

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

A Critical Review on Diabetes Mellitus Type 1 and Type 2 Management Approaches: From Lifestyle Modification to Current and Novel Targets and Therapeutic Agents

Apeksha D. Pawar, Shilpa B. Rohile, Prof. Shaikh. S. D.

Sahakar Maharshi kisanrao Varal Patil College of Pharmacy, Nighoj, Parner, Ahilyanagar

Abstract: Diabetes mellitus represents one of the most significant global health challenges of the 21st century, affecting over 537 million adults worldwide. The management of both type 1 diabetes (T1D) and type 2 diabetes (T2D) has evolved dramatically over the past decades, transitioning from rudimentary insulin therapy and dietary restrictions to sophisticated, personalized treatment regimens incorporating cutting-edge pharmacological agents and technological innovations. This comprehensive review critically examines the spectrum of therapeutic approaches for diabetes management, encompassing lifestyle modifications, conventional pharmacotherapy, and emerging novel therapeutic targets. We explore the pathophysiological distinctions between T1D and T2D that necessitate different management strategies, evaluate the efficacy and limitations of current treatment modalities, and discuss promising investigational therapies including immunomodulatory agents, beta-cell regeneration strategies, incretin-based therapies, SGLT inhibitors, and gene therapy approaches. Additionally, we address the integration of continuous glucose monitoring systems, insulin pump technology, and artificial pancreas systems in contemporary diabetes care. Understanding the evolving landscape of diabetes therapeutics is essential for optimizing patient outcomes and reducing the substantial morbidity and mortality associated with this chronic metabolic disorder.

Keywords: Type 1 diabetes, Type 2 diabetes, insulin therapy, GLP-1 receptor agonists, SGLT2 inhibitors, lifestyle modification, novel therapeutics, beta-cell preservation

I. INTRODUCTION

Diabetes mellitus encompasses a heterogeneous group of metabolic disorders characterized by chronic hyperglycemia resulting from defects in insulin secretion, insulin action, or both (1). The two primary forms, type 1 diabetes (T1D) and type 2 diabetes (T2D), differ fundamentally in their etiology, pathogenesis, and clinical presentation, necessitating distinct therapeutic approaches (2). T1D results from autoimmune destruction of pancreatic beta cells, leading to absolute insulin deficiency, while T2D develops through progressive insulin resistance coupled with relative insulin deficiency (3).

The global diabetes epidemic continues to escalate at an alarming rate, with prevalence projected to reach 783 million by 2045 (4). This pandemic imposes substantial economic burdens on healthcare systems worldwide, with direct medical costs and indirect costs from productivity losses amounting to hundreds of billions of dollars annually (5). Beyond economic considerations, diabetes significantly impacts quality of life and is associated with numerous complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy (6).

The primary objectives of diabetes management include achieving and maintaining glycemic control, preventing acute complications, reducing the risk of long-term complications, and preserving quality of life (7). Over the past century, diabetes therapy has undergone revolutionary transformations, from the discovery of insulin in 1921 to the development of sophisticated insulin analogs, novel non-insulin agents targeting diverse pathophysiological mechanisms, and technological innovations enabling closed-loop insulin delivery systems (8, 9).

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

This review provides a comprehensive examination of current evidence-based management strategies for both T1D and T2D, critically evaluating established therapeutic modalities while exploring emerging pharmacological targets and innovative treatment approaches that hold promise for improving patient outcomes in the future.

II. PATHOPHYSIOLOGY AND DIAGNOSTIC CONSIDERATIONS

2.1 Type 1 Diabetes Pathophysiology

T1D is characterized by T-cell mediated autoimmune destruction of pancreatic beta cells, resulting in progressive insulin deficiency (10). The disease typically manifests during childhood or adolescence, though adult-onset T1D represents a significant proportion of cases (11). Genetic susceptibility, particularly involving human leukocyte antigen (HLA) class II genes, combined with environmental triggers, initiates the autoimmune process (12). Islet autoantibodies, including glutamic acid decarboxylase (GAD), insulinoma-associated protein 2 (IA-2), insulin autoantibodies (IAA), and zinc transporter 8 (ZnT8) antibodies, serve as biomarkers of beta-cell autoimmunity (13). The natural history of T1D progresses through distinct stages: genetic predisposition (Stage 1), presymptomatic autoimmunity with dysglycemia (Stage 2), and symptomatic disease with clinical diagnosis (Stage 3) (14). Understanding this progression has opened avenues for intervention during presymptomatic phases to delay or prevent clinical onset.

2.2 Type 2 Diabetes Pathophysiology

T2D represents a complex metabolic disorder resulting from the interplay between insulin resistance in peripheral tissues (primarily muscle, liver, and adipose tissue) and progressive pancreatic beta-cell dysfunction (15). Multiple pathogenic mechanisms contribute to T2D development, collectively termed the "ominous octet," including decreased incretin effect, increased lipolysis, enhanced renal glucose reabsorption, and neurotransmitter dysfunction (16). Insulin resistance typically precedes overt diabetes by years, during which beta cells compensate through increased insulin secretion (17). Eventually, beta-cell function declines, unable to maintain adequate compensation, resulting in hyperglycemia (18). Genetic predisposition combined with environmental factors, particularly obesity and sedentary lifestyle, drive T2D development (19). Chronic inflammation and oxidative stress further perpetuate metabolic dysfunction (20).

