML model on
decentralized devices. Instead of sending raw data to a central server, federated learning trains the model directly on the
devices where the data is generated, such as mobile phones or edge devices. Only the trained

Table 5: Green Tactics Related to Model Deployment

Tactic Description Target QA Source
T21: Consider Train the model and Energy

federated store data in efficiency [26]
learning decentralized devices

T22 Use Divide computations Energy

computation between a client and a efficiency [35]
partitioning cloud server

T23: Apply Use an architecture m Energy

cloud fog which the models are efficiency [71]
network processed between end

architecture devices and cloud

T24: Use Use energy-efficient, Energy
energy-efficient  ML-sutable hardware efficiency [25]
hardware

T25: Use power Set energy consumption Energy

capping limits for hardware efficiency [29]
T26: Use Dynamically optimize the =~ Resource i
energy-aware scheduling of ML tasks utilization® [532]
scheduling

T27: Minimize Avoid unnecessary read Energy

referencing to and write data operations  efficiency [48]
data

The * means energy efficiency was considered a secondary QA

model or updated model parameters are sent to a central server [26]. Federated learning decreases the resources needed
for transferring large amounts of data to a central server, which results in improved energy efficiency.

T22: Use computation partitioning. Computation partition- ing is the process of dividing the computations of a CNN
between a mobile client and a cloud server. The goal is to optimize energy consumption and efficiency. The NeuPart
framework [35] is an example of a partitioning approach. NeuPart divides computational tasks between the mobile
device (client) and the remote server or data center (cloud) in real time based on energy consumption. By offioading
computationally intensive tasks to the cloud and exe- cuting lighter tasks locally, NeuPart resulted in significant energy
savings of up to 52% in cloud-based computations [35].

T23: Apply cloud fog network architecture. Edge devices are usually connected to distant cloud services. However,
bringing the cloud closer to edge devices could be more energy efficient. A cloud fog network (CFN) is one way to
achieve that [71]. CFN supports an archltecture where deep neural network models are processed in servers between
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end-devices and the cloud. For ex- ample, Yosuf et al. [71] present a CFN architecture that consists of four layers: IoT
end devices, Access Fog (AF), Metro Fog (MF) and Cloud Datacenter (CDC). This architecture led to a 68% reduction
in power consumption when compared to a traditional cloud data center architecture on average.

T24: Use energy-efficient hardware. The emissions of ML are related to used hardware. This is why using energy-
efficient hardware to run ML models can reduce their power consumption. Energy-efficient hardware can include low-
energy components. For example, the Tensor Processing Units (TPUs) developed by Google are seen as an energy-
efficient alternative to CPUs and GPUs [25]. T25: Use power capping. Power capping is a technique used to limit the
amount of power consumed by a device or system, such as a CPU, GPU, or server. It involves setting a maximum
power consumption threshold for a device, and dynamically adjusting the power usage to ensure that it stays below that
threshold. This is typically done to manage the power consumption and heat dissipa- tion of a device, and to prevent it
from exceeding the power budget of a data center or other power-limited environment. Restricting the use of GPU
resources can lead to reduced performance and longer execution times, but in certain configurations, it can also result in
a significant reduction in energy consumption (up to 33%) with a moderate impact on performance [29].

T26: Use energy-aware scheduling. Energy-aware scheduling refers to a strategy that optimizes the scheduling of ML
tasks. It dynamically schedules tasks or processes based on the current energy requirements and system conditions. The
objective of an energy-aware dynamic scheduling policy is to make efficient use of available computational resources
while still meeting energy budgets [52].

T27: Minimize referencing to data. ML models require read- ing and writing enormous amounts of data in the ML
workflow. Reading data means retrieving information from storage, while writing data means storing or updating the
information. These operations may increase unnecessary data movements and mem- ory usage, which influence the
energy consumption of computing. To avoid non-essential referencing of data, data read and write operations must be
designed carefully [48].

