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Abstract: Modern commercial and institutional buildings are major energy consumers, with space 

heating, ventilation, and lighting alone accounting for roughly half of all energy use [1]. This paper 

explores how richly sensed indoor environmental data and occupant information can be used to 

dynamically control HVAC, lighting, fans, and plug-loads to significantly reduce energy consumption. 

We review methods including occupancy sensing, machine-learning occupancy prediction, demand-

controlled ventilation, adaptive thermostat setbacks, and smart appliance control. For instance, 

occupancy-triggered lighting controls can cut lighting use by 10–90% [2], while integrated ceiling fans 

and raised thermostat setpoints can reduce cooling energy by ~39% [3]. Demand-based plug-load 

scheduling has achieved up to 86% savings on selected devices [4]. In a hypothetical open-plan office 

case study, applying these strategies simultaneously can yield total energy savings on the order of tens of 

percent (e.g. ~12% overall energy reduction observed in a field trial [5]) while maintaining occupant 

comfort. We conclude that multi-domain smart controls informed by sensor data offer a promising path 

to deep, evidence-based energy savings in real buildings. 
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I. INTRODUCTION 

Buildings consume a large share of energy: in 2018 U.S. commercial buildings spent about 32% of their energy on 

heating, with ventilation and lighting each around 10% [1]. As a result, even moderate efficiency improvements in 

HVAC and lighting translate to large absolute savings. Recent studies confirm that occupant-centric controls – systems 

that use real-time data on occupancy and environment – can substantially cut energy use. For example, Song et al. 

showed that an occupancy-based control system in an office lab cut total room energy by nearly 12%, with air 

conditioning run-time down 26% and lighting run-time down 13% [5]. Lighting alone, which is roughly 20% of 

building electricity use, can often be cut by 10–90% simply by turning off or dimming lights when spaces are 

unoccupied [2]. In high-efficiency buildings where HVAC and lighting are already efficient, plug loads (computers, 

printers, vending machines, etc.) can actually become the largest end-use – often exceeding 50% of total load [6]. This 

review therefore considers all major energy domains: lighting, cooling/heating, ventilation, fans, and plug loads. 

We focus on practical, real-world strategies grounded in existing research. Our goal is to outline how sensor-driven 

analytics and control algorithms can adapt building systems to occupancy and environmental conditions. This includes: 

(a) Data and Sensing: methods for detecting occupant presence/count and measuring indoor conditions (CO₂, 

temperature, light, etc.); (b) Control Strategies: algorithms to adjust thermostats, fans, lights and appliances in response; 

and (c) Case Study Analysis: illustrating potential savings using representative building scenarios. We do not disclose 

proprietary details of any specific product or business model; rather, we synthesize published findings to show what is 

technically and practically feasible for energy-saving building control. 
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System Overview: Sensors and Data Analytics 

A modern smart-building control strategy relies on two key data streams: environmental/indoor sensors and 

occupancy/behaviour information. 

Indoor environment sensors measure temperature, humidity, light level, and CO₂ concentration. Temperature and 

humidity are used to gauge comfort and to drive HVAC control. Light sensors (photocells) can detect available daylight 

to dim or turn off electric lighting. Crucially, CO₂ sensors enable demand-controlled ventilation (DCV) – by sensing 

carbon-dioxide levels (a proxy for number of occupants), air handling units can reduce ventilation (and thus 

heating/cooling loads) when rooms are lightly occupied. Studies have shown DCV can save roughly 18% of HVAC 

energy on average (across all climates) relative to a system that only used simple on/off occupancy triggers for lighting 

[7]. In other words, using CO₂ readings to modulate outdoor airflow can cut fan and conditioning energy significantly. 

