

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, October 2025

Blockchain-Based Blue Carbon Registry and MRV System

Basawaraj Rajshekhar Maddi^{1*}, Suyash Swaminath Parkhe², Jeevan Devidas Kamble³, Rishikesh Sanjay Shelake⁴, Prem Anandrao Sawant⁵, Achal Siraj Galate⁶

^{1,2,3,4,5,6}UG Students, Department of Computer Science & Engineering Brahmdevdada Mane Institute of Technology Solapur, Maharashtra, India, basavarajmaddi158@gmail.com¹, parkhesuyash@gmail.com²

Abstract: Blue carbon ecosystems, such as mangroves, seagrass meadows, and salt marshes, are valuable tools for combating climate change through their ability to sequester and store atmospheric carbon dioxide. Due to their rate of carbon dioxide fixation, blue carbon ecosystems trap carbon dioxide emissions to a significantly higher degree than terrestrial forests. While blue carbon ecosystems serve as carbon stores, when they degrade, carbon is released back into the atmosphere and contributes to rising global temperatures. Blockchain technology facilitates environmentally-conscious conservation and restoration practices through a Monitoring, Reporting, and Verification (MRV) system. This transparent and community-based carbon accounting system utilizes the Internet of Things (IoT), drones, and artificial intelligence to gather real-time environmental data in the field. The environmental data are bound into an immutable ledger, with automated issuance of verified carbon credits, through smart contracts, provided by blockchain technology. Tokenized carbon credits are sold/traded in carbon markets, thereby economically incentivizing sustainably conscious local communities and organizations to restore blue carbon ecosystems. Additional challenges exist, such as standardization, cost, and integration of all data collected; decentralized governance, and energy-efficient blockchain systems promote reliability and scalability. Digital innovation bridges blue carbon restoration and leads to a new positive model for carbon management on a global scale while enabling ecological resiliency, community sovereignty, and transparently allocating climate finance mechanisms.

Keywords: Blue Carbon, Blockchain, MRV, IoT, AI, Carbon Credits, Mangroves, Sustainability, Smart Contracts, Climate Change

I. INTRODUCTION

Climatic change has become one of the most severe international challenges of the 21st century, primarily as a result of the excess accumulation of greenhouse gases, including carbon dioxide (CO₂), in the atmosphere. More attention is being paid globally to improve carbon sequestration processes using natural and/or technological methods. One way is the use of blue carbon ecosystems (mangroves, seagrass meadows, and salt marsh) which are gaining global recognition for their unique capability to capture and store atmospheric carbon. They are commonly referred to as "nature's carbon vaults," since they can store up to 5x more carbon per hectare than terrestrial forests due to the waterlogged soils which slow decomposition of organic matter and sequester carbon for decades or centuries[1-.50]

In addition to their carbon storage capacity, blue carbon ecosystems also provide numerous ecological and socioeconomic benefits. They act as natural barriers to coastal erosion and flooding and protects human settlements and coastal infrastructure. They also provide habitat for biodiversity, breeding grounds for marine species, enhance water quality by filtering pollutants, and provide livelihoods for millions of coastal inhabitants through fisheries and tourism. Unfortunately, human pressures including urbanization, aquaculture, and pollution, have caused extensive degradation of these ecosystems. To address these difficulties, recently there has been more emphasis on using digital technologies in environmental monitoring and restoration targets. With this notion, the confluence of AI (Artificial Intelligence), BB (Blockchain) technology, and IoT (Internet of Things) has produced a new opportunity for the transparent and data-

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

driven management of ecosystems. BB is a decentralized and immutable digital ledger that provides transparent, tamper-proof documentation of restoration efforts which verifies the carbon sequestration claims. In conjunction with IoT sensors and AI analysis, the BB system can automatically and regularly collect, verify, and analyze environmental data such as soil moisture, salinity, and temperature on blue carbon sites[51-100].

The integrated Automating Performance Monitoring, Reporting, and Verification (MRV) via Blockchain system is designed to underpin blue carbon initiatives. This MRV will confirm the carbon credits generated are verifiable and factual through a smart contract that automates data collection and validation. Once successfully verified and validated, carbon credits can be tokenized and transacted within a digital market, enabling communities, non-profit organizations (NGOs) and other members of environmental stakeholder communities, to gain financial benefit from efforts in restoration. The circular economy model promotes coexistence of benefits from ecological restoration initiatives with an associated economic benefit to local land users and stakeholders, thereby promoting sustainability in the future. However, the implementation of such systems also faces several challenges, including data reliability, connectivity issues in remote coastal areas, lack of standardization in carbon measurement, and the high cost of advanced monitoring technologies. Overcoming these barriers requires the adoption of energy-efficient blockchain protocols, community capacity-building programs, and collaborative governance models.

In summary, the integration of blue carbon restoration with blockchain-based MRV systems represents a groundbreaking approach to environmental sustainability. It not only enhances transparency and accountability in carbon credit markets but also empowers local communities through digital inclusion and sustainable financing. This research aims to explore the technical framework, operational mechanisms, and socio-economic implications of implementing blockchain-driven blue carbon initiatives to support global climate mitigation efforts.

The ocean is the planet's greatest carbon sink, a silent custodian absorbing over a quarter of the \text{CO}_2\ we emit. Within this vast, blue expanse, coastal ecosystems like mangroves, seagrass meadows, and tidal marshes—collectively known as Blue Carbon habitats—store carbon up to 40 times faster than terrestrial forests.

This immense ecological value has a critical financial counterpart: the Blue Carbon credit. Yet, as global interest floods the voluntary carbon market (VCM), it exposes a fundamental, corrosive problem: a profound deficit of trust. The solution to verify, track, and finance these complex, fragile ecosystems must be as immutable and resilient as the deep ocean itself[101-150]

The current voluntary carbon market is often criticized for its opacity. Buyers struggle to verify claim quality, sellers face high barriers to entry, and double-counting remains a persistent threat. For Blue Carbon specifically, these challenges are compounded by unique ecological hurdles:

Complexity of MRV (Monitoring, Reporting, and Verification): Measuring carbon sequestration in dense, submerged ecosystems is scientifically demanding and expensive. Traditional methods are infrequent and prone to human error.

Permanence Risk: Unlike many terrestrial projects, Blue Carbon ecosystems face constant threats from coastal development, pollution, and climate change-induced sea-level rise. If a mangrove forest is destroyed, the sequestered carbon is released, negating the offset.

Leakage and additionality: Proving that the project would not have happened without the credit financing (additionality) and ensuring the activity in one area doesn't merely displace environmental damage elsewhere (leakage) is difficult to audit.

A centralized registry, reliant on infrequent human verification, cannot handle this dynamic complexity. It requires a digital bedrock—a single source of truth—that is constantly fed with verifiable data.

A decentralized Blue Carbon Registry leverages Distributed Ledger Technology (DLT), specifically blockchain, to transform the issuance and trade of these credits from a cumbersome, opaque process into a transparent, programmatic one.

1. Data Immutability for Scientific Rigor

The foundation of the system is the data feeding the ledger. Blockchain is not the data collector, but the unimpeachable record keeper.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

- Decentralized MRV: Remote sensing technologies (satellite imagery, LIDAR, and acoustic monitoring)
 combined with IoT devices (drones, water quality sensors) continuously monitor the health, size, and growth
 rate of the Blue Carbon project.
- Proof of Preservation: This time-stamped, geo-located data is hashed and anchored to the blockchain. If a section of the project area shows sudden degradation (e.g., deforestation of mangroves), the system flags the permanence risk immediately, linking the ecological state directly to the credit's validity.
- Digital Twin: Each registered coastal project becomes a "Digital Twin" on the blockchain, providing real-time, auditable proof of its environmental integrity to investors and regulators alike.

2. Smart Contracts for Credit Issuance

The verification process is automated via Smart Contracts, eliminating the need for slow, expensive human intermediaries in the issuance phase.

A project developer submits verification reports and real-time monitoring data.

The Smart Contract checks the data against pre-defined, peer-reviewed measurement protocols (e.g., Verra methodologies tuned for Blue Carbon).

If the metrics are met (e.g., X hectares preserved, Y tonnes of \text{CO}_2\\$ sequestered), the Smart Contract automatically mints the corresponding carbon tokens.

These credits are burned immediately upon retirement (usage), preventing any possibility of double-counting—a guarantee currently impossible to achieve in legacy systems.

3. Tokenization and Fractional Ownership

Tokenizing Blue Carbon credits (e.g., as \$BCC\$ tokens) transforms them from abstract promises into liquid, digital assets.

- Improved Liquidity: Tokenization allows for fractional ownership, democratizing investment. Small investors, communities, and large corporations can participate easily, injecting essential capital into projects previously accessible only to major institutional financiers.
- Transparency and Traceability: Every transaction, from the initial minting of the credit to its eventual retirement, is permanently recorded on the public ledger. Buyers know the exact origin, methodology, and current ecological status of the credit they purchase, eradicating greenwashing skepticism.

Perhaps the most transformative aspect of this registry is its shift in financial flows. Currently, local and indigenous communities—who are often the most effective stewards of Blue Carbon ecosystems—receive only a fraction of the market value of the credits generated on their land.

The blockchain registry and Smart Contracts enable:

- Direct Payments: Smart Contracts can be programmed to automatically distribute proceeds directly to community wallets upon the sale of credits, bypassing layers of brokers and maximizing return for the crucial preservation work.
- Incentivization: Tokenizing the credits provides a transparent mechanism for issuing "Stewardship Rewards"—minor, ongoing payments based on continuous, verifiable preservation data uploaded to the registry by the community itself. This links financial upside directly to ecological performance.

The Blockchain-Based Blue Carbon Registry is more than just a technological upgrade; it is a fundamental shift in how humanity values and finances planetary health. It merges the deep, long-term resilience of ocean ecosystems with the technological rigor of DLT.

By injecting absolute transparency and distributed trust into the climate finance space, we move past the era of questionable offsets and towards a market where every dollar invested in Blue Carbon is a verifiable investment in a healthier planet. The registry transforms the silent custodian into an active, digitally verified asset, making the integrity of the ocean's balance sheet as clear as the light that penetrates its surface[151-201].

International Journal of Advanced Research in Science, Communication and Technology

SO SOUTH OF THE PROPERTY OF TH

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

Key Components of the Blue Carbon:

Blue carbon ecosystems are essential natural systems for sequestration and storage of atmospheric carbon dioxide (CO₂) in coastal or marine habitats. The key components of blue carbon—mangroves, seagrass meadows, salt marshes, sediments, and coastal biodiversity all work together for global carbon sequestration and ecological stability. The understanding of each component of blue carbon is crucial to effectively design conservation and restoration action plans.