2.3 Diagnostic Criteria and Glycemic Targets

Current diagnostic criteria for diabetes include fasting plasma glucose \geq 126 mg/dL, 2-hour plasma glucose \geq 200 mg/dL during oral glucose tolerance test, HbA1c \geq 6.5%, or random plasma glucose \geq 200 mg/dL with symptoms of hyperglycemia (21). Prediabetes, representing an intermediate state of glucose metabolism abnormality, is defined by impaired fasting glucose (100-125 mg/dL), impaired glucose tolerance (140-199 mg/dL), or HbA1c 5.7-6.4% (22). Glycemic targets should be individualized based on patient factors including disease duration, comorbidities, hypoglycemia risk, and life expectancy (23). Generally, HbA1c <7% is recommended for most adults, though more stringent (<6.5%) or relaxed (<8%) targets may be appropriate for specific populations (24).

III. LIFESTYLE MODIFICATION: THE CORNERSTONE OF MANAGEMENT

3.1 Medical Nutrition Therapy

Medical nutrition therapy (MNT) constitutes a fundamental component of diabetes management for both T1D and T2D (25). For T2D, MNT can reduce HbA1c by 0.3-2.0%, with effectiveness comparable to pharmacological interventions when implemented rigorously (26). Key nutritional strategies include carbohydrate counting, glycemic index consideration, portion control, and macronutrient distribution optimization (27).

The Mediterranean diet, characterized by high consumption of vegetables, fruits, whole grains, legumes, nuts, and olive oil, with moderate fish and poultry intake, demonstrates particular efficacy in improving glycemic control and reducing cardiovascular risk (28). Low-carbohydrate and very-low-carbohydrate diets have shown promising results for T2D management, though long-term sustainability and safety require further investigation (29).

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, November 2025

For T1D, carbohydrate counting enables precise insulin dosing, improving postprandial glucose control (30). The insulin-to-carbohydrate ratio, representing grams of carbohydrate covered by one unit of rapid-acting insulin, requires individualized determination through systematic monitoring (31).

3.2 Physical Activity and Exercise

Regular physical activity improves insulin sensitivity, facilitates weight management, reduces cardiovascular risk, and enhances psychological well-being (32). For T2D, exercise training can reduce HbA1c by 0.6-0.7% independent of weight loss (33). Current recommendations suggest at least 150 minutes of moderate-to-vigorous intensity aerobic activity weekly, distributed over at least three days, with no more than two consecutive days without activity (34).

Resistance training provides additional benefits beyond aerobic exercise alone, improving muscle mass, strength, and glycemic control (35). Combined aerobic and resistance training demonstrates superior efficacy compared to either modality alone (36).

For individuals with T1D, exercise presents unique challenges due to increased hypoglycemia risk during and following physical activity (37). Strategies to minimize exercise-associated hypoglycemia include pre-exercise carbohydrate supplementation, insulin dose reduction, and utilization of continuous glucose monitoring to guide real-time adjustments (38).

3.3 Weight Management and Bariatric Surgery

Obesity represents a primary driver of T2D development and progression, with weight loss demonstrating profound beneficial effects on glycemic control (39). Even modest weight loss (5-10% of body weight) improves insulin sensitivity and beta-cell function (40). The DiRECT trial demonstrated that intensive weight management achieving ≥15 kg weight loss resulted in diabetes remission in 86% of participants (41).

Bariatric surgery represents the most effective intervention for substantial, sustained weight loss in individuals with severe obesity (42). Procedures including Roux-en-Y gastric bypass, sleeve gastrectomy, and adjustable gastric banding not only facilitate weight loss but also improve glycemic control through mechanisms extending beyond caloric restriction, including altered gut hormone secretion and bile acid metabolism (43). Meta-analyses demonstrate diabetes remission rates of 60-80% following bariatric surgery, with improvements evident within days post-operatively (44).

Current guidelines recommend considering bariatric surgery for adults with T2D and BMI \geq 40 kg/m² (or \geq 37.5 kg/m² in Asian populations) regardless of glycemic control, or BMI 35-39.9 kg/m² (32.5-37.4 kg/m² in Asian populations) with inadequate glycemic control despite optimal medical therapy (45).

IV. PHARMACOLOGICAL MANAGEMENT OF TYPE 1 DIABETES

4.1 Insulin Therapy: Conventional and Novel Formulations

Insulin replacement remains the cornerstone of T1D management, with various formulations differing in pharmacokinetic profiles to mimic physiological insulin secretion (46). Basal-bolus regimens, utilizing long-acting basal insulin combined with rapid-acting prandial insulin, represent the standard approach (47).

Rapid-acting insulin analogs (insulin lispro, aspart, glulisine) demonstrate onset of action within 10-15 minutes, peak effect at 1-2 hours, and duration of 3-5 hours, more closely approximating physiological prandial insulin secretion compared to regular human insulin (48). Ultra-rapid-acting formulations, including faster-acting insulin aspart and ultra-rapid lispro, provide even more rapid absorption, potentially improving postprandial glucose control (49).

Long-acting basal insulin analogs (insulin glargine U100, insulin detemir, insulin glargine U300, insulin degludec) provide relatively peakless insulin coverage for 12-42 hours (50). Second-generation basal insulins (glargine U300, degludec) demonstrate reduced within-day and day-to-day pharmacodynamic variability and lower nocturnal hypoglycemia rates compared to first-generation analogs (51, 52).

Concentrated insulin formulations (U200, U300, U500) benefit individuals requiring high insulin doses, reducing injection volume and potentially improving adherence (53). Biosimilar insulins, demonstrating equivalent efficacy and safety to reference products, offer potential cost savings, enhancing accessibility (54).

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, November 2025

4.2 Insulin Delivery Systems

Multiple Daily Injections (MDI): Traditional insulin administration via insulin pens or syringes requires 4-5 daily injections, combining basal and bolus insulin (55). While effective when implemented properly, MDI requires significant patient engagement and is associated with variable absorption and dosing errors (56).