Occupancy detectors and behaviour analytics. Occupancy presence can be detected by passive infrared (PIR) motion 

sensors, door contacts, or camera/depth sensors. In many systems, simple motion sensors already cause lights or HVAC 

to shut off when a room empties. For example, experimental “smart thermostats” have used motion and door sensors to 

turn off heating/cooling whenever occupants leave home [8]. More sophisticated analytics use environmental cues (CO₂ 

peaks, sound levels, WIFI) to count occupants rather than just detect presence. These counts can be fed into machine-

learning models to predict occupancy patterns. For instance, a recent study used AI algorithms (KNN, SVM, etc.) on 

indoor data (temperature, humidity, light, CO₂) to infer whether rooms are occupied [9]. The result is real-time 

knowledge of occupancy that can feed control decisions: e.g. if the model predicts an empty room, the HVAC setpoint 

is allowed to drift wider, and lights are turned off. 

Together, these data allow behaviour analytics: understanding typical schedules and manual usage. Historical patterns 

(e.g. known office hours, meeting schedules, holiday dates) can be learned so the system pre-adjusts conditions in 

anticipation. Predictive control algorithms can use weather forecasts too: by anticipating an afternoon heatwave from 

forecast data, the system might pre-cool or later adjust operations to balance load (as described below). 

 

II. CONTROL STRATEGIES FOR ENERGY SAVING 

Using the sensed data, the building control system implements several complementary strategies: 

Occupancy-driven lighting control. When sensors detect no people (or count below a threshold), lighting circuits are 

dimmed or turned off. Because lighting use is easily modulated (instant on/off) and people often forget to switch off 

lights, this yields large savings. Federal guidelines note that occupancy-based lighting controls can cut lighting energy 

by 10–90% depending on room use [2]. For example, a university campus installation of occupancy sensors in 200 

rooms saved on the order of 40–45% in those spaces [2]. Key parameters include off-delay (how long after a room 

empties to turn off) and ensuring adequate sensitivity; but even with conservative settings, savings of tens of percent are 

typical. 

Adaptive thermostat control (setback/set forward). The climate control setpoints are adjusted higher (in cooling) or 

lower (in heating) when spaces are unoccupied. In practice, most buildings have setback schedules (lower temps at 

night/weekends) but these are often fixed and not responsive to actual use. Smart controls can enlarge the acceptable 

temperature range automatically when occupancy is low. For instance, Zhang et al. describe an algorithm that, when a 

zone is unoccupied, widens the comfort band beyond ±1°C around the normal setpoint, giving the HVAC more 

flexibility to save energy [10]. Conversely, when occupancy returns, it tightens back to the occupant’s preferred range 

(±1°C) to restore comfort. Even a passive change such as raising the cooling setpoint by 1°F (≈0.6°C) yields substantial 

savings – roughly 6% per degree [11]. Therefore, using true occupancy information to enforce setbacks (rather than 

assume an empty building always matches schedule) typically yields a few to 10% HVAC savings alone. 

Fan-first and multi-stage cooling. In warm weather, circulating fans can often keep people comfortable at higher 

temperatures, thereby reducing chiller (AC) load. Some systems coordinate ceiling fans with thermostats: they raise the 

thermostat setpoint by a few degrees and engage fans as a “first stage” of cooling. A field study in California installed 

smart ceiling fans (each as energy-efficient as an LED bulb) along with communicating thermostats. By raising cooling 

setpoints and running fans, they measured a 39% reduction in AC compressor energy over the baseline cooling season 
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[3]. (Energy savings varied by site, but most saw lower AC use.) Occupancy sensors on the fans also ensured they run 

only when rooms are occupied, and automatically shut them off on vacancy. 

Demand-Controlled Ventilation (DCV). Normally, ventilation systems pump in outdoor air at a fixed rate whenever 

spaces are scheduled for use. In many cases this over-ventilates lightly used spaces, wasting fan and conditioning 

energy. By contrast, DCV uses CO₂ or other air-quality sensors to modulate airflow to actual occupancy. For example, 

DOE studies show that DCV can save about 17.8% of HVAC energy on average compared to a system that simply used 

occupancy sensors for lighting [7]. In practice, this means if a meeting room or office is empty or lightly filled, the 

ventilation dampers partly close, reducing the need for heating/cooling that air. 