4.6 Management
The management category includes tactics for managing the ML- enabled system and ML model after their
deployment. Only three tactics (T28-T30) fall under this category and are shown in Table 6.

Table 6: Green Tactics Related to Management

Tactic Description Target QA Source
T28: Use Adapt the model bazed Energy [42]
informed on informed concept shift  efficiency

adaptation

T29: Retrain In case of concept shuft, Accuracy™® [42]
the modelif  retrain the existing ML

needed model instead of building

4 NewW one

T30: Monitor  Monitor computing Energy [10][30]
cotnputing power of an ML modelin  efficiency
power the long-term

The * means energy efficiency was considered a secondary QA
T29: Retrain the model if needed. Retraining a model refers to the process of updating or modifying an existing ML
model. In the long term, concept drift may affect the accuracy of existing ML models. Retraining the model, by for
example training it again with new data, is better than building it again from scratch in terms of sustainability [42].
T30: Monitor computing power. Estimating and calculating the energy footprint of an ML model can help to reduce its
compu- tational power consumption. Monitoring the energy consumption of an ML model over the long term helps to
identify those compo- nents where energy is being inefficiently utilized. This can serve as a starting point for making

improvements to reduce energy con- sumptlon There has been a lack of easy-to-use tools to do that, but recently
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researchers have provided frameworks on how to estimate or calculate the energy footprint of ML-enabled systems [10,
30].

4.7 Targeted Quality Attributes

The majority of the tactics (21 out of 30) unsurprisingly aim to improve energy efficiency as their primary QA. Energy
efficiency was mostly measured by the energy consumption savings achieved with the tactic. However, there were also
some tactics that aimed primarily at other QAs, with energy efficiency being improved as a side effect. The description
of these QAs and the number of tactics targeting them can be found in Table 7. One example was performance (3 out of
30), which was usually related to the time or throughput related to model training or inference. If the runtime or
computational intensity can be reduced, this sometimes also influences energy efficiency positively. Additionally, some
tactics had accuracy as their primary QA (3). While energy efficiency and accuracy are often regarded as a trade-off
[66], our collection contains several tactics that try to increase both simultaneously. Lastly, recoverability (2) and
resource utilization (1) appeared for a small number of tactics.

Overall, 17 tactics (T1-T6, T8, T10, T12-T15, T17, T22, T23, T25 and T26) were evaluated in experimental settings to
provide ev- idence for their impact on these QAs. Most of the papers also provided evaluations of possible trade-offs
with other QAs. These trade-offs include, for example, accuracy and latency. The other remaining tactics (13) were
more along the lines of experience-based suggestions to improve QAs and environmental sustainability, with- out
rigorous evaluations. While the provided argumentation was convincing, future work needs to provide empirical
evidence to quantify the impact.

4.8 Scope of Architectural Tactics

The majority of tactics in our collection (20 of 30) are associated with low-level phases of the ML development life
cycle, namely T28: Use informed adaptation. ML models may experience drift that affects their functionality. In these
cases, the models must be adapted to deal with the drift. Informed adaptation refers to a method of adapting the ML
model only when drift is detected. There- fore, the frequency of adaptation is smaller than in blind, periodic adaptation.
Informed adaptation reduces unnecessary adaptations, which consequently saves energy [42].

data collection and processing, algorithm design, model optimiza- tion, and model training. In essence, these tactics are
targeted at improving model quality instead of system quality. For example, tactics like Reduce the number of data
features (T3) or Decrease model complexity (T8) could also be applied without a complete software system, i.e., for the
training of a single ML model that is never integrated into a larger system. However, when these tactics are applied
systematically at scale and continuously, they have strong architectural implications and significance. For example,
although accuracy could be considered a model quality concern, the system actions taken in response to reduced
accuracy as a trade-off for energy efficiency are architectural in nature. Moreover, some tac- tics from the early life
cycle phases have a profound influence on architectural elements in the system, e.g., Consider reinforcement learning
for energy efficiency (T9). For the categories deployment and management, the architectural significance of the tactics
is more obvious, e.g., for Consider federated learning (T21), Apply cloud fog network architecture (T23), or Use
informed adaptation (T28). All in all, the collection of tactics provides practitioners with holistic, architecture-centric
means to improve the environmental sustainability of ML-enabled systems in all life cycle phases.
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Table 7: Target Quality Attributes of the 30 Green Tactics