Continuous Subcutaneous Insulin Infusion (CSII): Insulin pump therapy provides continuous basal insulin delivery with user-activated boluses for meals and corrections (57). Pumps offer advantages including precise basal rate adjustments, temporary basal rates for exercise or illness, and reduced hypoglycemia compared to MDI (58). Meta-analyses demonstrate modest HbA1c improvements (0.2-0.3%) with CSII versus MDI in adults, with more substantial benefits in pediatric populations (59).

Automated Insulin Delivery (AID) Systems: Hybrid closed-loop systems, integrating continuous glucose monitoring with insulin pumps and control algorithms, represent the most significant technological advancement in T1D management (60). These systems automatically adjust basal insulin delivery based on real-time glucose values, substantially reducing hypoglycemia and improving time in range (61). Multiple commercial systems are now available, including Medtronic 670G/780G, Tandem Control-IQ, and Omnipod 5, each employing proprietary algorithms (62).

Clinical trials consistently demonstrate AID system superiority over conventional therapy, increasing time in range by 10-15% while reducing hypoglycemia burden (63). Fully closed-loop systems, eliminating the need for meal announcements, are under investigation and may further simplify diabetes management (64).

4.3 Adjunctive Pharmacotherapy for Type 1 Diabetes

While insulin remains essential for T1D, adjunctive agents targeting complementary pathophysiological mechanisms may provide additional glycemic benefits (65).

Pramlintide, a synthetic analog of amylin, is FDA-approved as adjunctive therapy for T1D (66). Administered at mealtimes, pramlintide slows gastric emptying, suppresses postprandial glucagon secretion, and enhances satiety (67). Clinical trials demonstrate modest HbA1c reductions (0.3-0.5%) and weight loss benefits, though gastrointestinal side effects and hypoglycemia risk limit widespread adoption (68).

SGLT inhibitors, primarily studied in T2D, have been investigated off-label for T1D due to insulin-independent glucose-lowering mechanisms (69). The DEPICT-1 and DEPICT-2 trials demonstrated that dapagliflozin as adjunct to insulin reduced HbA1c by 0.4% and body weight by 3%, though increased diabetic ketoacidosis (DKA) risk remains a significant concern (70). Sotagliflozin, a dual SGLT1/SGLT2 inhibitor, received regulatory approval in Europe and Japan for T1D but was denied FDA approval due to DKA concerns (71).

Metformin and **GLP-1 receptor agonists** have been studied in T1D, particularly for individuals with insulin resistance or overweight/obesity, though evidence supporting routine use remains limited (72, 73).

V. PHARMACOLOGICAL MANAGEMENT OF TYPE 2 DIABETES

5.1 Metformin: First-Line Therapy

Metformin, a biguanide, remains the preferred initial pharmacological agent for T2D unless contraindicated (74). Metformin primarily reduces hepatic glucose production while improving peripheral insulin sensitivity (75). Clinical efficacy includes HbA1c reduction of 1.0-1.5%, favorable effects on body weight (weight neutral or modest reduction), and cardiovascular safety established through long-term follow-up studies (76).

The United Kingdom Prospective Diabetes Study (UKPDS) demonstrated that metformin reduced macrovascular complications and all-cause mortality in overweight individuals with newly diagnosed T2D (77). Metformin's excellent safety profile, low cost, and potential benefits beyond glycemic control, including possible cancer risk reduction and anti-aging effects, support its position as first-line therapy (78).

Common side effects include gastrointestinal disturbances (diarrhea, nausea, abdominal discomfort), typically transient and mitigated by gradual dose titration and use of extended-release formulations (79). Vitamin B12 deficiency may develop with long-term use, warranting periodic monitoring (80). Metformin is contraindicated in severe renal

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, November 2025

impairment (eGFR <30 mL/min/1.73m²), though dose reduction is recommended when eGFR falls below 45 mL/min/1.73m² (81).

5.2 Sulfonylureas and Meglitinides

Sulfonylureas stimulate pancreatic beta-cell insulin secretion by closing ATP-sensitive potassium channels (82). Second-generation agents (glipizide, glyburide, glimepiride) demonstrate greater potency and reduced adverse effects compared to first-generation compounds (83). Sulfonylureas provide robust glucose-lowering efficacy (HbA1c reduction 1.0-1.5%) at low cost (84).

However, sulfonylureas carry significant limitations including hypoglycemia risk, weight gain (2-3 kg), and potential cardiovascular concerns with certain agents (85). Progressive beta-cell failure leads to secondary failure in many patients (86). Current guidelines recommend sulfonylureas as alternative second-line agents when newer medications are unavailable or unaffordable (87).

Meglitinides (repaglinide, nateglinide) are short-acting insulin secretagogues administered with meals, offering flexible dosing for irregular eating patterns (88). They demonstrate lower hypoglycemia risk compared to sulfonylureas but provide modest glucose-lowering efficacy and require multiple daily doses (89).

5.3 Thiazolidinediones

Thiazolidinediones (TZDs), including pioglitazone and rosiglitazone, are peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists that enhance insulin sensitivity in adipose tissue, muscle, and liver (90). TZDs reduce HbA1c by 0.5-1.4% with durable glycemic effects and low hypoglycemia risk when used as monotherapy (91).

The PROactive trial demonstrated cardiovascular benefit with pioglitazone in high-risk T2D patients (92). Additionally, TZDs preserve beta-cell function and may delay diabetes progression in prediabetes (93).