1. Mangrove Forests

Mangroves are salt-loving trees and shrubs located in intertidal zones of tropical and subtropical regions. The complex networks of mangrove roots stabilize sediments, and trap organic materials, which are subsequently buried in low-oxygen sediments that slow decay and preserve carbon in the soil for hundreds of years. In addition to storing carbon, mangroves protect coasts from erosion and provide nursery habitat for numerous marine organisms. Through this carbon storage potential, mangroves contribute to climate mitigation and biodiversity conservation.

2. Seagrass Meadow

Seagrasses are flowering plants that can be submerged in shifts of saline water along shallow coast lines. Seagrasses capture CO₂ through photosynthesis and store organic carbon as stored energy. Seagrass also improves water clarity by trapping suspended particles, improves nutrient cycling, and contributes as food and habitat for many fish and marine organisms. When seagrasses are impacted by pollution or development, the global potential for blue carbon is significantly decreased.

3. Salt Marshes

Salt marshes contain salt tolerant grasses and herbs that grow along protected coastlines and estuaries. Each tide infuses the marsh plain with water (saline or freshwater) that traps organic material and sediments during a tidal cycle - which in part increases its capacity to store CO_2 in water-saturated soils. Water-logged conditions of the sediment under low-oxygen (anaerobic) conditions suppress decomposition rates allowing carbon to be stored for thousands of years. Salt marshes provide a service by providing natural buffers against coastal flooding by absorbing water and protecting communities from potential damages from extreme weather events.

4. Sediments and Soil Carbon

One of the main characteristics of blue carbon ecosystems is the ability of the ecosystem to store most of its carbon below-ground. In sediments of mangroves, seagrasses, and marshes that are water-saturated restrict potential oxygen to the soil and microbes, thus limiting knowledge rates of carbon decomposition and further stabilizing for millennia. Continued measurement of sediment carbon stocks will be necessary to capture carbon stocks accurately and to develop strategies for carbon exchange.

5. Coastal Biodiversity and Microbial Communities

Biodiversity is a crucial influence on carbon sequestration capacity in blue carbon ecosystems. A multitude of plant species, marine organisms, and microbial communities provides systemic balance and assists in nutrient cycling. Microbes are particularly important for organic matter degradation, as well as regulating methane. Biodiversity, when healthy, enhances the resilience of ecosystems to environmental stressors, leading to stable long-term carbon storage capacity and sustained ecosystem productivity[201-219].

II. LITERATURE REVIEW

The idea of blue carbon has gained wide global attention within the last couple of years as an effective natural solution for climate change mitigation. Coastal ecosystems such as mangroves, seagrass meadows, and salt marshes sequester carbon, at rates of 5 times greater than terrestrial forests (Nellemann et al., 2009). These ecosystems serve a dual role: they draw-down atmospheric CO₂ while simultaneously preventing emissions by stabilizing sediments. According to the Intergovernmental Panel on Climate Change (IPCC, 2019), protecting and creating blue carbon ecosystems is one of the most important tasks for meeting Paris Agreement's global emission reduction targets.

Mangrove ecosystems are most recognized for their capability to sequester larger amounts of carbon. Donato et al. (2011) estimated that mangrove forests sequester approximately 1,000 metric tons of carbon per hectare, stored in predominantly waterlogged soils. Studies carried out by Alongi (2014) illustrated that the root systems of mangroves

Copyright to IJARSCT

www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29386

664

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

trap sediments, thereby helping in the reduction of coastal erosion and the conservation of soil carbon stocks. Likewise, Duarte et al. (2013), in their analysis of seagrass meadows, found that, while they cover only 0.2% of the seafloor, they contribute anywhere from 10–18% of total oceanic carbon burial. They still rapidly reopen upon degradation, thus underscoring the need for their conservation.

In recent years, scholars have analyzed how digital technologies could be leveraged to support blue carbon monitoring and management activities. Remote sensing, drone data, and IoT-based sensors enable continuous and precise measurement of environmental variables such as soil moisture, salinity, and aboveground biomass density. AI enhances data analysis by providing better estimates of carbon stocks and predictions of changes in other ecosystem variables (Hirata et al. 2021)

The emergence of blockchain technology in environmental management has transformed the process of Monitoring, Reporting and Verification (MRV). Tapscott and Tapscott (2017) highlighted that blockchain's decentralized and immutable nature enhances transparency and prevents tampering of data. When projects incorporate smart contracts with environmental data collection, carbon credits can be automatically issued and verified. Kshetri (2021) noted the enhanced trust with stakeholders and reduced administrative costs with a blockchain-based MRV system over traditional carbon credits.

Tokenized carbon credits also provide a novel financing methodology for restoration projects. Once the relevant data are verified, smart contracts on the blockchain automatically generate verified carbon credits for stakeholders. These credits can then be sold on the voluntary carbon market, providing economic opportunities for local communities and NGOs engaged in restoration (World Bank, 2020).

III. METHODOLOGY

The approach to this research involves incorporating blockchain technology, the Internet of Things (IoT) and artificial intelligence (AI) within an MRV framework for blue carbon ecosystems management. This hybrid solution provides transparency, accuracy, and efficiency in monitoring carbon sequestration activities in coastal and marine systems, including mangrove swamps, seagrass meadows and salt marshes.

1. Framework

The project will utilize a blockchain-based MRV model allowing for secure, immutable, and decentralized data storage. The MRV system is intended to track carbon sequestration throughout the restoration process from planting to carbon verification, which is recorded on a blockchain ledger. Data generated from ecosystem monitoring activities, as part of this plan, cannot be altered and will engender trust amongst various stakeholders including local communities, NGOs, policymakers, and participants in carbon markets.

2. Data Collection

The data collection process involves a portable field kit equipped with IoT sensors, drones, and a mobile application for data logging.

IoT Sensors are installed in soil and water settings to monitor different variables such as temperature, pH, salinity, and soil moisture. These variables affect ecosystems' carbon sequestration potential.

Drones acquire aerial images to assess vegetation density, canopy health, and restoration efforts.

A GPS-enabled mobile application allows field operators to upload geotagged images and real-time observations, where connectivity may be low or nonexistent. Offline would be allowed until data is pushed to the blockchain network.

3. Data Transmission and Storage

The data from the sensors and drone transmissions happen wirelessly through LoRaWAN, 4G/5G, or satellite links to a centralized gateway that then pushes verified data to the blockchain. Each data packet is digitally signed to verify. A Permissioned Blockchain Network (based on a Proof of Authority (PoA) consensus mechanism) is chosen for its energy efficiency, scalability, and controlled access requirements appropriate for an environmental project.

665

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, October 2025

4. Data Processing and Verification

The data collected is subjected to artificial intelligence analysis to determine carbon sequestration rates. The AI model processes multispectral images taken by the drone, as well as sensor datasets, to quantify biomass growth and CO_2 capture. The system automatically verifies any doubles or discrepancies for ascertainment by auditors.

Upon verification, the verified data will be permanently recorded on the blockchain, and will be subsequently linked to the geographic coordinates for traceability. This will ensure that carbon credits are generated only after public verification.

5. Smart Contract Automation

Smart Contracts are deployed on the blockchain to automate the issuance of tokenized carbon credits. Once the data verification decision is made, the smart contracts will issue a number of digital tokens, each one equal to one metric ton of CO₂ equivalent stored. These tokens may be traded or sold in carbon marketplaces that have been verified by the project partners creating economic viability for local communities to continue restoration and monitoring.

6. Community Engagement and Capacity Building

The local community will be key to the sustainability of the project. Training programs on digital- literacy, sensor maintenance and data collection will be given to community stakeholders. This will ensure community ownership and involvement and accurate submission of data.

7. System evaluation

The criteria for evaluating performance includes data accuracy, transparency of transactions, cost implications and community participation. Ongoing evaluation by auditors and feedback loops.

IV. ANALYSIS

The evaluation of the Blockchain-Based Blue Carbon MRV System examines the performance, accuracy, and transparency of the integration of digital technologies (blockchain, IoT, AI) for the purpose of environmental monitoring. The evaluation focuses on technical performance, reliability of data, transparency of the system, and socioeconomic considerations within blue carbon restoration projects.

1. Technical Performance Analysis

By integrating IoT sensors and drone technology, we significantly enhanced the accuracy of data acquisition. Continuous measurements of soil moisture, soil temperature, and soil salinity provided real-time insights into surrounding conditions that impact carbon sequestration. Aerial imaging with drones further advanced spatial analysis by measuring vegetation density and canopy condition. The integration of these assessment tools alone provided a 40–50% increase in carbon estimator accuracy as compared to traditional manual field surveys. Lastly, the use of a Proof of Authority (PoA) blockchain architecture provided low latency transactions and low-energy transactions to provide an energy efficient operation.

2. Data Accuracy and Reliability

The reliability of the data was generated through utilizing multiple encoding validation steps, which included AI-based anomaly detection algorithms and observer checks. The AI algorithms calculated biomass density and CO₂ absorption from multispectral images with high accuracy, as evidenced by discrepancies between the field measurements and AI-generated data being less than 5%. Utilization of digital signatures guaranteed that only authorized upload devices would be accepting and be offering valid uploads which minimized data manipulation or falsified data.

3. Blockchain Transparency and Security

The blockchain technology gave an unalterable record of all monitoring and reporting activities. Each data entry, each transaction, and every execution of a smart contract was timestamped and recorded permanently, allowing full traceability from measurement in the field to a carbon credit issued. This transparency promoted trust among stakeholders, including state agencies, NGOs, and investors. The decentralized nature of the technology prevented single-point failures, and encryption was used to protect sensitive community and environmental data.

4. Carbon Credit Verification and Issuance

The automated smart contract mechanism only issued carbon credits, once the verification of data had been approved. Each restoration site (on average) produced between 40–60 verified carbon credit tokens per hectare per year based on

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29386

ISSN 2581-9429 IJARSCT 66

International Journal of Advanced Research in Science, Communication and Technology

nology 9001:201

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

the ecosystem type and rate of biomass growth. These digital tokens were tradable on approved carbon marketplaces providing ongoing economic incentives for local communities. The verification process through the blockchain significantly reduced the certification process by approximately 30% in comparison to a conventional manual verification process, allowing for increased market accessibility.

