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Abstract: A4 Quantitative Structure—Activity Relationship (OSAR) model correlates the biological
activity of a molecule with its structural characteristics using molecular descriptors that quantitatively
define key structural features. In this study, novel molecular descriptors and modelling methods were
developed for QSAR analysis across six target systems associated with diseases such as cancer,
neurodegenerative disorders, HIV-AIDS, and malaria. The research introduced 2D image-based
descriptors derived from optimized 3D molecular structures. These descriptors were constructed using
Dijkstra’s algorithm and multidimensional scaling to preserve interatomic shortest path distances and
partial charges in two dimensions. Principal component analysis (PCA) and support vector regression
(SVR) were employed to regress the descriptors against biological activity values, though these models
were found to be computationally intensive. To enhance efficiency, a new 3D pseudo-molecular field
(PMF) concept was developed based on intrinsic atomic properties such as electron affinity and
electronegativity, rather than conventional electrostatic fields calculated from partial atomic charges.
The PMF-based partial least squares (PMF-PLS) methodology, combined with Procrustes
transformation, produced QSAR models with performance comparable to existing models while being
computationally lighter. Additionally, a new regression approach, Varying Component Partial Least
Squares (VC-PLS), utilizing the SIMPLS variant of PLS, was proposed for QSAR modelling. Both PMF-
PLS and VC-PLS models were applied to screen natural compounds structurally similar to known
bioactive molecules in the target systems. The screening outcomes from both models were consistent, and
subsequent molecular docking studies validated the predicted interactions, supporting the reliability of
the proposed QSAR methodologies for drug discovery applications.
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I. INTRODUCTION

QSAR modelling using 3D molecular field descriptors have been widely used to capture the relationship between a
ligand and its biological activity (Nidhi and Siddiqi, 2013; Divakar and Hariharan, 2015). In particular, comparative
molecular field analysis (CoMFA) uses 3D molecular descriptors (Cramer et al., 1988; Dasoondi et al., 2008; Matta
and Arabi, 2011) that are developed by obtaining energy minimized 3D structures of the molecules along with the
partial atomic charges calculated for every atom of the molecule. The molecular structures are oriented to structurally
align with each other in a box of appropriate size having a suitably chosen 3D mesh grid.

Molecular fields, such as, electrostatic and/or steric, are then calculated for all the points on the grid using coulomb
potential function and Lennard-Jones potential function, respectively (Cramer et al., 1988), and a 3D array of field
values is obtained for every molecule. The above 3D arrays are used as molecular descriptors to develop regression
models that correlate with the biological activity of the molecules. Although, the CoMFA based 3D-QSAR models
relate the structural information with the activities of molecules, the structural minimization routines required for
calculation of partial atomic charges are intensive (Gasteiger and Marsili, 1980). Thus, there is a need to study novel
and simpler 3D molecular descriptors that provide accurate 3D-QSAR models for practical purposes. Towards this aim,
here we propose and study the use of intrinsic properties of the individual atoms, namely, electronegativity and electron
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affinity values to develop and study 3D molecular field like descriptors. We term this molecular field as the pseudo-
molecular field (PMF) and the molecular descriptors as pseudo-field molecular descriptors (PFMD). These descriptors
would have the advantage that the atomic property values used in their calculations will be readily available and would
not require to be determined for every molecule unlike partial atomic charges. Developing QSAR models based on
these PFMDs would then be simpler than CoOMFA based models and studying its feasibility would provide a practical
and correlative way of using intrinsic atomic properties for assessing the activity of a ligand with its target. It may be
noted that these PFMDs are associated with high dimensionality (similar to the CoMFA descriptors) because of the
consideration of PMF values in 3D spatial coordinates. We aim to bring out and discuss here a novel methodology
employing PLS, namely PMF-PLS, for efficient QSAR modelling.