Adverse effects limit TZD use, including fluid retention and edema (potentially precipitating heart failure in susceptible individuals), weight gain (2-4 kg), increased fracture risk (particularly in women), and potential bladder cancer association with pioglitazone (94, 95). Rosiglitazone was restricted due to cardiovascular concerns, though meta-analyses yielded conflicting conclusions (96). Current guidelines position TZDs as alternative therapy when cost or access limit use of preferred agents (97).

5.4 DPP-4 Inhibitors

Dipeptidyl peptidase-4 (DPP-4) inhibitors (sitagliptin, saxagliptin, linagliptin, alogliptin) enhance endogenous incretin activity by preventing degradation of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) (98). These agents stimulate glucose-dependent insulin secretion and suppress inappropriate glucagon secretion (99).

DPP-4 inhibitors reduce HbA1c by 0.5-0.8% with excellent tolerability, weight neutrality, and minimal hypoglycemia risk (100). Oral administration and once-daily dosing enhance convenience. Cardiovascular outcome trials (SAVOR-TIMI 53, EXAMINE, TECOS) demonstrated cardiovascular safety without significant benefit or harm (101, 102, 103). Adverse effects are generally mild, though concerns regarding pancreatitis and heart failure hospitalization (particularly with saxagliptin) warrant consideration (104). DPP-4 inhibitors represent reasonable options for patients prioritizing oral therapy with low hypoglycemia risk, though they lack the cardiovascular and renal benefits of GLP-1 receptor agonists and SGLT2 inhibitors (105).

5.5 GLP-1 Receptor Agonists

GLP-1 receptor agonists (GLP-1 RAs) represent a major therapeutic advancement, mimicking the actions of endogenous GLP-1 (106). Available agents include short-acting formulations (exenatide twice daily, lixisenatide once daily) and long-acting formulations (exenatide once weekly, liraglutide once daily, dulaglutide once weekly, semaglutide once weekly, tirzepatide once weekly) (107).

Mechanism of Action: GLP-1 RAs stimulate glucose-dependent insulin secretion, suppress inappropriate glucagon secretion, slow gastric emptying, and enhance satiety through central nervous system effects (108). These pleiotropic

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

actions result in substantial glucose lowering (HbA1c reduction 0.8-1.9%, with tirzepatide achieving even greater reductions) and significant weight loss (3-8 kg on average, with tirzepatide achieving up to 12 kg) (109, 110).

Cardiovascular and Renal Benefits: Multiple cardiovascular outcome trials (LEADER, SUSTAIN-6, HARMONY Outcomes, REWIND, PIONEER-6) demonstrated that GLP-1 RAs reduce major adverse cardiovascular events (MACE) by 10-26% in patients with established cardiovascular disease or high cardiovascular risk (111, 112, 113, 114). Liraglutide and semaglutide also demonstrate renal protective effects, slowing albuminuria progression (114).

Tirzepatide, a dual GIP/GLP-1 receptor agonist, represents the newest addition to this class, demonstrating superior glycemic efficacy and weight loss compared to selective GLP-1 RAs (18). The SURPASS trial program showed HbA1c reductions up to 2.6% and weight loss exceeding 12 kg (11).

Adverse Effects: Gastrointestinal side effects (nausea, vomiting, diarrhea) are common, particularly during dose titration, though generally diminish over time (19). Rare but serious concerns include pancreatitis and potential thyroid C-cell tumor risk (based on rodent data, not confirmed in humans) (20).

Clinical Positioning: Current guidelines recommend GLP-1 RAs as preferred agents alongside metformin for patients with established atherosclerotic cardiovascular disease, heart failure, or chronic kidney disease, and as preferred second-line agents for patients prioritizing weight loss (12).

5.6 SGLT2 Inhibitors

Sodium-glucose cotransporter 2 (SGLT2) inhibitors (canagliflozin, dapagliflozin, empagliflozin, ertugliflozin) represent an innovative therapeutic class that reduces glucose reabsorption in the proximal renal tubule, promoting urinary glucose excretion through an insulin-independent mechanism (22).

Glycemic and Metabolic Effects: SGLT2 inhibitors reduce HbA1c by 0.5-1.0% with minimal hypoglycemia risk, promote weight loss (2-3 kg), and modestly reduce blood pressure (3-5 mmHg systolic) through osmotic diuresis and sodium excretion (23). These agents maintain efficacy across a broad spectrum of baseline glycemic control (24).

Cardiovascular Benefits: Landmark cardiovascular outcome trials (EMPA-REG OUTCOME, CANVAS, DECLARE-TIMI 58, VERTIS-CV) demonstrated remarkable cardiovascular and renal benefits (25, 26, 27, 28). SGLT2 inhibitors reduce MACE by 10-14%, cardiovascular death by 38%, and hospitalization for heart failure by 30-35% (29). Benefits extend beyond diabetes, with trials in non-diabetic populations with heart failure demonstrating similar heart failure hospitalization reductions (30).

Renal Protection: SGLT2 inhibitors slow chronic kidney disease progression and reduce albuminuria . The CREDENCE trial showed canagliflozin reduced the composite renal outcome (dialysis, transplantation, sustained eGFR decline) by 30% in patients with diabetic kidney disease (13). The DAPA-CKD trial extended these benefits to non-diabetic CKD patients (33).

Mechanisms of Cardiorenal Protection: Proposed mechanisms include reduced glomerular hyperfiltration, decreased intraglomerular pressure, natriuresis, improved myocardial energetics, reduced inflammation and oxidative stress, and favorable effects on adipokines and uric acid (34).

Adverse Effects: Genital mycotic infections occur in 10-15% of patients, particularly women, though typically mild and treatable (35). Rare but serious adverse events include euglycemic diabetic ketoacidosis (particularly with concurrent insulin dose reduction or carbohydrate restriction), volume depletion, acute kidney injury, lower limb amputation (primarily with canagliflozin), and Fournier's gangrene (36, 37).