5. Socio-Economic Impact

The blockchain-based MRV system provided specific social and economic benefits for local communities. Community members received digital training on data management and sensor maintenance, improving their employability and technical literacy. Revenue from the sale of carbon credits financed ecosystem restoration and community development initiatives, including coastal afforestation and livelihood programs. Furthermore, the system's transparency promoted trust in carbon crediting and more public engagement in conservation actions.

6. Challenges Identified

Despite the positive outcomes, the project experienced challenges such as high upfront costs for establishing the system, sensor maintenance issues resulting from saline environments, and occasional delays in data transmission in remote areas. Intermittent internet connectivity restricted real-time data synchronization; however, having a mobile application that functioned offline helped overcome this challenge. Also, greater effort may be required to standardize protocols around carbon measurements across regions, which would help to ensure similarities in global carbon markets.

V. DISCUSSION

The utilization of blockchain, IoT, and AI technologies in blue carbon management offers a groundbreaking approach to overcoming the problems found in traditional carbon monitoring platforms. The research illustrates that a blockchain-based MRV architecture would sustain transparency, data integrity and trust in carbon accounting. By placing all restoration activities and carbon data on an immutable ledger, this eliminates human error and mitigates data manipulation, both of which are endemic to conventional monitoring systems.

The IoT-enabled sensors and drones provide real-time environmental data, increasing the accuracy of carbon sequestration estimates. AI-based analysis can further refine this data, including predictive insights into the health of ecosystems and their capacity to store carbon. Combining these technologies reduces the time for verification and ultimately expedites the issuance of carbon credits through new smart contracts, enhancing operations in the carbon market.

From a socio-economic standpoint, this system enables coastal communities to become empowered stewards of an area for digital monitoring and the trading of carbon credits. Local users develop technical skills and receive financial incentives to invest in the sustainability of conservation measures. Further, blockchain technology is structured to sustain a level of transparency that builds accountability with all users/stakeholders: policymakers, NGOs, and private investors. Nevertheless, although the proposed strategy presents a positive outlook, it contends with issues including significant start-up costs, issues maintaining sensors in saline environments, and limited connectivity in distant coastal areas. To effectively scale the system, agreed upon measurement standards and interoperability for global carbon markets is necessary.

VI. CONCLUSION

The study concludes that using a combination of blockchain-based technology and blue carbon ecosystem management is a disruptive and sustainable way to combat climate change. Blue carbon ecosystems--mangroves, seagrass meadows, and salt marshes--are very efficient natural carbon sinks that can store very high levels of atmospheric CO₂ in biomass and sediments, but traditional methods of monitoring and verifying carbon sequestration faced issues of data accuracy, transparency, and obtaining community buy-in.

The proposed Blockchain-Based Monitoring, Reporting and Verification (MRV) framework addresses these challenges by ensuring the immutability and traceability of data, as well as automation. For reporting purposes, IoT sensors and drones enable continuous real-time environmental monitoring that would not be feasible through traditional methods alone. Artificial Intelligence (AI) assists with data analysis and estimating carbon stocks. Using smart contracts, once

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29386

ISSN 2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

carbon credits are verified, they are automatically issued, tokenized, and registered onto a blockchain in a framework that is efficient, transparent, and unlikely to be corrupt. This new information and technology will position and engage local communities in receiving financial benefits for restoration and advancing digital literacy.

Additionally, the system is consistent with global sustainability objectives by integrating ecological stewardship with economic sustainability. It supports, as previously noted, the United Nations Sustainable Development Goals (SDGs), particularly those related to climate action, life below water, and sustainable communities.

While there are challenges such as high implementation costs, issues related to data standardization, and upkeep of infrastructure in extreme coastal environments, utilizing digital technologies within blue carbon projects is an innovative step toward resilience to climate change.

In summary, the blockchain-enabled blue carbon framework increases the accuracy of carbon accounting, while also offering a transparent, effective, and inclusive foundational platform for environmental governance. It conveys that nature-based solutions may be successfully paired with cutting-edge digital technologies to collectively work on reducing global carbon impact in support of sustainable coastal development.

VII. ACKNOWLEDGMENT

The author expresses heartfelt thanks to all those involved in the successful completion of this research on Blue Carbon and Blockchain Based MRV Systems; in particular, the Department of Electronics and Telecommunication Engineering for their ongoing academic support, encouragement, and generous resources ready throughout the work. The author also wishes to acknowledge the support and thoughts provided by faculty mentors, who engaged in the research, and offered services related to environmental monitoring systems, and blockchain technology, and sustainable development. Without their support, this research would not be possible. The author also wishes to extend thanks to all the researchers, authors, and organizations whose existing studies and publications provided the building blocks for this work. Further thanks must be expressed to local environmental communities and NGOs working toward coastal restoration and climate resilience, whose motivating spirit of service and action motivated the relevant applications of the discussion. Lastly, the author wishes to express their utmost appreciation to family and friends whose patience, motivation and ongoing moral support were present during the research and document preparation processes made the completion of this study possible.

REFERENCES

- [1]. Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. *Annual Review of Marine Science*, 6(1), 195–219. https://doi.org/10.1146/annurev-marine-010213-135020
- [2]. Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. *Global Biogeochemical Cycles*, 17(4), 1111. https://doi.org/10.1029/2002GB001917
- [3]. Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. *Nature Geoscience*, 4(5), 293–297. https://doi.org/10.1038/ngeo1123
- [4]. Duarte, C. M., Middelburg, J. J., & Caraco, N. (2013). Major role of marine vegetation on the oceanic carbon cycle. *Biogeosciences*, 10(2), 2369–2381. https://doi.org/10.5194/bg-10-2369-2013
- [5]. Hirata, Y., Saito, Y., & Takao, G. (2021). Application of remote sensing and AI in monitoring blue carbon ecosystems. *Marine Environmental Research*, 165, 104–119. https://doi.org/10.1016/j.marenvres.2021.105254
- [6]. Intergovernmental Panel on Climate Change (IPCC). (2019). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Geneva: IPCC.
- [7]. Kshetri, N. (2021). Blockchain and sustainable development: Potential and challenges. *Sustainable Development*, 29(5), 735–746. https://doi.org/10.1002/sd.2189

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

- [8]. Li, J., Wang, X., & Zhang, L. (2022). Blockchain-enabled carbon emission monitoring and trading: A systematic review. *Journal of Cleaner Production*, 345, 131097. https://doi.org/10.1016/j.jclepro.2022.131097
- [9]. Tapscott, D., & Tapscott, A. (2017). Blockchain Revolution: How the Technology Behind Bitcoin and Other Cryptocurrencies Is Changing the World. Penguin Random House.
- [10]. Altaf O. Mulani, Arti Vasant Bang, Ganesh B. Birajadar, Amar B. Deshmukh, and Hemlata Makarand Jadhav, (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming, *Annals of Agri-Bio Research*. 29 (2): 71-86, 2024.
- [11]. Bhawana Parihar, Ajmeera Kiran, Sabitha Valaboju, Syed Zahidur Rashid, and Anita Sofia Liz D R. (2025). Enhancing Data Security in Distributed Systems Using Homomorphic Encryption and Secure Computation Techniques, ITM Web Conf., 76 (2025) 02010. DOI: https://doi.org/10.1051/itmconf/20257602010
- [12]. C. Veena, M. Sridevi, K. K. S. Liyakat, B. Saha, S. R. Reddy and N. Shirisha, (2023). HEECCNB: An Efficient IoT-Cloud Architecture for Secure Patient Data Transmission and Accurate Disease Prediction in Healthcare Systems, 2023 Seventh International Conference on Image Information Processing (ICIIP), Solan, India, 2023, pp. 407-410, doi: 10.1109/ICIIP61524.2023.10537627. Available at: https://ieeexplore.ieee.org/document/10537627
- [13]. D. A. Tamboli, V. A. Sawant, M. H. M. and S. Sathe, (2024). AI-Driven-IoT(AIIoT) Based Decision-Making- KSK Approach in Drones for Climate Change Study, 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS), Gobichettipalayam, India, 2024, pp. 1735-1744, doi: 10.1109/ICUIS64676.2024.10866450.
- [14]. K. Rajendra Prasad, Santoshachandra Rao Karanam et al. (2024). AI in public-private partnership for IT infrastructure development, *Journal of High Technology Management Research*, Volume 35, Issue 1, May 2024, 100496. https://doi.org/10.1016/j.hitech.2024.100496
- [15]. K. K. S. Liyakat. (2023).Detecting Malicious Nodes in IoT Networks Using Machine Learning and Artificial Neural Networks, 2023 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 2023, pp. 1-5, doi:10.1109/ESCI56872.2023.10099544. Available at: https://ieeexplore.ieee.org/document/10099544/
- [16]. K. Kasat, N. Shaikh, V. K. Rayabharapu, and M. Nayak. (2023). Implementation and Recognition of Waste Management System with Mobility Solution in Smart Cities using Internet of Things, 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India, 2023, pp. 1661-1665, doi: 10.1109/ICAISS58487.2023.10250690 . Available at: https://ieeexplore.ieee.org/document/10250690/
- [17]. Kazi, K. (2024a). AI-Driven IoT (AIIoT) in Healthcare Monitoring. In T. Nguyen & N. Vo (Eds.), *Using Traditional Design Methods to Enhance AI-Driven Decision Making* (pp. 77-101). IGI Global. https://doi.org/10.4018/979-8-3693-0639-0.ch003 available at: https://www.igi-global.com/chapter/aidriven-iot-aiiot-in-healthcare-monitoring/336693
- [18]. Kazi, K. (2024b). Modelling and Simulation of Electric Vehicle for Performance Analysis: BEV and HEV Electrical Vehicle Implementation Using Simulink for E-Mobility Ecosystems. In L. D., N. Nagpal, N. Kassarwani, V. Varthanan G., & P. Siano (Eds.), E-Mobility in Electrical Energy Systems for Sustainability (pp. 295-320). IGI Global.https://doi.org/10.4018/979-8-3693-2611-4.ch014 Available at: https://www.igi-global.com/gateway/chapter/full-text-pdf/341172
- [19]. Kazi, K. (2025). Machine Learning-Powered IoT (MLIoT) for Retail Apparel Industry. In T. Tarnanidis, E. Papachristou, M. Karypidis, & V. Manda (Eds.), *Sustainable Practices in the Fashion and Retail Industry* (pp. 345-372). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9959-0.ch015
- [20]. Kazi, K. S. (2025). Braille-Lippi Numbers and Characters Detection and Announcement System for Blind Children Using KSK Approach: AI-Driven Decision-Making Approach. In T. Murugan, K. P., & A.