II. LITERATURE REVIEW
Quantitative Structure—Activity Relationship (QSAR) modelling remains a core in silico strategy for prioritizing
potential inhibitors in drug discovery. Early reviews and domain-specific surveys stressed descriptor selection, model
validation, and applicability domain issues as foundations for reliable prediction. Jahangiri et al. (2014) reviewed
QSAR work on ACE-inhibitory peptides and highlighted how descriptor choice and validation strategies determine
model usefulness in lead design. Through the late 2010s and into the 2020s, QSAR studies increasingly paired with
docking and molecular dynamics to improve biological relevance. Wang et al. (2020) and numerous subsequent works
illustrated that combining QSAR (2D/3D descriptors) with docking enriches virtual screening and helps rationalize
binding modes for prioritized hits.
Methodological evolution accelerated in the 2020s: 3D-QSAR methods (including Gaussian field approaches) and
multi-dimensional descriptors were applied to design kinase and enzyme inhibitors (Singh et al., 2022; Aloui et al.,
2024). These studies demonstrated that integrating structural alignment, field-based descriptors, and simulation-derived
features can produce potent inhibitor hypotheses for targets such as BRAF and BTK. Concurrently, machine learning
(ML) and hybrid AI workflows expanded QSAR capability. Recent reviews (Koirala et al., 2025; Evangelista et al.,
2025) document the shift from classical linear QSAR/PLS to ensembles, kernel methods, tree-based ML, and deep
learning (including graph neural networks and SMILES transformers), which often yield improved predictive power for
diverse inhibitor datasets — provided datasets are sufficiently large and curated. Descriptor innovation has been
another important theme. Studies explored novel representations that balance physics-based interpretability and
computational efficiency from advanced 3D field descriptors to compact image-based encodings and pseudo-molecular
fields (PMF) that use intrinsic atomic properties (electronegativity, electron affinity) instead of partial charges. These
approaches aim to retain 3D spatial information while reducing computational overhead for large-scale screening.
Representative PMF work and related descriptor studies have emerged in the 2023-2025 literature.
Validation and reproducibility concerns have been emphasized repeatedly. Serafim et al. (2023) and others warn that
small datasets, improper cross-validation, model overfitting, and lack of external test sets lead to false positives during
virtual screening; they recommend robust external validation, applicability-domain estimation, and consensus
modelling.
Application studies from 2020-2024 demonstrate QSAR’s practical value: (i) ML-led QSAR for TBKI1 and kinase
inhibitors (Ivanov et al., 2024) and (ii) 2D/3D QSAR coupled with docking for various enzyme inhibitors (Batool et al.,
2024; Khairullina et al., 2024) show successful hit-identification and subsequent experimental validation in some cases.
Finally, the frontier (2024-2025) shows integration of QSAR with reinforcement learning and generative models for de
novo inhibitor design, promising to close the loop between prediction and molecular generation (Zavadskaya et al.,
2025; Koirala et al., 2025). These approaches are nascent but rapidly maturing, contingent on rigorous benchmarking
and synthetic accessibility filters.

III. RESEARCH METHODOLOGY
For ease in discussion, a schematic flowchart of steps involved in development of PFMDs and PMF-PLS QSAR
modelling are shown in Figure 1 with boxes labelled as that refer to [B Fig. # . Box #]. The details of steps in the

individual boxes are discussed in subsections for modularizing the algorithm. Section 3 descrlbes the procedure to
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import molecular structures and their biological activity values from PubChemBioAssay database [B 1.1] and the
procedure to identify natural molecules from SuperNatural II (Banerjee et al., 2015) database having scaffolds similar
to the ones used in the chosen TS but whose pIC50 values are not known [B 1.3]. Thus, the inhibitory activities of these
natural compounds could be studied using the PMF-PLS QSAR modelling. Section 3 outlines two steps of
preprocessing of the inhibitor structures that are obtained from the databases. Firstly, we pre-process the structures
using Ligprep© module (version 2.5, 2012) in Schrodinger software to obtain scaffold based alignment of 3D structures
of the chosen inhibitor molecules [B 1.4]-[B 1.6]. In the next step [B 1.7]-[B 1.8], we import the aligned data into
Matlab© (version R2010b) where the atoms in the molecule are accurately positioned in a 3D mesh grid.