5.7 Insulin Therapy for Type 2 Diabetes

Insulin therapy becomes necessary in T2D when oral agents and GLP-1 RAs fail to achieve glycemic targets, during acute illness, or in the presence of severe hyperglycemia (39). Various regimens can be employed, ranging from basal insulin addition to existing oral therapy to complex basal-bolus regimens (40).

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, November 2025

VI. NOVEL AND EMERGING THERAPEUTIC APPROACHES

6.1 Immunotherapy for Type 1 Diabetes

The autoimmune etiology of T1D has motivated extensive investigation of immunomodulatory strategies to preserve residual beta-cell function or prevent disease onset (47). Despite decades of research, success has been limited until recently.

Teplizumab, an anti-CD3 monoclonal antibody, received FDA approval in 2022 for delaying T1D onset in at-risk individuals with Stage 2 T1D (presymptomatic autoimmunity with dysglycemia) (14). The pivotal trial demonstrated that a single 14-day treatment course delayed progression to clinical T1D by a median of 2 years (1). This represents the first disease-modifying therapy for T1D and validates the staging classification system.

Other immunotherapies under investigation include:

Anti-CD20 antibodies (rituximab): Temporarily preserved C-peptide in recent-onset T1D but benefits were not sustained (50)

CTLA-4 Ig (abatacept): Showed modest C-peptide preservation for 2 years in recent-onset T1D (15)

Anti-thymocyte globulin (ATG): Demonstrated C-peptide preservation but with significant adverse effects (52)

Antigen-specific therapies: Including alum-formulated GAD65 and peptide-based vaccines, though results have been disappointing (13)

The challenge remains identifying combinations or sequential therapies that provide durable beta-cell protection with acceptable safety profiles.

6.2 Beta-Cell Replacement and Regeneration

Islet Transplantation: Allogeneic islet transplantation can restore insulin independence in selected patients with T1D and severe hypoglycemia (54). The Edmonton Protocol, utilizing glucocorticoid-free immunosuppression and multiple donor islet infusions, achieved insulin independence in 44% of recipients at one year (15). However, progressive graft failure typically necessitates resumption of insulin therapy within 5 years, and chronic immunosuppression carries significant risks (15).

Encapsulation technologies designed to protect transplanted islets from immune rejection while permitting glucose sensing and insulin secretion are under development (17). Macroencapsulation devices containing human islets have shown promise in early-phase clinical trials (58).

Stem Cell-Derived Beta Cells: Perhaps the most exciting frontier in T1D therapeutics involves differentiation of human pluripotent stem cells into functional beta cells (59). Several companies have demonstrated the ability to generate glucose-responsive insulin-secreting cells and have initiated clinical trials using encapsulation devices to protect cells from immune attack (16). This approach offers potentially unlimited cell supply and the possibility of off-the-shelf therapy.

Beta-Cell Regeneration: Strategies to stimulate endogenous beta-cell proliferation or transdifferentiate other pancreatic cells into insulin-producing cells represent alternative approaches (16). Harmine and related DYRK1A inhibitors stimulate human beta-cell replication in vitro, though clinical translation remains early (62). Betatrophin, initially thought to induce beta-cell proliferation, failed to demonstrate this effect in rigorous studies (63).

6.3 Dual and Triple Incretin Receptor Agonists

Building on GLP-1 RA success, next-generation agents targeting multiple incretin receptors have emerged (16).

GIP/GLP-1 Receptor Co-agonists: Tirzepatide, discussed previously, demonstrates that dual agonism provides superior efficacy compared to selective GLP-1 RAs (65). The mechanisms underlying enhanced efficacy remain incompletely understood but may involve complementary effects on insulin secretion, energy expenditure, and appetite regulation (16).

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, November 2025

VII. COMPLICATIONS PREVENTION AND MANAGEMENT

7.1 Glycemic Control and Complications Risk

Landmark trials including DCCT/EDIC for T1D and UKPDS for T2D unequivocally demonstrated that intensive glycemic control reduces microvascular complications (retinopathy, nephropathy, neuropathy). The concept of "metabolic memory" or "legacy effect" indicates that early intensive control provides long-term benefits, even if control subsequently deteriorates (79).

However, cardiovascular benefits of intensive glycemic control are less robust, with trials including ACCORD, ADVANCE, and VADT showing minimal or no cardiovascular benefit and potential harm with very intensive control in high-risk patients (82). This underscores the importance of individualized target setting and comprehensive cardiovascular risk factor management.

VIII. TECHNOLOGY IN DIABETES MANAGEMENT

8.1 Continuous Glucose Monitoring

Continuous glucose monitoring (CGM) systems provide real-time or intermittently scanned glucose data, enabling more informed treatment decisions and reducing hypoglycemia (19). Real-time CGM systems (Dexcom, Medtronic Guardian) provide continuous glucose readings with alerts for hypoglycemia and hyperglycemia (99). Flash glucose monitoring systems (FreeStyle Libre) require user-initiated scanning to obtain glucose values (20).

The DIAMOND trial demonstrated that CGM use in adults with T1D on MDI reduced HbA1c by 0.6% compared to self-monitoring of blood glucose (20). Time in range (70-180 mg/dL) has emerged as a complementary metric to HbA1c, providing insights into glycemic variability.