Smart plug-load controls. With many small devices left on standby, plug loads can be wasteful. Recent pilots have used 

networked “smart outlets” to switch off power to idle equipment. In one university deployment, over 600 smart plugs 

on devices (printers, monitors, TVs, hot water dispensers, etc.) were managed with schedules or signals. Even simple 

fixed schedules (e.g. off at night) produced ~38–66% energy savings on those loads [4]. More advanced triggers gave 

even more: a print server signal cut printer power when not in use, yielding 86% savings [4]. Water coolers with 

heating elements were scheduled to run only near meal times (or based on occupancy), saving ~32% [4]. Integrating 

plug load control with the building management system enables additional flexibility – for example, reducing non-

critical loads automatically during peak events. 

Predictive control and weather forecasting. Going beyond reactive measures, model-predictive control (MPC) can use 

forecast data (weather and occupant schedule) to plan ahead. In essence, MPC uses a building model to simulate future 

conditions and optimizes control inputs over a horizon. By incorporating local weather predictions (temperature, 

humidity, even solar gain and wind) the controller can pre-cool or pre-heat in anticipation of a hot day, or reduce 

airflow before an uncomfortably cold day, all to minimize energy while maintaining comfort. Industry sources note that 

MPC is “the only control methodology that can systematically incorporate future weather forecasts” [12][13]. In 

practice, advanced building control systems using MPC have been proven to notably reduce energy use and emissions 

while improving comfort [12][13]. For example, by forecasting a heat spike and adjusting chiller staging or fan speeds 

ahead of time, the system avoids inefficient operation. 

Each of these strategies trades off energy use against occupant comfort. Modern systems use thermostats with fine 

resolution and feedback loops to prevent discomfort. Field tests have shown that user satisfaction can even improve 

under occupant-centric control: Song et al. reported better thermal comfort with only minor stress impacts, despite 

reducing overall energy by ~12%[5]. This indicates that, if carefully designed, smart controls can save energy without 

sacrificing comfort. 

 

III. CASE STUDY: SIMULATED OFFICE/ CLASSROOM SCENARIO 

To illustrate the combined impact of these strategies, consider a representative real-world case. Imagine an open-plan 

office or classroom of ~1000 m², occupied weekdays 8 AM–6 PM, with typical lighting, HVAC, and plug loads. In a 

baseline (no smart control) scenario, lights might be on during all occupied hours, HVAC runs on fixed schedules, and 

office devices left powered on. We compare this to a “smart” scenario where our proposed controls are active: 

Lighting: Occupancy sensors ensure lights are off whenever a zone empties (e.g. at lunch breaks or meeting end). 

Suppose this cuts total lighting hours by half; that alone would halve lighting energy. Indeed, prior case studies indicate 

40–50% lighting reduction is common [2]. 

HVAC thermostat: The cooling setpoint is raised by 1–2°C when the office is unoccupied (nights, weekends) using 

sensor knowledge [10]. Even during occupied hours, a conservative gain-scheduling or fuzzy logic prevents overshoots. 

For example, raising the cooling setpoint from 24°C to 25°C yields about 6% energy savings [11]. If this is done room-

by-room based on actual vacancy, we can multiply the effect. Over a week, we might see a ~5–10% cut in HVAC 

energy just from adaptive setpoints. 

Fans: Ceiling fans run whenever spaces are occupied and temperature is above a comfort threshold. This allows 

occupants to remain comfortable at higher thermostat settings (e.g. 25–26°C instead of 24°C). Empirical data shows 

that using fans as a first cooling stage achieved a 39% compressor energy saving in summer [3]. In our case, we 
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conservatively estimate ~20% cooling savings from fans, since not all days are hot and not all occupants feel the same 

comfort benefit. 

Ventilation (DCV): Demand-controlled ventilation reduces air changes when occupancy is low. For example, if a 

meeting room is normally ventilated for 10 people but only 4 are present, DCV lowers fan speeds, saving 18% of 

HVAC energy on average [7]. In a multi-room office, across all HVAC units this could translate to a few percent of 

whole-building energy saved annually. 