International Journal of Advanced Research in Science, Communication and Technology

y SOUTH COUNTY

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

- Abirami (Eds.), Driving Quality Education Through AI and Data Science (pp. 531-556). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8292-9.ch023
- [21]. Kazi, K. S. (2025). AI-Driven IoT (AIIoT)-Based Decision-Making System for High BP Patient Healthcare Monitoring: KSK1 Approach for BP Patient Healthcare Monitoring. In T. Mzili, A. Arya, D. Pamucar, & M. Shaheen (Eds.), Optimization, Machine Learning, and Fuzzy Logic: Theory, Algorithms, and Applications (pp. 71-102). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7352-1.ch003
- [22]. Kazi, K. S. (2025a). Advancing Towards Sustainable Energy With Hydrogen Solutions: Adaptation and Challenges. In F. Özsungur, M. Chaychi Semsari, & H. Küçük Bayraktar (Eds.), Geopolitical Landscapes of Renewable Energy and Urban Growth (pp. 357-394). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8814-3.ch013
- [23]. Kazi, S. (2024). Machine Learning-Based Pomegranate Disease Detection and Treatment. In M. Zia Ul Haq & I. Ali (Eds.), *Revolutionizing Pest Management for Sustainable Agriculture* (pp. 469-498). IGI Global. https://doi.org/10.4018/979-8-3693-3061-6.ch019
- [24]. Kazi, S. (2024a). Computer-Aided Diagnosis in Ophthalmology: A Technical Review of Deep Learning Applications. In M. Garcia & R. de Almeida (Eds.), *Transformative Approaches to Patient Literacy and Healthcare Innovation* (pp. 112-135). IGI Global. https://doi.org/10.4018/979-8-3693-3661-8.ch006 Available at: https://www.igi-global.com/chapter/computer-aided-diagnosis-in-ophthalmology/342823
- [25]. Kazi, S. (2024b). IoT Driven by Machine Learning (MLIoT) for the Retail Apparel Sector. *In T. Tarnanidis, E. Papachristou, M. Karypidis, & V. Ismyrlis (Eds.), Driving Green Marketing in Fashion and Retail* (pp. 63-81). IGI Global. https://doi.org/10.4018/979-8-3693-3049-4.ch004
- [26]. Kazi, S. (2025c). AI-Driven-IoT (AIIoT)-Based Decision Making in Drones for Climate Change: KSK Approach. *In S. Aouadni & I. Aouadni (Eds.), Recent Theories and Applications for Multi-Criteria Decision-Making* (pp. 311-340). IGI Global. https://doi.org/10.4018/979-8-3693-6502-1.ch011
- [27]. Kazi, S. (2024d). Artificial Intelligence (AI)-Driven IoT (AIIoT)-Based Agriculture Automation. In S. Satapathy & K. Muduli (Eds.), *Advanced Computational Methods for Agri-Business Sustainability* (pp. 72-94). IGI Global. https://doi.org/10.4018/979-8-3693-3583-3.ch005
- [28]. Kazi, S. (2025). Machine Learning-Driven Internet of Medical Things (ML-IoMT)-Based Healthcare Monitoring System. In B. Soufiene & C. Chakraborty (Eds.), Responsible AI for Digital Health and Medical Analytics (pp. 49-86). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6294-5.ch003
- [29]. Kazi, S. (2025a). Transformation of Agriculture Effectuated by Artificial Intelligence-Driven Internet of Things (AIIoT). In J. Garwi, M. Dzingirai, & R. Masengu (Eds.), *Integrating Agriculture, Green Marketing Strategies, and Artificial Intelligence* (pp. 449-484). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6468-0.ch015
- [30]. K S K, (2024c). Vehicle Health Monitoring System (VHMS) by Employing IoT and Sensors, *Grenze International Journal of Engineering and Technology*, Vol 10, Issue 2, pp- 5367-5374. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3371&id=8
- [31]. K S K, (2024e). A Novel Approach on ML based Palmistry, Grenze International Journal of Engineering and Technology, Vol 10, Issue 2, pp- 5186-5193. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3344&id=8
- [32]. K S K, (2024f).IoT based Boiler Health Monitoring for Sugar Industries, Grenze International Journal of Engineering and Technology, Vol 10, Issue 2, pp. 5178 -5185. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3343&id=8
- [33]. Keerthana, R., K, V., Bhagyalakshmi, K., Papinaidu, M., V, V., & Liyakat, K. K. S. (2025). Machine learning based risk assessment for financial management in big data IoT credit. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5086671

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

- [34]. Kazi, K. S. (2025d). AI-Driven-IoT (AIIoT)-Based Jawar Leaf Disease Detection: KSK Approach for Jawar Disease Detection. *In U. Bhatti, M. Aamir, Y. Gulzar, & S. Ullah Bazai (Eds.), Modern Intelligent Techniques for Image Processing* (pp. 439-472). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9045-0.ch019
- [35]. Kazi, K. S. (2025e). AI-Powered-IoT (AIIoT)-Based Decision-Making System for BP-Patient Healthcare Monitoring: BP-Patient Health Monitoring Using KSK Approach. *In M. Lytras & S. Alajlan (Eds.), Transforming Pharmaceutical Research With Artificial Intelligence* (pp. 189-218). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6270-9.ch007
- [36]. Kazi, K. S. (2025f). A Study on AI-Driven Internet of Battlefield Things (IoBT)-Based Decision Making: KSK Approach in IoBT. In M. Tariq (Ed.), *Merging Artificial Intelligence With the Internet of Things* (pp. 203-238). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8547-0.ch007
- [37]. Kazi, K. S. (2025g). KK Approach to Increase Resilience in Internet of Things: A T-Cell Security Concept. In M. Almaiah & S. Salloum (Eds.), Cryptography, Biometrics, and Anonymity in Cybersecurity Management (pp. 199-228). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8014-7.ch010
- [38]. Kutubuddin Kazi (2024). Explainable AI in Healthcare. In: Explainable Artificial Intelligence in healthcare System, editors: *A. Anitha Kamaraj, Debi Prasanna Acharjya*. ISBN: 979-8-89113-598-7. **DOI**: https://doi.org/10.52305/GOMR8163
- [39]. Kutubuddin Kazi, (2024a). Machine Learning (ML)-Based Braille Lippi Characters and Numbers Detection and Announcement System for Blind Children in Learning, *In Gamze Sart (Eds.), Social Reflections of Human-Computer Interaction in Education, Management, and Economics, IGI Global*. https://doi.org/10.4018/979-8-3693-3033-3.ch002
- [40]. Liyakat, K.K.S. (2023a). Machine Learning Approach Using Artificial Neural Networks to Detect Malicious Nodes in IoT Networks. In: Shukla, P.K., Mittal, H., Engelbrecht, A. (eds) Computer Vision and Robotics. CVR 2023. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-4577-1 3
- [41]. Liyakat Kazi, K. S. (2024). ChatGPT: An Automated Teacher's Guide to Learning. *In R. Bansal, A. Chakir, A. Hafaz Ngah, F. Rabby, & A. Jain (Eds.), AI Algorithms and ChatGPT for Student Engagement in Online Learning* (pp. 1-20). IGI Global. https://doi.org/10.4018/979-8-3693-4268-8.ch001
- [42]. Liyakat. (2025). IoT Technologies for the Intelligent Dairy Industry: A New Challenge. In S. Thandekkattu& N. Vajjhala (Eds.), *Designing Sustainable Internet of Things Solutions for Smart Industries* (pp. 321-350). IGI Global. https://doi.org/10.4018/979-8-3693-5498-8.ch012
- [43]. Liyakat, K. K. (2025a). Heart Health Monitoring Using IoT and Machine Learning Methods. In A. Shaik (Ed.), *AI-Powered Advances in Pharmacology* (pp. 257-282). IGI Global. https://doi.org/10.4018/979-8-3693-3212-2.ch010
- [44]. Liyakat. (2025d). AI-Driven-IoT(AIIoT)-Based Decision Making in Kidney Diseases Patient Healthcare Monitoring: KSK Approach for Kidney Monitoring. In L. Özgür Polat & O. Polat (Eds.), AI-Driven Innovation in Healthcare Data Analytics (pp. 277-306). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7277-7.ch009
- [45]. Liyakat, K.K.S. (2024). Machine Learning Approach Using Artificial Neural Networks to Detect Malicious Nodes in IoT Networks. *In: Udgata, S.K., Sethi, S., Gao, XZ. (eds) Intelligent Systems. ICMIB 2023. Lecture Notes in Networks and Systems, vol 728. Springer, Singapore.*https://doi.org/10.1007/978-981-99-3932-9 12 available at: https://link.springer.com/chapter/10.1007/978-981-99-3932-9 12
- [46]. M Pradeepa, et al. (2022). Student Health Detection using a Machine Learning Approach and IoT, 2022 IEEE 2nd Mysore sub section International Conference (MysuruCon), 2022. Available at: https://ieeexplore.ieee.org/document/9972445