8.2 Insulin Delivery Technology

Advanced insulin pump features including predictive low glucose suspend, which automatically halts insulin delivery when hypoglycemia is predicted, reduce nocturnal hypoglycemia by up to 40% (112). Automated insulin delivery systems, discussed previously, represent the pinnacle of current technology, with ongoing development focused on fully closed-loop systems and dual-hormone (insulin plus glucagon) pumps (24).

IX. SPECIAL POPULATIONS AND SITUATIONS

9.1 Pregnancy and Gestational Diabetes

Pregnancy poses unique challenges in diabetes management, requiring strict glycemic control to minimize maternal and fetal complications (20). Pre-existing diabetes necessitates preconception counseling, medication adjustment (discontinuing potentially teratogenic agents), and frequent monitoring (11). Gestational diabetes mellitus (GDM), defined as glucose intolerance first recognized during pregnancy, affects 6-9% of pregnancies and increases risk for T2D development (27).

Management of GDM begins with lifestyle modification, with insulin or metformin added when targets are not achieved (210). Postpartum screening for persistent diabetes and diabetes prevention counseling are essential (11).

9.2 Pediatric Diabetes

Children and adolescents with diabetes face unique challenges including growth and development considerations, variable insulin sensitivity, psychosocial issues, and transition to adult care (21). Family involvement, age-appropriate education, and multidisciplinary team care optimize outcomes. Technology adoption, particularly CGM and insulin pumps, has been particularly transformative in pediatric populations (21).

X. CONCLUSION

The landscape of diabetes management has been transformed over the past two decades through revolutionary therapeutic advances and technological innovations. For T1D, automated insulin delivery systems and disease-modifying immunotherapies represent major breakthroughs, while for T2D, agents providing cardiorenal protection beyond glycemic control have fundamentally altered treatment paradigms.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

Despite these advances, significant challenges persist. Medication access disparities, adherence barriers, and the lack of curative therapies underscore the need for continued innovation. Emerging approaches including stem cell-derived beta cells, novel multi-receptor agonists, and precision medicine strategies hold promise for further improving outcomes.

Optimal diabetes management requires individualized, patient-centered approaches integrating lifestyle modification, evidence-based pharmacotherapy, technology utilization, and comprehensive cardiovascular risk factor management. As our understanding of diabetes pathophysiology deepens and therapeutic options expand, clinicians must remain current with evolving evidence to provide optimal care for individuals living with this chronic condition.

The ultimate goals—preventing diabetes onset, achieving remission in those with established disease, and curing T1D through beta-cell replacement or immune tolerance—remain aspirational but increasingly within reach as scientific progress accelerates.

REFERENCES

- [1]. American Diabetes Association. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes—2023. Diabetes Care. 2023;46(Suppl 1):S19-S40.
- [2]. Katsarou A, Gudbjörnsdottir S, Rawshani A, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers. 2017;3:17016.
- [3]. DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019.
- [4]. International Diabetes Federation. IDF Diabetes Atlas, 10th edition. Brussels, Belgium: International Diabetes Federation; 2021.
- [5]. American Diabetes Association. Economic costs of diabetes in the U.S. in 2022. Diabetes Care. 2024;47(1):26-43.
- [6]. Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes 2017. J Diabetes Res. 2018;2018;3086167.
- [7]. American Diabetes Association. Glycemic targets: Standards of Medical Care in Diabetes—2023. Diabetes Care. 2023;46(Suppl 1):S97-S110.
- [8]. Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic extracts in the treatment of diabetes mellitus. Can Med Assoc J. 1922;12(3):141-146.
- [9]. Bergenstal RM, Garg S, Weinzimer SA, et al. Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA. 2016;316(13):1407-1408.
- [10]. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69-82.
- [11]. Thomas NJ, Jones SE, Weedon MN, Shields BM, Oram RA, Hattersley AT. Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabetes Endocrinol. 2018;6(2):122-129.
- [12]. Pociot F, Lernmark Å. Genetic risk factors for type 1 diabetes. Lancet. 2016;387(10035):2331-2339.
- [13]. Ziegler AG, Rewers M, Simell O, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473-2479.
- [14]. Insel RA, Dunne JL, Atkinson MA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015;38(10):1964-1974.
- [15]. DeFronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773-795.
- [16]. Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of β-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006;29(5):1130-1139.
- [17]. Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA. Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J Clin Endocrinol Metab. 2005;90(1):493-500.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

- [18]. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068-1083.
- [19]. Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes. 2000;49(12):2201-2207.
- [20]. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98-
- [21]. American Diabetes Association. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes—2024. Diabetes Care. 2024;47(Suppl 1):S20-S42.
- [22]. Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379(9833):2279-2290.
- [23]. American Diabetes Association. Glycemic targets: Standards of Medical Care in Diabetes—2024. Diabetes Care. 2024;47(Suppl 1):S111-S125.
- [24]. Ismail-Beigi F, Moghissi E, Tiktin M, Hirsch IB, Inzucchi SE, Genuth S. Individualizing glycemic targets in type 2 diabetes mellitus: implications of recent clinical trials. Ann Intern Med. 2011;154(8):554-559.
- [25]. Franz MJ, MacLeod J, Evert A, et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: systematic review of evidence for medical nutrition therapy effectiveness and recommendations for integration into the nutrition care process. J Acad Nutr Diet. 2017;117(10):1659-1679.
- [26]. Pastors JG, Warshaw H, Daly A, Franz M, Kulkarni K. The evidence for the effectiveness of medical nutrition therapy in diabetes management. Diabetes Care. 2002;25(3):608-613.
- [27]. Evert AB, Dennison M, Gardner CD, et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care. 2019;42(5):731-754.
- [28]. Esposito K, Maiorino MI, Bellastella G, Chiodini P, Panagiotakos D, Giugliano D. A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ Open. 2015;5(8):e008222.
- [29]. Snorgaard O, Poulsen GM, Andersen HK, Astrup A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res Care. 2017;5(1):e000354.
- [30]. Bell KJ, Barclay AW, Petocz P, Colagiuri S, Brand-Miller JC. Efficacy of carbohydrate counting in type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2014;2(2):133-140.
- [31]. Scheiner G, Boyer BA. Characteristics of basal insulin requirements by age and gender in Type-1 diabetes patients using insulin pump therapy. Diabetes Res Clin Pract. 2005;69(1):14-21.
- [32]. Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065-2079.
- [33]. Umpierre D, Ribeiro PA, Kramer CK, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305(17):1790-1799.
- [34]. Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33(12):e147-e167.
- [35]. Church TS, Blair SN, Cocreham S, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2010;304(20):2253-2262.
- [36]. Schwingshackl L, Missbach B, Dias S, König J, Hoffmann G. Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetologia. 2014;57(9):1789-1797.
- [37]. Riddell MC, Gallen IW, Smart CE, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5(5):377-390.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