Plug loads: The smart plugs turn off peripheral equipment during off-hours. If monitors and printers are idle 50% of 

time, and our strategy schedules them off accordingly, we might cut plug load energy by 40–60%. In the UCSD field 

trial, static off-schedules delivered 38–66% savings [4]. Let’s assume a 50% saving on plug loads in our scenario. 

Summing these effects (and using reference studies for guidance), the smart control case might see total electricity 

reduction on the order of 15–30% compared to the baseline. For perspective, in the Song et al. office experiment, an 

occupant-driven control system achieved an 11.9% overall energy savings [5] while improving comfort. Our illustrative 

scenario, which adds lighting and plug-load controls, suggests a comparable or greater saving. In any event, the above 

numbers are indicative: actual savings depend on building characteristics and occupant patterns. The key point is that 

multiple small improvements compound. 

 

IV. RESULTS FROM LITERATURE AND SIMULATIONS 

The above case study relies on reported performance figures. We summarize evidence-backed savings: 

Lighting: Occupancy sensors can save roughly 10–90% of lighting energy [2]. Many real implementations achieve 

~40–60% savings once installed. This is straightforward and almost always cost-effective. 

HVAC (cooling/heating): Adaptive setback and occupancy-based cooling has been shown to cut HVAC energy by 

roughly 5–15%. For example, simply raising cooling setpoints by 1°F/°C yields ~6% savings [11]. Occupant-centric 

controls in offices have yielded ~11.9% total reduction [5]. Demand-controlled ventilation adds another ~17.8% HVAC 

saving on average [7] relative to basic controls. 

Fans: Smart fans combined with higher setpoints significantly amplify cooling savings. In trials, fans-first strategies 

delivered up to 39% AC savings [3]. Even if half as effective in a given building, that is still notable. 

Plug Loads: Intelligent plug control studies report 38–86% savings on targeted devices [4]. In aggregate, this can 

reduce total plug energy by 20–40% (since not all loads can be turned off). 

Behaviour/Predictive: Using ML to predict occupancy enables even quicker reactions (no manual delay), and 

scheduling based on forecasts reduces waste. While harder to quantify in isolation, the literature confirms that data-

driven predictive control systematically outperforms static schedules [12][13]. 

In sum, the cumulative effect in a real building is substantial. One can loosely approximate that an office applying all 

these strategies might save on the order of 20–30% of its energy bill, depending on the baseline. These savings also 

come with side benefits: reduced peak load (helping demand response) and potentially improved air quality (since 

ventilation is more closely matched to occupancy). 

 

V. DISCUSSION 

Smart Energy Optimization:  

Combining multiple controls requires careful design. False negatives (sensors missing a lone occupant) can annoy users 

if lights or AC shut off too aggressively. Thus, most systems incorporate short time delays or wearable overrides to 

minimize discomfort. Privacy is another concern: while motion detectors are non-intrusive, camera-based people 

counting may raise issues. Many deployments therefore use non-visual sensors (IR, depth, or CO₂) to respect privacy. 

Cost and payback are important for adoption. Fortunately, many components are now quite affordable: wireless PIR 

sensors cost only a few dollars each, and smart thermostats or plugs are mass-produced. A large-scale study found 

typical payback periods of 1–4 years on lighting sensors [2]. Plug load savings (e.g. 86% on printers [4]) can pay back 

device costs in just a few months. Fan and thermostat upgrades depend on existing equipment, but ceiling fans 

themselves consume very little energy and can actually cool a space very efficiently as part of the strategy [14]. We do 
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not detail business models here, but note that even publicly funded projects report real cost savings: one campus survey 

saved ~$14k/yr with sensor-based controls [15]. 

Finally, occupant comfort must remain paramount. Occupant-centric design means people get to override or adjust 

settings easily, and user feedback is often integrated. Interestingly, studies report that users often prefer the new 

regimes: in Song’s office trial the workers reported better thermal comfort after installing the system [5]. This is likely 

because the system can tailor conditions more flexibly (for example, slightly warmer cooling setpoint may still be very 

comfortable if a fan is on). The “sweet spot” is to achieve energy savings with no perceived loss of comfort. The 

evidence suggests this is achievable if done with sensible defaults. 