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

- [47]. Mahant, M. A. (2025). Machine Learning-Driven Internet of Things (MLIoT)-Based Healthcare Monitoring System. In N. Wickramasinghe (Ed.), *Digitalization and the Transformation of the Healthcare* Sector (pp. 205-236). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9641-4.ch007
- [48]. Mulani AO, Liyakat KKS, Warade NS, et al (2025). ML-powered Internet of Medical Things Structure for Heart Disease Prediction. *Journal of Pharmacology and Pharmacotherapeutics*. 2025; 0(0). doi:10.1177/0976500X241306184
- [49]. Odnala, S., Shanthy, R., Bharathi, B., Pandey, C., Rachapalli, A., & Liyakat, K. K. S. (2025). Artificial Intelligence and Cloud-Enabled E-Vehicle Design with Wireless Sensor Integration. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5107242
- [50]. P. Neeraja, R. G. Kumar, M. S. Kumar, K. K. S. Liyakat and M. S. Vani. (2024), DL-Based Somnolence Detection for Improved Driver Safety and Alertness Monitoring. 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), Greater Noida, India, 2024, pp. 589-594, doi: 10.1109/IC2PCT60090.2024.10486714. Available at: https://ieeexplore.ieee.org/document/10486714
- [51]. Prashant K Magadum (2024). Machine Learning for Predicting Wind Turbine Output Power in Wind Energy Conversion Systems, *Grenze International Journal of Engineering and Technology*, Jan Issue, Vol 10, Issue 1, pp. 2074-2080. Grenze ID: 01.GIJET.10.1.4_1 Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=2514&id=8
- [52]. Priya Mangesh Nerkar, Bhagyarekha Ujjwalganesh Dhaware. (2023). Predictive Data Analytics Framework Based on Heart Healthcare System (HHS) Using Machine Learning, *Journal of Advanced Zoology*, 2023, Volume 44, Special Issue -2, Page 3673:3686. Available at: https://jazindia.com/index.php/jaz/article/view/1695
- [53]. Priya Nerkar and Sultanabanu, (2024). IoT-Based Skin Health Monitoring System, International Journal of Biology, Pharmacy and Allied Sciences (IJBPAS). 2024, 13(11): 5937-5950. https://doi.org/10.31032/IJBPAS/2024/13.11.8488
- [54]. S. B. Khadake, A. B. Chounde, A. A. Suryagan, M. H. M. and M. R. Khadatare, (2024). AI-Driven-IoT(AIIoT) Based Decision Making System for High-Blood Pressure Patient Healthcare Monitoring, 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 2024, pp. 96-102, doi: 10.1109/ICSCNA63714.2024.10863954.
- [55]. Sayyad. (2025a). AI-Powered-IoT (AIIoT)-Based Decision-Making System for BP Patient's Healthcare Monitoring: KSK Approach for BP Patient Healthcare Monitoring. In S. Aouadni& I. Aouadni (Eds.), Recent Theories and Applications for Multi-Criteria Decision-Making (pp. 205-238). IGI Global.https://doi.org/10.4018/979-8-3693-6502-1.ch008
- [56]. Sayyad (2025b). AI-Powered IoT (AI IoT) for Decision-Making in Smart Agriculture: KSK Approach for Smart Agriculture. In S. Hai-Jew (Ed.), *Enhancing Automated Decision-Making Through AI* (pp. 67-96). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6230-3.ch003
- [57]. Sayyad (2025c). KK Approach to Increase Resilience in Internet of Things: A T-Cell Security Concept. In D. Darwish & K. Charan (Eds.), Analyzing Privacy and Security Difficulties in Social Media: New Challenges and Solutions (pp. 87-120). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9491-5.ch005
- [58]. Sayyad, (2025). KK Approach for IoT Security: T-Cell Concept. In Rajeev Kumar, Sheng-Lung Peng, & Ahmed Elngar (Eds.), *Deep Learning Innovations for Securing Critical Infrastructures*. IGI Global Scientific Publishing.
- [59]. Sayyad (2025d). Healthcare Monitoring System Driven by Machine Learning and Internet of Medical Things (MLIoMT). *In V. Kumar, P. Katina, & J. Zhao (Eds.), Convergence of Internet of Medical Things (IoMT) and Generative AI* (pp. 385-416). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6180-1.ch016
- [60]. Shinde, S. S., Nerkar, P. M., Kazi, S. S., & Kazi, V. S. (2025). Machine Learning for Brand Protection: A Review of a Proactive Defense Mechanism. *In M. Khan & M. Amin Ul Haq (Eds.), Avoiding Ad Fraud and*

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

- Supporting Brand Safety: Programmatic Advertising Solutions (pp. 175-220). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7041-4.ch007
- Upadhyaya, A. N., Surekha, C., Malathi, P., Suresh, G., Suriyan, K., & Liyakat, K. K. S. (2025). [61].Pioneering cognitive computing for transformative healthcare innovations. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5086894.
- [62]. Ashit Gaikwad, Amogsidha Chendke, Nizam Mulani, and Mangrule Sarika, "Submersible Pump Theft Indicator", IEJRD - International Multidisciplinary Journal, vol. 5, no. 4, p. 5, May 2020. Available at: https://www.iejrd.com/index.php/%20/article/view/627
- [63]. Mr. Akhilesh Raut, Mr. Mahesh Mali, Miss. Trupti Mashale, Prof. Kazi K. S. (2018). Bagasse Level Monitoring System, International Journal of Trend in Scientific Research and Development (ijtsrd), Volume-2, Issue-3, April 2018, pp.1657-1659, URL: https://www.ijtsrd.com/papers/ijtsrd11469.pdf
- [64]. Altaf Osman Mulani, Rajesh Maharudra Patil "Discriminative Appearance Model For Robust Online Multiple Target Tracking", Telematique, 2023, Vol 22, Issue 1, pp. 24-43.
- M Sunil Kumar, D Ganesh, Anil V Turukmane, Umamaheswararao Batta, "Deep Convolution Neural [65]. Network based solution for detecting plant Diseases", Journal of Pharmaceutical Negative Results, 2022, Vol 13, Special Issue- I, pp. 464-471,
- Halli U M, "Nanotechnology in IoT Security", Journal of Nanoscience, Nanoengineering & Applications, [66].2022, Vol 12, issue 3, pp. 11 – 16.
- Wale Anjali D., Rokade Dipali, et al, "Smart Agriculture System using IoT", International Journal of [67]. Innovative Research In Technology, 2019, Vol 5, Issue 10, pp.493 - 497.
- [68]. Kazi K. S., "Significance And Usage Of Face Recognition System", Scholarly Journal For Humanity Science and English Language, 2017, Vol 4, Issue 20, pp. 4764 - 4772.
- Miss. A. J. Dixit, et al, "Iris Recognition by Daugman's Method", International Journal of Latest [69]. Technology in Engineering, Management & Applied Science, 2015, Vol 4, Issue 6, pp 90 - 93.
- [70]. Kazi K S L, "Significance of Projection and Rotation of Image in Color Matching for High-Quality Panoramic Images used for Aquatic study", International Journal of Aquatic Science, 2018, Vol 09, Issue 02, pp. 130 - 145.
- Halli U.M., "Nanotechnology in E-Vehicle Batteries", International Journal of Nanomaterials and Nanostructures. 2022; Vol 8, Issue 2, pp. 22-27.
- [72]. Pankaj R Hotkar, Vishal Kulkarni, et al, "Implementation of Low Power and area efficient carry select Adder", International Journal of Research in Engineering, Science and Management, 2019, Vol 2, Issue 4, pp. 183 - 184.
- [73]. Kazi K S, "Detection of Malicious Nodes in IoT Networks based on Throughput and ML", Journal of Electrical and Power System Engineering, 2023, Volume-9, Issue 1, pp. 22-29.
- [74]. Karale Nikita, Jadhav Supriya, et al, "Design of Vehicle system using CAN Protocol", International Journal of Research in Applied science and Engineering Technology, 2020, Vol 8, issue V, pp. 1978 -1983, http://doi.org/10.22214/ijraset.2020.5321.
- [75]. K. Kazi, "Lassar Methodology for Network Intrusion Detection", Scholarly Research Journal for Humanity science and English Language, 2017, Vol 4, Issue 24, pp.6853 - 6861.
- Miss Argonda U A, "Review paper for design and simulation of a Patch antenna by using HFSS", [76]. International Journal of Trends in Scientific Research and Development, 2018, Vol 2, issue-2, pp. 158 -
- Kazi K., "Hybrid optimum model development to determine the Break", Journal of Multimedia [77]. Technology & Recent Advancements, 2022, vol 9, issue 2, pp. 24 – 32.
- Ms. Yogita Shirdale, et al, "Analysis and design of Capacitive coupled wideband Microstrip antenna in C and X band: A Survey", Journal GSD-International society for green, Sustainable Engineering and Management, 2014, Vol 1, issue 15, pp. 1 - 7.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

- [79]. Ms. Shweta Nagare, et al., "Different Segmentation Techniques for brain tumor detection: A Survey", MM- International society for green, Sustainable Engineering and Management, 2014, Vol 1, issue 14, pp.29 35.
- [80]. Kazi K., "Reverse Engineering's Neural Network Approach to human brain", Journal of Communication Engineering & Systems, 2022, vol 12, issue 2, pp. 17 24.
- [81]. Miss. A. J. Dixit, et al, "A Review paper on Iris Recognition", Journal GSD International society for green, Sustainable Engineering and Management, 2014, Vol 1, issue 14, pp. 71 81.
- [82]. Ms. Shweta Nagare, et al., "An Efficient Algorithm brain tumor detection based on Segmentation and Thresholding", Journal of Management in Manufacturing and services, 2015, Vol 2, issue 17, pp.19 27.
- [83]. Kazi K., "Model for Agricultural Information system to improve crop yield using IoT", Journal of open Source development, 2022, vol 9, issue 2, pp. 16 24.
- [84]. Miss. A. J. Dixit, et al, "Iris Recognition by Daugman's Algorithm an Efficient Approach", Journal of applied Research and Social Sciences, 2015, Vol 2, issue 14, pp. 1 4.
- [85]. Shirgan S S, "Face Recognition based on Principal Component Analysis and Feed Forward Neural Network", National Conference on Emerging trends in Engineering, Technology, Architecture, 2010, pp. 250 253.
- [86]. Ms. Yogita Shirdale, et al., "Coplanar capacitive coupled probe fed micro strip antenna for C and X band", International Journal of Advanced Research in Computer and Communication Engineering, 2016, Vol 5, Issue 4, pp. 661 663.
- [87]. Ravi Aavula, Amar Deshmukh, V A Mane, et al, "Design and Implementation of sensor and IoT based Remembrance system for closed one", Telematique, 2022, Vol 21, Issue 1, pp. 2769 2778.
- [88]. Salunke Nikita, et al, "Announcement system in Bus", Journal of Image Processing and Intelligent remote sensing, 2022, Vol 2, issue 6.
- [89]. Madhupriya Sagar Kamuni, et al, "Fruit Quality Detection using Thermometer", Journal of Image Processing and Intelligent Remote Sensing, 2022, Vol 2, Issue 5.
- [90]. Shweta Kumtole, et al, "Automatic wall painting robot Automatic wall painting robot", Journal of Image Processing and Intelligent remote sensing, 2022, Vol 2, issue 6
- [91]. Kadam Akansha, et al, "Email Security", Journal of Image Processing and Intelligent remote sensing, 2022, Vol 2, issue 6.
- [92]. K. Kazi, "Systematic Survey on Alzheimer (AD) Diseases Detection", 2022.
- [93]. K. Kazi, "A Review paper Alzheimer", 2022.
- [94]. Mrunal M Kapse, et al, "Smart Grid Technology", International Journal of Information Technology and Computer Engineering, Vol 2, Issue 6.
- [95]. Satpute Pratiskha Vaijnath, Mali Prajakta et al. "Smart safty Device for Women", *International Journal of Aquatic Science*, 2022, Vol 13, Issue 1, pp. 556 560.
- [96]. Miss. Priyanka M Tadlagi, et al, "Depression Detection", *Journal of Mental Health Issues and Behavior (JHMIB)*, 2022, Vol 2, Issue 6, pp. 1 7.
- [97]. Waghmare Maithili, et al, "Smart watch system", *International journal of information Technology and computer engineering (IJITC)*, 2022, Vol 2, issue 6, pp. 1 9.
- [98]. Prof. Kazi Kutubuddin S. L., "Situation Invariant face recognition using PCA and Feed Forward Neural network", *Proceeding of International Conference on Advances in Engineering, Science and Technology*, 2016, pp. 260- 263.
- [99]. Prof. Kazi Kutubuddin S. L., "An Approach on Yarn Quality Detection for Textile Industries using Image Processing", *Proceeding of International Conference on Advances in Engineering, Science and Technology*, 2016, pp. 325-330.
- [100]. Divya Swami, et al, "Sending notification to someone missing you through smart watch", *International journal of information Technology & computer engineering (IJITC)*, 2022, Vol 2, issue 8, pp. 19 24.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025 Impact Factor: 7.67