- [38]. Zaharieva DP, McGaugh S, Pooni R, et al. Improved open-loop glucose control with basal insulin reduction 90 minutes before aerobic exercise in patients with type 1 diabetes on continuous subcutaneous insulin infusion. Diabetes Care. 2019;42(5):824-831.
- [39]. Look AHEAD Research Group. Eight-year weight losses with an intensive lifestyle intervention: the Look AHEAD study. Obesity (Silver Spring). 2014;22(1):5-13.
- [40]. Wing RR, Lang W, Wadden TA, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34(7):1481-1486.
- [41]. Lean ME, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541-551.
- [42]. Mingrone G, Panunzi S, De Gaetano A, et al. Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2021;397(10271):293-304.
- [43]. Rubino F, Nathan DM, Eckel RH, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39(6):861-877.
- [44]. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248-256.
- [45]. American Diabetes Association. Obesity and weight management for the prevention and treatment of type 2 diabetes: Standards of Medical Care in Diabetes—2023. Diabetes Care. 2023;46(Suppl 1):S128-S139.
- [46]. Hirsch IB, Juneja R, Beals JM, Antalis CJ, Wright EE Jr. The evolution of insulin and how it informs therapy and treatment choices. Endocr Rev. 2020;41(5):733-755.
- [47]. Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977-986.
- [48]. Plank J, Bodenlenz M, Sinner F, et al. A double-blind, randomized, dose-response study investigating the pharmacodynamic and pharmacokinetic properties of the long-acting insulin analog detemir. Diabetes Care. 2005;28(5):1107-1112.
- [49]. Heise T, Pieber TR, Danne T, Erichsen L, Haahr H. A pooled analysis of clinical pharmacology trials investigating the pharmacokinetic and pharmacodynamic characteristics of fast-acting insulin aspart in adults with type 1 diabetes. Clin Pharmacokinet. 2017;56(5):551-559.
- [50]. Heise T, Hermanski L, Nosek L, Feldman A, Rasmussen S, Haahr H. Insulin degludec: four times lower pharmacodynamic variability than insulin glargine under steady-state conditions in type 1 diabetes. Diabetes Obes Metab. 2012;14(9):859-864.
- [51]. Marso SP, McGuire DK, Zinman B, et al. Efficacy and safety of degludec versus glargine in type 2 diabetes. N Engl J Med. 2017;377(8):723-732.
- [52]. Ritzel R, Roussel R, Bolli GB, et al. Patient-level meta-analysis of the EDITION 1, 2 and 3 studies: glycaemic control and hypoglycaemia with new insulin glargine 300 U/ml versus glargine 100 U/ml in people with type 2 diabetes. Diabetes Obes Metab. 2015;17(9):859-867.
- [53]. Hood RC, Arakaki RF, Wysham C, Li YG, Settles JA, Jackson JA. Two treatment approaches for human regular U-500 insulin in patients with type 2 diabetes not achieving adequate glycemic control on high-dose U-100 insulin therapy with or without oral agents: a randomized, titration-to-target clinical trial. Endocr Pract. 2015;21(7):782-793.
- [54]. Thalange N, Bereket A, Larsen J, Hiort LC, Peterkova V. Insulin degludec in combination with bolus insulin aspart is safe and effective in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2015;16(3):164-176.
- [55]. DeWitt DE, Hirsch IB. Outpatient insulin therapy in type 1 and type 2 diabetes mellitus: scientific review. JAMA. 2003;289(17):2254-2264.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