 

Integrating Renewables with Smart Energy Automation: 

Smart automation (sensors, IoT, AI controls) and on-site renewables (solar, wind) are highly complementary. Large 

campuses, office complexes or industrial sites can install PV panels or turbines and use AI to coordinate loads and 

generation. This approach boosts sustainability and efficiency: by using clean on-site power when its available, 

buildings draw less from the grid. As one review notes, switching from fossil fuels to renewables is essential for carbon 

neutrality, but integration technologies in building districts remain immature [1]. AI and machine learning can provide 

the missing “intelligence” to marry intermittent renewables with demand-side controls. For example, AI-driven 

forecasting and optimization have been shown to significantly increase energy yield and system efficiency – one study 

reports a 41.4% jump in annual solar yield (and 60% longer battery life) using AI-enhanced tracking and storage 

algorithms [2]. Similarly, large-scale case studies find that AI models (e.g. random forests, LSTM) can predict solar and 

wind output with >99% accuracy, enabling systems that “optimize energy production” and “improve the management 

of renewable sources” [3]. In short, combining smart control with renewables can reduce carbon emissions and cut 

energy costs while maintaining comfort, aligning with broader sustainability goals [3][1]. 

 

AI Techniques for Combined Optimization 

Modern AI methods allow building managers to integrate renewable output into their energy plans. For instance, a 

recent “Smart Green Energy Management System” for a campus used machine learning and reinforcement learning to 

jointly forecast loads and solar generation and then optimally control building systems [4][5]. Key AI-driven strategies 

include: 

Forecasting demand and generation: Use ML models (XG Boost, LSTM, SVR, etc.) to predict short-term electricity 

demand and solar/wind output from weather data and historical usage [4][3]. Accurate forecasts let the controller pre-

adjust schedules (e.g. pre-cool buildings before a hot, sunny period). 

Dynamic optimization and control: Apply reinforcement learning or model predictive control to adjust HVAC, lighting, 

EV charging, and other flexible loads in real time. The system can learn to align high-load activities with renewable 

peaks and shift deferrable tasks to periods of high solar/wind availability [4][5]. 

Energy storage management: Coordinate batteries or thermal storage with renewables. AI can decide when to charge 

storage from excess PV (or discharging during peak demand), mitigating renewable intermittency and keeping comfort 

stable. 

Demand response: Integrate time-of-use pricing or grid signals. The AI can curtail or defer consumption when grid 

prices peak, especially if on-site renewables are low, and vice versa [3][5]. 

Multi-objective scheduling: Optimize for cost, comfort, and emissions simultaneously. For example, some approaches 

add neural-network or evolutionary algorithms to trade off reducing grid imports versus maintaining comfort [4][3]. 

These AI methods build on today’s smart-building platforms. By adding the renewable forecast and storage models as 

inputs, the control system essentially treats the building + renewables as a local microgrid. In fact, industry trends call 

for “AI-powered microgrids” that seamlessly blend on-site renewable generation with flexible loads for resilience and 

savings [3][1]. 
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Application in Campuses, Offices and Industry 

Large facilities are ideal for this integration. University campuses and corporate complexes often have sizeable rooftops 

or land for PV and even wind turbines. A study of three campus buildings showed that an AI-driven energy 

management system could forecast and optimize both consumption and solar output, cutting grid reliance and 

improving self-sufficiency [4][5]. The authors report that their approach “enhances energy efficiency, minimizes grid 

dependency, and ensures a sustainable energy supply” for campus operations [5]. In practice, this means daytime air 

conditioning or production loads can be auto-synced with peak solar generation, while batteries smooth out the rest. 