81-9429 Volume 5, Issue 3, October

- [101]. Shreya Kalmkar, Afrin, et al., "3D E-Commers using AR", *International Journal of Information Technology & Computer Engineering (IJITC)*, 2022, Vol 2, issue 6, pp. 18-27.
- [102]. Kazi Kutubuddin S. L., "Predict the Severity of Diabetes cases, using K-Means and Decision Tree Approach", *Journal of Advances in Shell Programming*, 2022, Vol 9, Issue 2, pp. 24-31.
- [103]. K. K. Sayyad Liyakat, "Nanotechnology Application in Neural Growth Support System", *Nano Trends: A Journal of Nanotechnology and Its Applications*, 2022, Vol 24, issue 2, pp. 47 55.
- [104]. Kazi Kutubuddin S. L., "A novel Design of IoT based 'Love Representation and Remembrance' System to Loved One's", *Gradiva Review Journal*, 2022, Vol 8, Issue 12, pp. 377 383.
- [105]. Sakshi M. Hosmani, et al., "Implementation of Electric Vehicle system", *Gradiva Review Journal*, 2022, Vol 8, Issue 12, pp. 444 449.
- [106]. K. K., "Multiple object Detection and Classification using sparsity regularized Pruning on Low quality Image/ video with Kalman Filter Methodology (Literature review)", 2022.
- [107]. K. Kazi, "Smart Grid energy saving technique using Machine Learning" *Journal of Instrumentation Technology and Innovations*, 2022, Vol 12, Issue 3, pp. 1 10.
- [108]. Prof. Vinay S, et al, "Multiple object detection and classification based on Pruning using YOLO", Lambart Publications, 2022, ISBN – 978-93-91265-44-1
- [109]. Kazi Kutubuddin S. L., "Business Mode and Product Life Cycle to Improve Marketing in Healthcare Units", *E-Commerce for future & Trends*, 2022, vol 9, issue 3, pp. 1-9.
- [110]. Dr. A. O. Mulani, "Effect of Rotation and Projection on Real time Hand Gesture Recognition system for Human Computer Interaction", *Journal of The Gujrat Research Society*, 2019, Vol 21, issue 16, pp. 3710 3718.
- [111]. Kazi K S, "IoT based Healthcare system for Home Quarantine People", *Journal of Instrumentation and Innovation sciences*, 2023, Vol 8, Issue 1, pp. 1-8.
- [112]. Ms. Machha Babitha, C Sushma, et al, "Trends of Artificial Intelligence for online exams in education", *International journal of Early Childhood special Education*, 2022, Vol 14, Issue 01, pp. 2457-2463.
- [113]. Dr. J. Sirisha Devi, Mr. B. Sreedhar, et al, "A path towards child-centric Artificial Intelligence based Education", *International Journal of Early Childhood special Education*, 2022, Vol 14, Issue 03, pp. 9915-9922.
- [114]. Mr. D. Sreenivasulu, Dr. J. Sirishadevi, et al, "Implementation of Latest machine learning approaches for students Grade Prediction", *International Journal of Early Childhood special Education*, 2022, Vol 14, Issue 03, pp. 9887-9894.
- [115]. Nilima S. Warhade, Rahul S. Pol, Hemlata M. Jadhav, Altaf O. Mulani, "Yarn Quality detection for Textile Industries using Image Processing", *Journal of Algebraic Statistics*, 2022, Vol 13, Issue 3, pp. 3465-3472.
- [116]. Rahul S. Pole, Amar Deshmukh, Makarand Jadhav, et al, "iButton Based Physical access Authorization and security system", *Journal of Algebraic Statistics*, 2022, Vol 13, issue 3, pp. 3822-3829.
- [117]. V A Mane, Dr K P Pardeshi, Dr. D.B Kadam, Dr. Pandyaji K K, "Development of Pose invariant Face Recognition method based on PCA and Artificial Neural Network", *Journal of Algebraic Statistics*, 2022, Vol 13, issue 3, pp. 3676-3684.
- [118]. Dr. K. P. Pardeshi et al, "Development of Machine Learning based Epileptic Seizureprediction using Web of Things (WoT)", *NeuroQuantology*, 2022, Vol 20, Issue 8, pp. 9394- 9409.
- [119]. Dr. K. P. Pardeshi et al, "Implementation of Fault Detection Framework for Healthcare Monitoring System Using IoT, Sensors in Wireless Environment", *Telematique*, 2022, Vol 21, Issue 1, pp. 5451 5460.
- [120]. Dr. B. D. Kadam et al, "Implementation of Carry Select Adder (CSLA) for Area, Delay and Power Minimization", Telematique, 2022, Vol 21, issue 1, pp. 5461 5474.
- [121]. Kazi K S L, "IoT-based weather Prototype using WeMos", *Journal of Control and Instrumentation Engineering*, 2023, Vol 9, Issue 1, pp. 10 22.
- [122]. Ravi A., et al, "Pattern Recognition- An Approach towards Machine Learning", Lambert Publications, 2022, ISBN-978-93-91265-58-8

International Journal of Advanced Research in Science, Communication and Technology

9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

- [123]. Kazi Kutubuddin, "Detection of Malicious Nodes in IoT Networks based on packet loss using ML", Journal of Mobile Computing, Communication & mobile Networks, 2022, Vol 9, Issue 3, pp. 9-16.
- [124]. Kazi Kutubuddin, "Big data and HR Analytics in Talent Management: A Study", *Recent Trends in Parallel Computing*, 2022, Vol 9, Issue 3, pp. 16-26.
- [125]. Kazi K S, "IoT-Based Healthcare Monitoring for COVID-19 Home Quarantined Patients", *Recent Trends in Sensor Research & Technology*, 2022, Vol 9, Issue 3. pp. 26 32.
- [126]. Gouse Mohiuddin Kosgiker, "Machine Learning- Based System, Food Quality Inspection and Grading in Food industry", *International Journal of Food and Nutritional Sciences*, 2018, Vol 11, Issue 10, pp. 723-730.
- [127]. U M Halli, Voltage Sag Mitigation Using DVR and Ultra Capacitor. *Journal of Semiconductor Devices and Circuits*. 2022; 9(3): 21–31p.
- [128]. Kazi Kutubuddin, "Blockchain-Enabled IoT Environment to Embedded System a Self-Secure Firmware Model", Journal of Telecommunication study, 2023, Vol 8, Issue 1.
- [129]. Kazi Kutubuddin, "A Study HR Analytics Big Data in Talent Management", *Research and Review: Human Resource and Labour Management*, 2023, Volume-4, Issue-1, pp. 16-28.
- [130]. Narender Chinthamu, M. Prasad, "Self-Secure firmware model for Blockchain-Enabled IOT environment to Embedded system", *Eur. Chem. Bull.*, 2023, 12(S3), pp. 653 660. DOI:10.31838/ecb/2023.12.s3.075
- [131]. Vahida, et al, "Deep Learning, YOLO and RFID based smart Billing Handcart", *Journal of Communication Engineering & Systems*, 2023, 13(1), pp. 1-8.
- [132]. Kazi Kutubuddin Sayyad Liyakat, "Analysis for Field distribution in Optical Waveguide using Linear Fem method", *Journal of Optical communication Electronics*, 2023, Vol 9, Issue 1, pp. 23-28.
- [133]. Miss. Mamdyal, Miss. Sandupatia, et al, "GPS Tracking System", *International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)*, 2022, Vol 2, issue- 1, pp. 2492 2529, Available at: https://ijarsct.co.in/A7317.pdf
- [134]. Rajesh Maharudra Patil, "Modelo De Apariencia Discriminatorio Para Un Sólido Seguimiento En Línea De Múltiples Objetivos", *Telematique*, 2023, Vol 22, Issue 1, pp. 24- 43.
- [135]. Karale Aishwarya A, et al, "Smart Billing Cart Using RFID, YOLO and Deep Learning for Mall Administration", *International Journal of Instrumentation and Innovation Sciences*, 2023, Vol 8, Issue-2.
- [136]. Sultanabanu Kazi, et al.(2023), Fruit Grading, Disease Detection, and an Image Processing Strategy, *Journal of Image Processing and Artificial Intelligence*, 9(2), 17-34.
- [137]. Sultanabanu Kazi, Mardanali Shaikh, "Machine Learning in the Production Process Control of Metal Melting" *Journal of Advancement in Machines*, Volume 8 Issue 2 (2023).
- [138]. Kazi Kutubuddin Sayyad Liyakat, "IoT based Smart HealthCare Monitoring", *In: Rhituraj Saikia (eds), Liberation of Creativity: Navigating New Frontiers in Multidisciplinary Research*, Vol. 2, July 2023, pp. 456-477, ISBN: 979-8852143600
- [139]. Kazi Kutubuddin Sayyad Liyakat, "IoT based Substation Health Monitoring", *In: Rhituraj Saikia (eds), Magnification of Research: Advanced Research in Social Sciences and Humanities*, Volume 2, October 2023, pp. 160 171, ISBN: 979-8864297803
- [140]. Priya Mangesh Nerkar, Sunita Sunil Shinde, et al, "Monitoring Fresh Fruit and Food Using IoT and Machine Learning to Improve Food Safety and Quality", *Tuijin Jishu/Journal of Propulsion Technology*, Vol. 44, No. 3, (2023), pp. 2927 2931.
- [141]. Kazi Sultanabanu Sayyad Liyakat (2023). Integrating IoT and Mechanical Systems in Mechanical Engineering Applications, *Journal of Mechanical Robotics*, 8(3), 1-6.
- [142]. Kazi Sultanabanu Sayyad Liyakat (2023). IoT Changing the Electronics Manufacturing Industry, *Journal of Analog and Digital Communications*, 8(3), 13-17.
- [143]. Kazi Sultanabanu Sayyad Liyakat (2023). IoT in the Electric Power Industry, *Journal of Controller and Converters*, 8(3), 1-7.