- [56]. Peyrot M, Barnett AH, Meneghini LF, Schumm-Draeger PM. Insulin adherence behaviours and barriers in the multinational Global Attitudes of Patients and Physicians in Insulin Therapy study. Diabet Med. 2012;29(5):682-689.
- [57]. Pickup JC, Sutton AJ. Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet Med. 2008;25(7):765-774.
- [58]. Karges B, Schwandt A, Heidtmann B, et al. Association of insulin pump therapy vs insulin injection therapy with severe hypoglycemia, ketoacidosis, and glycemic control among children, adolescents, and young adults with type 1 diabetes. JAMA. 2017;318(14):1358-1366.
- [59]. Misso ML, Egberts KJ, Page M, O'Connor D, Shaw J. Continuous subcutaneous insulin infusion (CSII) versus multiple insulin injections for type 1 diabetes mellitus. Cochrane Database Syst Rev. 2010;(1):CD005103.
- [60]. Tauschmann M, Hovorka R. Technology in the management of type 1 diabetes mellitus current status and future prospects. Nat Rev Endocrinol. 2018;14(8):464-475.
- [61]. Brown SA, Kovatchev BP, Raghinaru D, et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N Engl J Med. 2019;381(18):1707-1717.
- [62]. Breton MD, Kanapka LG, Beck RW, et al. A randomized trial of closed-loop control in children with type 1 diabetes. N Engl J Med. 2020;383(9):836-845.
- [63]. Boughton CK, Hovorka R. Is an artificial pancreas (closed-loop system) for type 1 diabetes effective? Diabet Med. 2019;36(3):279-286.
- [64]. Thabit H, Tauschmann M, Allen JM, et al. Home use of an artificial beta cell in type 1 diabetes. N Engl J Med. 2015;373(22):2129-2140.
- [65]. Danne T, Garg S, Peters AL, et al. International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors. Diabetes Care. 2019;42(6):1147-1154.
- [66]. Ryan GJ, Jobe LJ, Martin R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin Ther. 2005;27(10):1500-1512.
- [67]. Edelman S, Garg S, Frias J, et al. A double-blind, placebo-controlled trial assessing pramlintide treatment in the setting of intensive insulin therapy in type 1 diabetes. Diabetes Care. 2006;29(10):2189-2195.
- [68]. Ratner RE, Dickey R, Fineman M, et al. Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in Type 1 diabetes mellitus: a 1-year, randomized controlled trial. Diabet Med. 2004;21(11):1204-1212.
- [69]. Dandona P, Mathieu C, Phillip M, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(11):864-876.
- [70]. Mathieu C, Dandona P, Gillard P, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (the DEPICT-2 study): 24-week results from a randomized controlled trial. Diabetes Care. 2018;41(9):1938-1946.
- [71]. Danne T, Cariou B, Banks P, et al. HbA1c and hypoglycemia reductions at 24 and 52 weeks with sotagliflozin in combination with insulin in adults with type 1 diabetes: the European inTandem2 study. Diabetes Care. 2018;41(9):1981-1990.
- [72]. Petrie JR, Chaturvedi N, Ford I, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):597-609.
- [73]. Frandsen CS, Dejgaard TF, Holst JJ, Andersen HU, Thorsteinsson B, Madsbad S. Twelve-week treatment with liraglutide as add-on to insulin in normal-weight patients with poorly controlled type 1 diabetes: a randomized, placebo-controlled, double-blind parallel study. Diabetes Care. 2015;38(12):2250-2257.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

- [74]. American Diabetes Association. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes—2024. Diabetes Care. 2024;47(Suppl 1):S158-S178.
- [75]. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577-
- [76]. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854-
- [77]. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577-1589.
- [78]. Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol. 2019;15(10):569-589.
- [79]. McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. 2016;59(3):426-435.
- [80]. de Jager J, Kooy A, Lehert P, et al. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. BMJ. 2010;340:c2181.
- [81]. Lipska KJ, Bailey CJ, Inzucchi SE. Use of metformin in the setting of mild-to-moderate renal insufficiency. Diabetes Care. 2011;34(6):1431-1437.
- [82]. Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes. 2002;51 Suppl 3:S368-376.
- [83]. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355(23):2427-2443.
- [84]. Bennett WL, Maruthur NM, Singh S, et al. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med. 2011;154(9):602-613.
- [85]. Schramm TK, Gislason GH, Vaag A, et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011;32(15):1900-1908.
- [86]. Matthews DR, Cull CA, Stratton IM, Holman RR, Turner RC. UKPDS 26: Sulphonylurea failure in noninsulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet Med. 1998;15(4):297-303.
- [87]. Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;45(11):2753-2786.
- [88]. Rendell M. The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs. 2004;64(12):1339-1358.
- [89]. Horvath K, Jeitler K, Berghold A, et al. Long-acting insulin analogues versus NPH insulin (human isophane insulin) for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2007;(2):CD005613.
- Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995;270(22):12953-12956.
- [91]. DeFronzo RA, Tripathy D, Schwenke DC, et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364(12):1104-1115.
- [92]. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279-1289.
- [93]. Kahn SE, Zinman B, Lachin JM, et al. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care. 2008;31(5):845-851.
- [94]. Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int. 2008;19(2):129-137.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

- [95]. Lewis JD, Ferrara A, Peng T, et al. Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study. Diabetes Care. 2011;34(4):916-922.
- [96]. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457-2471.
- [97]. Vaccaro O, Masulli M, Nicolucci A, et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol. 2017;5(11):887-897.
- [98]. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696-1705.
- [99]. Holst JJ, Vilsbøll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol. 2009;297(1-2):127-136.
- [100]. Aschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C, Williams-Herman DE. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 2006;29(12):2632-2637.
- [101]. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317-1326.
- [102]. White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327-1335.
- [103]. Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(3):232-242.
- [104]. Januzzi JL Jr, Butler J, Jarolim P, et al. Effects of canagliflozin on cardiovascular biomarkers in older adults with type 2 diabetes. J Am Coll Cardiol. 2017;70(6):704-712.
- [105]. Rosenstock J, Perkovic V, Johansen OE, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA. 2019;321(1):69-79.
- [106]. Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018;27(4):740-756.
- [107]. Nauck MA, Meier JJ. Incretin hormones: their role in health and disease. Diabetes Obes Metab. 2018;20 Suppl 1:5-21.
- [108]. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131-2157.
- [109]. Pratley RE, Aroda VR, Lingvay I, et al. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018;6(4):275-286.
- [110]. Rosenstock J, Wysham C, Frías JP, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet. 2021;398(10295):143-155.
- [111]. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311-322.
- [112]. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834-1844.
- [113]. Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebocontrolled trial. Lancet. 2018;392(10157):1519-1529.

DOI: 10.48175/IJARSCT-29628

[114]. Gerstein HC, Colhoun HM, Dagenais