Offices and industrial plants similarly benefit. Even though many institutions today meet only ~1–20% of their 

electricity needs with on-site renewables [6], expanding this fraction offers big gains. For example, a factory with both 

solar and wind sources could use AI controllers to decide whether to run heavy equipment when renewable output is 

highest, or to idle if renewables dip. Large distribution facilities (cold storage, data centres) can operate as self-

contained microgrids, shedding or shifting load to soak up their own green power before drawing from the utility. 

Key factors in these large spaces include: ensuring reliable operation despite renewables’ variability (e.g. using storage 

or backup gen), and managing diverse load types (lighting, HVAC, machinery) through a unified AI-EMS. Emerging 

work suggests even industrial microgrids can see 20–30% operational cost reductions by using hybrid AI-based 

optimization (combining demand response, improved battery use, etc.). Overall, coupling building automation with 

local renewable resources leverages otherwise-wasted potential: sunny hours become more valuable for energy use, and 

clean power output is actively matched to demand. 

 

Research Directions and Extensions 

The current paper on AI-based energy optimization can naturally extend to include renewables. This means expanding 

the model to forecast on-site generation and integrate it into the control loop. Future research should examine methods 

like: adding a PV/wind output prediction module to the learning framework; jointly optimizing battery charge/discharge 

schedules; and incorporating grid-interaction constraints (e.g. selling back surplus). Studies like Liu et al. highlight that 

integrating renewables at scale in “multi-energy” building systems is still at an early stage, and AI techniques can play a 

key role [1][7]. In other words, there is a pressing opportunity to design intelligent controllers that learn when to store, 

use or export solar/wind power. 

Promising approaches include reinforcement learning agents that balance energy use vs. renewable availability, or 

hybrid optimizers that handle both continuous (HVAC setting) and discrete (battery on/off) decisions. Real-world pilot 

projects (like the green campus SGEMS above) provide benchmarks and data for validation [4][5]. As one review 

notes, AI and deep learning can “increase energy systems’ sustainability and efficiency, especially those that rely on 

RESs like solar and wind.” [3]. By treating buildings and campuses as integrated smart grids with local renewables, the 

extended research can achieve deeper energy savings and lower emissions than automation alone. 

Overall, focusing on this integration is both timely and impactful. It aligns with industry trends toward net-zero 

buildings and campus microgrids, and responds to the growing evidence that AI-driven coordination of loads and 

renewables can greatly amplify efficiency [5][3]. In summary, the extension to incorporate renewable energy sources 

into the AI-based optimization framework is strongly recommended to fully leverage smart automation in large-scale 

facilities. 

 

VI. CONCLUSION 

This review has shown that sensor-driven control of building systems offers large, verifiable energy savings. By 

leveraging environmental measurements and occupancy information, the building can effectively “know” when and 

where to heat, cool, or light a space, and when to idle systems. Lighting can be dimmed out, thermostats adjusted, and 

fans/fans and plug loads scheduled – all in service of the same goal: using energy only when (and where) needed. In 

practice, multiple pilot projects and experiments have demonstrated combined savings of the order of 10–40% or more. 

For a typical office, saving even 20% of total energy is substantial – on the order of hundreds of kilowatt-hours per 

occupant per year. 
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While we lack a single unified data set (our analysis is based on synthesizing many studies), the consistency across 

them is encouraging. Occupancy-based lighting and thermostat setback are established best-practices, and new data-

driven techniques (AI prediction, smart fans, integrated loads) only widen the performance gap. Future work should 

include more field trials and data collection to refine models and comfort calibration. Nonetheless, even without those 

refinements, building owners can start implementing known strategies to cut waste – with well-documented savings 

[2][4]. 

In summary, the convergence of low-cost sensors, IoT connectivity, and advanced control algorithms means proof-of-

concept for energy-saving smart buildings has already been provided. The remaining task is deploying these at scale: 

designing systems that are robust, user-friendly, and integrated into normal facility management. The literature shows 

that when done correctly, smart controls can reliably trim double-digit percentages of energy use while keeping 

occupants happy [5][3]. As energy costs and efficiency mandates rise, this combination of theory and practice points 

the way toward greener, smarter buildings. 
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