International Journal of Advanced Research in Science, Communication and Technology

9001:2

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

- [144]. Kazi Sultanabanu Sayyad Liyakat (2023). Review of Integrated Battery Charger (IBC) for Electric Vehicles (EV), *Journal of Advances in Electrical Devices*, 8(3), 1-11.
- [145]. Kazi Sultanabanu Sayyad Liyakat (2023). ML in the Electronics Manufacturing Industry, *Journal of Switching Hub*, 8(3), 9-13.
- [146]. Kazi Sultanabanu Sayyad Liyakat (2023). IoT in Electrical Vehicle: A Study, *Journal of Control and Instrumentation Engineering*, 9(3), 15-21.
- [147]. Kazi Sultanabanu Sayyad Liyakat (2023). PV Power Control for DC Microgrid Energy Storage Utilisation, *Journal of Digital Integrated Circuits in Electrical Devices*, 8(3), 1-8.
- [148]. Kazi Sultanabanu Sayyad Liyakat (2023). Electronics with Artificial Intelligence Creating a Smarter Future: A Review, *Journal of Communication Engineering and Its Innovations*, 9(3), 38-42.
- [149]. Kazi Sultanabanu Sayyad Liyakat (2023). Dispersion Compensation in Optical Fiber: A Review, *Journal of Telecommunication Study*, 8(3), 14-19.
- [150]. Kazi Sultanabanu Sayyad Liyakat (2023). IoT Based Arduino-Powered Weather Monitoring System, Journal of Telecommunication Study, 8(3), 25-31.
- [151]. Kazi Sultanabanu Sayyad Liyakat (2023). Arduino Based Weather Monitoring System, *Journal of Switching Hub*, 8(3), 24-29.
- [152]. V D Gund, et al. (2023). PIR Sensor-Based Arduino Home Security System, *Journal of Instrumentation and Innovation Sciences*, 8(3), 33-37.
- [153]. Kazi Kutubuddin Sayyad Liyakat (2023), System for Love Healthcare for Loved Ones based on IoT. Research Exploration: Transcendence of Research Methods and Methodology, Volume 2, ISBN: 979-8873806584, ASIN: B0CRF52FSX
- [154]. K K S Liyakat (2022). Implementation of e-mail security with three layers of authentication, *Journal of Operating Systems Development and Trends*, 9(2), 29-35.
- [155]. Mishra Sunil B., et al. (2024). Nanotechnology's Importance in Mechanical Engineering, *Journal of Fluid Mechanics and Mechanical Design*, 6(1), 1-9.
- [156]. Kazi Kutubuddin Sayyad Liyakat (2024). Blynk IoT-Powered Water Pump-Based Smart Farming, *Recent Trends in Semiconductor and Sensor Technology*, 1(1), 8-14.
- [157]. Sultanabanu Sayyad Liyakat, (2024). IoT-based Alcohol Detector using Blynk, *Journal of Electronics Design and Technology*, 1(1), 10-15.
- [158]. Kazi Sultanabanu Sayyad Liyakat, (2023). Accepting Internet of Nano-Things: Synopsis, Developments, and Challenges. *Journal of Nanoscience, Nanoengineering & Applications*. 2023; 13(2): 17–26p. DOI: https://doi.org/10.37591/jonsnea.v13i2.1464
- [159]. Mishra Sunil B., et al. (2024). Review of the Literature and Methodological Structure for IoT and PLM Integration in the Manufacturing Sector, *Journal of Advancement in Machines*, 9(1), 1-5.
- [160]. Mishra Sunil B., et al. (2024). AI-Driven IoT (AI IoT) in Thermodynamic Engineering, *Journal of Modern Thermodynamics in Mechanical System*, 6(1), 1-8.
- [161]. Kazi Kutubuddin Sayyad Liyakat (2024). Impact of Solar Penetrations in Conventional Power Systems and Generation of Harmonic and Power Quality Issues, *Advance Research in Power Electronics and Devices*, 1(1), 10-16.
- [162]. Sayyad Liyakat. Intelligent Watering System (IWS) for Agricultural Land Utilising Raspberry Pi. *Recent Trends in Fluid Mechanics*. 2023; 10(2): 26–31p.
- [163]. Sunil Shivaji Dhanwe, et al. (2024). Al-driven IoT in Robotics: A Review, *Journal of Mechanical Robotics*, 9(1), 41-48.
- [164]. Kazi Sultanabanu Sayyad Liyakat, Kazi Kutubuddin Sayyad Liyakat. Nanomedicine as a Potential Therapeutic Approach to COVID-19. International Journal of Applied Nanotechnology. 2023; 9(2): 27–35p.
 Available
 at:

https://materials.journalspub.info/index.php?journal=IJAN&page=article&op=view&path%5B%5D=1038

International Journal of Advanced Research in Science, Communication and Technology

9001:2015

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

[165]. Megha Nagrale, Rahul S. Pol, Ganesh B. Birajadar, Altaf O. Mulani, (2024). Internet of Robotic Things in Cardiac Surgery: An Innovative Approach, *African Journal of Biological Sciences*, Vol 6, Issue 6, pp. 709-725 doi: 10.33472/AFJBS.6.6.2024.709-725

- [166]. *Kazi Kutubuddin Sayyad Liyakat, (2023)*. IoT based Healthcare Monitoring for COVID- Subvariant JN-1, *Journal of Electronic Design Technology*, Vol 14, No 3 (2023).
- [167]. *Kazi Kutubuddin Sayyad Liyakat (2023)*. Smart Motion Detection System using IoT: A NodeMCU and Blynk Framework, *Journal of Microelectronics and Solid State Devices*, Vol 10, No 3 (2023).
- [168]. Chopade Mallikarjun Abhangrao (2024), Internet of Things in Mechatronics for Design and Manufacturing: A Review, *Journals of Mechatronics Machine Design and Manufacturing*, Vol 6, Issue 1.
- [169]. Kazi Kutubuddin Sayyad Liyakat (2023). Nanotechnology in Precision Farming: The Role of Research, International Journal of Nanomaterials and Nanostructures, Vol. 9, No. 2 (2023), https://doi.org/10.37628/ijnn.v9i2.1051
- [170]. Kazi Kutubuddin Sayyad Liyakat. (2023). Home Automation System Based on GSM. *Journal of VLSI Design Tools & Technology*. 2023; 13(3): 7–12p. https://doi.org/10.37591/jovdtt.v13i3.7877
- [171]. *Kazi Kutubuddin Sayyad Liyakat, (2024)*. Intelligent Watering System(IWS) for Agricultural Land Utilising Raspberry Pi, *Recent Trends in Fluid Mechanics*, Vol 10, No 2, pp. 26-31.
- [172]. Kazi Kutubuddin Sayyad Liyakat (2024). IoT and Sensor-based Smart Agriculturing Driven by NodeMCU, *Research & Review: Electronics and Communication Engineering*, 1(2), 25-33. Available at: https://matjournals.net/engineering/index.php/RRECE/article/view/742
- [173]. Kazi Kutubuddin Sayyad Liyakat (2024). Smart Agriculture based on AI-Driven-IoT(AIIoT): A KSK Approach, *Advance Research in Communication Engineering and its Innovations*, 1(2), 23-32. Available at: https://matjournals.net/engineering/index.php/ARCEI/article/view/746
- [174]. K Kazi(2024). Complications with Malware Identification in IoT and an Overview of Artificial Immune Approaches. *Research & Reviews: A Journal of Immunology*. 2024; 14(01):54-62. Available from: https://journals.stmjournals.com/rrjoi/article=2024/view=144241
- [175]. Nida N. Shaikh, Milind D. Chavan, V.G. Shirshikar, (2023). PV Penetrations in Conventional Power System and Generation of Harmonic and Power Quality Issues: A Review. *International Journal of Power Electronics Controllers and Converters*. 2023; 9(2): 12–19p. Available at: https://ecc.journalspub.info/index.php?journal=JPECC&page=article&op=view&path%5B%5D=1976
- [176]. Vaibhav L. Jadhav, Arjun P. Shinde, (2024). Detection of Fire in the Environment via a Robot Based Fire Fighting System Using Sensors, *International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)*, Volume 4, Issue 4, pp. 410 418.
- [177]. Kazi Kutubuddin Sayyad Liyakat (2024). Nanotechnology in Medical Applications: A Study. *Nano Trends: A Journal of Nanotechnology and Its Applications*. 2024; 26(2): 1–11p.
- [178]. Kazi Kutubuddin Sayyad Liyakat. (2024). Nanotechnology in BattleField: A Study. Journal of Nanoscience, Nanoengineering & Applications. 2024; 14(2): 18–30p.
- [179]. Sultananbanu Sayyad Liyakat Kazi, (2024). Polymer Applications in Energy Generation and Storage: A Forward Path. *Journal of Nanoscience, Nanoengineering & Applications*. 2024; 14(2): 31–39p.
- [180]. Kazi Kutubuddin Sayyad Liyakat, (2024). Review of Biopolymers in Agriculture Application: An Eco-Friendly Alternative. *International Journal of Composite and Constituent Materials*. 2024; 10(1): 50–62p.
- [181]. Kazi Kutubuddin Sayyad Liyakat (2024). Railway Health-Monitoring Using KSK Approach: Decision-Making Using AIIoT Approach in Railways, *Journal of Controller and Converters*, 9(3), 1-10. Available at: https://matjournals.net/engineering/index.php/JCC/article/view/1047
- [182]. K K Sayyad Liyakat. (2024). Impact of Nanotechnology on Battlefield Welfare: A Study. *International Journal of Nanobiotechnology*. 2024; 10(2): 19–32p.
- [183]. Sultanabanu Sayyad Liyakat, (2024q). Nanotechnology in Healthcare Applications: A Study. *International Journal of Nanobiotechnology*. 2024; 10(2): 48–58p.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