5 12 1.4
(B L1] Identify and import structures P[:) cessl; to obtain (B 1.5]
Select the N of n molecules with common N accm'éte 3D structures . |Orient the 3D structures to
system to study scaffold and known inhibition : oy align the scaffolds
activity (pICs,) for the system gL rTep adul ] i 1
B13] [B 1.6]

Export aligned 3D
coordinates of the n
molecules in .pdb format

Identify natural molecules from SuperNatural II
database with scaffolds similar to molecules

from [B 1.2]
(B 1.9] [B 1] B 17
Calculate the PMF values y at all grid Define 3D coordinates of the = s
; .. - iy | ] : 2= IL Import 3D aligned coordinate
points using known E,, 7 and d for all n molecules in 3D mesh grid
. . - data from .pdb files to Matlab
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B 1.11] [B 1.12]
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Figure 1: General flowchart to study the proposed PMF-PLS approach for QSAR Modelling
This section describes the calculation of PMF values at the mesh grid points [B 1.9] using electron affinity and
electronegativity values of atoms to obtain the PFMDs [B 1.10]-[B 1.11]. Subsequently, Section 3.2.4 elucidates the
steps in PMF-PLS algorithm that are used to develop the QSAR model and its validation [B 1.12]-[B 1.16].
We next use this model to calculate the pIC50 values of the natural molecules obtained from the Super Natural II
database (Banerjee et al., 2015) [B 1.17]. To further confirm the potential inhibitory actions of natural molecules with
the calculated pIC50 values, it is proposed to carry out docking studies of these molecules to confirm that they indeed
bind to the selected targets. Successful docking along with the prediction of high pIC50 value by the QSAR model
would suggest that the molecule has a good potential for inhibiting the target [B 1.18].
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IV. RESULTS AND DISCUSSION
The 3D arrays of PMF values were converted into 1D PFMD arrays [B 1.10] and regressed with ¥ values using PMF-
PLS methodology.
Regression models built using a single training set tend to have a bias for the training set used which can result in
problems arising due to the overfitting of the QSAR model. A way to reduce the model bias is to use multiple training
sets that yield average values of the regression coefficients to build the final QSAR model (Wold, 1978).
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Figure 2: Plots of actual pIC50 values (¥) vs. the predicted values ( ¥) for cross-validation using PMFPLS
QSAR model. (A) TS-1, (B) TS-2, (C) TS-3, (D) TS-4, (E) TS-5 and (F) TS-6 inhibitors. The training set compounds
are marked in red and test set compounds in black as specified in the Appendix, Tables A15 to A20, respectively
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Figure 3: Plots for actual pIC50 values (¥val) vs. the predicted values (¥val) using PMF-PLS QSAR model for
validation sets of (A) TS-1, (B) TS-2, (C) TS-3, (D) TS-4, (E) TS-5 and (F) TS-6 inhibitors.
The PMF-PLS QSAR model quality was further assessed by applying the mean absolute error (MAE) based criteria for

the validation set predictions (Roy et al., 2016).

V. CONCLUSION

The methodology of PMF-PLS is seen to offer a simpler way of QSAR modelling that uses an effective correlative
descriptor in terms of the intrinsic properties of atoms, namely, the electron affinity and electronegativity values. This is
in contrast to CoOMFA where the descriptors are obtained using the partial atomic charges which are calculated
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separately for every molecule. We apply the PMF-PLS methodology to six target systems, namely, 4-
phenylpyrrolocarbazole derivative inhibitors of WEEI as anti-cancer compounds, benzylpiperidine derivative inhibitors
of AChE against neurological disorders, 2-substituted dipyridodiazepinone derivatives and 2-pyridinone derivatives as
HIV-1 RT inhibitors, cyclic urea derivatives as HIV-1 PR inhibitors and azilide derivatives as anti-malarial compounds.
The QSAR models showed good prediction statistics for all six TSs and it brings out the viability of the PMF-PLS
approach. It takes care of many practical situations encountered in QSAR modelling. Thus, the high dimensionality of
the descriptor data could be reduced drastically by projection to a lower dimensional latent subspace. The practical
problem of overfitting of model could then be addressed. The usefulness of Procrustes transformation in modifying the
descriptor data for better optimization of PLS scores and loadings has been proposed which gave improved predictions.
A comparison of the PMF-PLS QSAR modelling results with the QSAR models reported in the literature for the same
set of inhibitors shows that the former yields comparable results. Additionally, PMF-PLS QSAR models were used to
predict pIC50 values for natural compounds with unknown biological activities. The time taken for the PMF-PLS
algorithm to arrive at the reference training and test sets (first part of the algorithm) was in the order of 6-8 hours.
However, the second and third part of the algorithm took about 1-2 minutes to complete.
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