QA Description #
Energy efficiency  The ahality to accomplish a task while 21
MINIMIZING ENergy consumption

Performance The efficiency with which a task 1s 3
achieved (e.g., speed, stability)

Accuracy The level of how accurately the 3
algorithim performs specified tasks.

Recoverability The ability to restore and resume 2
normal operations atter a tailure

Resource The ability to use and allocate 1
utilization resources efficiently

V. DISCUSSION
The collection of green architectural tactics obtained from our study provides guidance for architecting environmentally
sustainable ML- enabled systems, and, as such, realize the societal promise that is expected of ML: minimizing its
energy footprint. In the following, we report the main observations and reflections about our study.
Due to their diversity, tactic selection requires domain- specific expertise. As mentioned earlier, the tactics in Fig. 1
can- not be generalized to all use cases. For instance, some tactics are suitable for a specific algorithm type (e.g.,
Consider graph substitu- tion (T13) is only applicable to neural networks), while others are conditional to specific
requirements (e.g., Consider transfer learn- ing (T16) requires a pre-trained model). Therefore, our catalog of tactics
should not be interpreted as strict rules, but rather as rec- ommendations or available techniques for the architecture
design of energy-efficient ML-enabled systems. In perspective, we believe that it would be beneficial for ML
practitioners to have a catalog of tactics for specific use cases, such as using deep learning and its software architecture
implications.
Most tactics are model-related rather than focusing on the full architecture of ML-enabled systems. An important obser-
vation also discussed in the focus group is that most tactics found in our study focus on the ML model rather than the
architecture of ML-enabled systems, i.e., a specific component rather than substan- tial parts of the architecture. We
argue that this is because the field is still maturing, and reusable architecture knowledge about ML- enabled systems is
still in the making. Furthermore, a related open problem is being able to separate the energy efficiency of model that, in
many cases, energy consumption of ML models can be reduced without substantial reduction in accuracy [12, 54, 65,
70]. In general, given that energy consumption has become a major concern only recently and that ML-enabled systems
are extremely energy demanding, we argue that future research should investigate possible trade-offs between energy
efficiency and other QAs. Ana- lyzing interactions between multiple QAs could provide important insights into the
design of ML-enabled systems.

VI. CONCLUSIONS AND NEXT STEPS
This paper provides a catalog of 30 green architectural tactics for ML-enabled systems organized in 6 categories,
namely data-centric, algorithm design, model optimization, model training, deployment, and management. The tactics
represent available techniques for designing energy-efficient ML-enabled systems. We integrated the collection into the
Archive of Awesome and Dark Tactics.3 For transparency and reusability, we also provide a Zenodo repository.4
Despite the growing understanding of the environmental im- pacts of ML, there is still no consensus on how to best
achieve sustainability. Our study serves as a starting point for further re- search about green architectural tactics for
ML-enabled systems. Future research is necessary to validate and extend the results of this study, and to explore more

generalized tactics applicable to differ- ent ML algorlthms and ML-enabled system concerns. Furthermore, more
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research is required to evaluate the effectiveness of several green architectural tactics in practice. In line with this, we
plan to re-engineer existing open-source ML-enabled systems based on the tactics and to measure energy efficiency to
compare the original versus the modernized system. As an alternative, we may conduct a case study where practitioners
develop an ML-enabled system using the tactics catalog. Based on this, the usage of concrete tactics is analyzed,
experiences are documented, and the catalog is refined. Finally, with the energy crisis and the explosion of ML
applications in all sectors, energy efficiency is gaining traction as an impor- tant QA. Accordingly, it is important to
create tactics dedicated to raising awareness of the energy footprint of such systems.
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