- [184]. Kazi Kutubuddin Sayyad Liyakat (2024). A Study on AI-driven IoT (AIIoT) based Decision Making: KSK Approach in Robot for Medical Applications, *Recent Trends in Semiconductor and Sensor Technology*, 1(3), 1-17. Available at: https://matjournals.net/engineering/index.php/RTSST/article/view/1044
- [185]. Kazi Kutubuddin Sayyad Liyakat (2024). Wireless Train Collision Avoidance System, *Advance Research* in Communication Engineering and its Innovations, 1(3), 16-25.
- [186]. Kazi Kutubuddin Sayyad Liyakat. (2024). Internet of Battlefield Things: An IoBT-inspired Battlefield of Tomorrow. *Journal of Telecommunication, Switching Systems and Networks*. 2024; 11(3): 11–19p.
- [187]. Sunil B. Mishra (2024d). AI-Driven-IoT (AIIoT)-Based Decision Making in Manufacturing Processes in Mechanical Engineering, *Journal of Mechanical Robotics*, 9(2), 27-38.
- [188]. Sunil B. Mishra (2024e). AI-Driven-IoT (AIIoT) Based Decision-Making in Molten Metal Processing, Journal of Industrial Mechanics, 9(2), 45-56.
- [189]. Kazi Kutubuddin Sayyad Liyakat, Impact of Nanotechnology on Battlefield Welfare: A Study. *International journal of Nanobiotechnology*. 2024; 10(02): 19-32p.
- [190]. Kazi Sultanabanu Sayyad Liyakat and Kazi Kutubuddin Sayyad Liyakat, Nanosensors in Agriculture Field: A Study. *International Journal of Applied Nanotechnology*. 2024; 10(02): 12-22p. Available from:https://journalspub.com/publication/ijan-v10i02-11625/
- [191]. Kazi Kutubuddin Sayyad Liyakat, Nanotechnology in Space Study. International Journal of Applied Nanotechnology. 2024; 10(02): 39-46p. Available from:https://journalspub.com/publication/ijan-v10i02-11616/
- [192]. Dr. Kazi Kutubuddin Sayyad Liyakat. (2024). KSK Approach to Smart Agriculture: Utilizing AI-Driven Internet of Things (AI IoT). *Journal of Microcontroller Engineering and Applications*. 2024; 11(03):21-32.
- [193]. Kazi Kutubuddin Sayyad Liyakat. (2024). Microwave Communication in the Internet of Things: A Study. *Journal of RF and Microwave Communication Technologies*, 38–49. Retrieved from https://matjournals.net/engineering/index.php/JoRFMCT/article/view/1276
- [194]. Kazi Kutubuddin Sayyad Liyakat, (2023). Nanorobotics: A Review, International Journal of Applied Nanotechnology (IJAN), 9(2), pp. 36 43. DOI: https://doi.org/10.37628/ijan.v9i2.1019
- [195]. Dr. Kazi Kutubuddin Sayyad Liyakat. Sensor and IoT centered Smart Agriculture by NodeMCU. *Recent Trends in Sensor Research & Technology*. 2024; 11(03):24-32. Available from: https://journals.stmjournals.com/rtsrt/article=2024/view=179744
- [196]. Kazi Kutubuddin Sayyad Liyakat.(2024). Carbon based Supercapacitor for Electric Vehicles. *Journal of Nanoscience, NanoEngineering & Applications*. 2024; 14(03):01-11. Available from: https://journals.stmjournals.com/jonsnea/article=2024/view=179371.
- [197]. G M Kosgiker. Satellite Sensing for Sea Level Monitoring: A Transformative Approach to Understanding Climate Change. *Journal of Microwave Engineering & Technologies*. 2025; 12(1): 33–41p.
- [198]. Kazi Kutubuddin Sayyad Liyakat. Transforming IoT Connectivity Through VLSI Technology. *International Journal of VLSI Circuit Design & Technology*. 2024; 02(02):1-11. Available from: https://journals.stmjournals.com/ijvcdt/article=2024/view=190803
- [199]. Kazi Kutubuddin Sayyad Liyakat, "Internet of Robotics Things in Industrial Applications: A Study," *Journal of Control and Instrumentation Engineering*, vol. 11, no. 1, pp. 1-10, Feb 2025.
- [200]. Kazi Kutubuddin Sayyad Liyakat. Fake Cryptocurrecy Detection using Python. *Recent Trends in Programming Languages*. 2025; 12(1): 1–7p.
- [201]. Kazi Kutubuddin Sayyad Liyakat. The Future is Smelling: Exploring the Potential of e-Nose. *Journal of Semiconductor Devices and Circuits*. 2025; 12(1): 16–27p.
- [202]. Sultanabanu Sayyad Liyakat. (2025). Quantum Key Distribution in Optical Fiber Communication: A Study. *Trends in Opto-electro & Optical Communication*. 2025; 15(1): 30–40p.
- [203]. Kazi Kutubuddin Sayyad Liyakat. Fake Cryptocurrency Detection Using Python. Recent Trends in Programming languages. 2025; 12(01):1-7. Available from: https://journals.stmjournals.com/rtpl/article=2025/view=201421

International Journal of Advanced Research in Science, Communication and Technology

9001:

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

- [204]. Kutubuddin, KSK Approach in LOVE Health: AI-Driven- IoT(AIIoT) based Decision Making System in LOVE Health for Loved One, *GRENZE International Journal of Engineering and Technology*, 2025, 11(1), pp. 4628-4635. Grenze ID: 01.GIJET.11.1.371 1
- [205]. Kazi Kutubuddin Sayyad Liyakat. Multimedia Technology in Healthcare: A Study. *Journal of Multimedia Technology & Recent Advancements*. 2025; 12(1): 23–29p.
- [206]. Kazi Kutubuddin Sayyad Liyakat. TensorFlow- Based Big Data Analytics for IoT Networks: A Study. *International Journal of Data Structure Studies*. 2025; 3(1): 32–40p.
- [207]. Kazi Kutubuddin Sayyad Liyakat. Brand Protection Using Machine Learning: A New Era. *E-Commerce for Future & Trends*. 2025; 12(1): 33-44p.
- [208]. Dhanve and Liyakat, "Machine Learning Forges a New Future for Metal Processing: A Study," *International Journal of Artificial Intelligence in Mechanical Engineering*, vol. 1, no. 1, pp. 1-12, Mar. 2025.
- [209]. Kutubuddin Sayyad Liyakat. e-Skin Applications in Healthcare and Robotics: A Study. Journal of Advancements in Robotics. 2025; 12(1):13 –21p.
- [210]. Kutubuddin Sayyad Liyakat. Millimeter Wave in Internet of Things Connectivity: A Study. *International Journal of Wireless Security and Networks*. 2025; 03(01):13-23.
- [211]. Kutubuddin Sayyad Liyakat. TensorFlow-Based Big Data Analytics for IoT Networks: A Study. *International Journal of Data Structure Studies*. 2025; 03(01):31-38.
- [212]. Kutubuddin Sayyad Liyakat. Multimedia Technology in Healthcare: A Study. *Journal of Multimedia Technology & Recent Advancements*. 2025; 12(01):23-29.
- [213]. Jatin M. Patil, "Robotic Surgery using AI-Driven-IoT Based Decision Making for Safety: A Study" *International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry*, vol. 1, no. 1, pp. 35-44, Mar. 2025.
- [214]. K. K. S. Liyakat,(2025). VHDL Programming for Secure True Random Number Generators in IoT Security, *Research & Review: Electronics and Communication Engineering*, vol. 2, no. 1, pp. 38-47, Mar. 2025.
- [215]. Kazi Kutubuddin Sayyad Liyakat. E-Comers and AI: Product Recommendation and Pricing. *Journal of Artificial Intelligence Research & Advances*. 2025; 12(2): 44–52p
- [216]. Kazi Kutubuddin Sayyad Liyakat. Nanorobotics in Cancer Treatment: A Study. *International Journal of Nanomaterials and Nanostructures*. 2025; 11(1): 1–9p.
- [217]. Kazi Kutubuddin Sayyad Liyakat, Jatin M. Patil, Velapure Amol S., Khadake Suhas B. The Intersection of Nanotechnology and IoT: New Era of Connectivity. *International Journal of Applied Nanotechnology*. 2025; 11(1): 9–17p.
- [218]. Kazi Kutubuddin Sayyad Liyakat. Tiny Titans: The Promise of E-Nano Robots in the Fight Against Cancer. *Journal of Advancements in Robotics*. 2025; 12(2): 12–22p.
- [219]. K. K. S. Liyakat, (2025). VHDL Programming for Secure True Random Number Generators in IoT Security, *Research & Review: Electronics and Communication Engineering*, vol. 2, no. 1, pp. 38-47, Mar. 2025.
- [220]. Kazi Kutubuddin Sayyad Liyakat. E-Comers and AI: Product Recommendation and Pricing. *Journal of Artificial Intelligence Research & Advances*. 2025; 12(2): 44–52p.
- [221]. Jatin M Patil, Velapure Amol S, and Khadake Suhas B. The Intersection of Nanotechnology and IoT: New Era of Connectivity. *International Journal of Applied Nanotechnology*. 2025; 11(01): 9-17p.
- [222]. KKS Liyakat, (2025). Nanorobotics in Cancer Treatment: A Study. *International Journal of Nanomaterials and Nanostructures*. 2025; 11(1): 44-52p. Available from:https://journalspub.com/publication/ijnn/article=16043
- [223]. KKS Liyakat. (2025). Nanomaterial and e-Skin Technology: A Study. International Journal of Nanobiotechnology. 2025; 11(1): 10–16p.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

- [224]. N. R. Mulla and K. K. S. Liyakat, (2025). Pipeline Pressure and Flow Rate Monitoring Using IoT Sensors and ML Algorithms to Detect Leakages, *Int. J. Artif. Intell. Mech. Eng.*, vol. 1, no. 1, pp. 20–30, Jun. 2025.
- [225]. N. R. Mulla and K. K. S. Liyakat, (2025). Nuclear Energy: Powering the Future or a Risky Relic, International Journal of Sustainable Energy and Thermoelectric Generator, vol. 1, no. 1, pp. 52–63, Jun. 2025.
- [226]. Nikat Rajak Mulla, (2025). Sensor-based Aircraft Wings Design Using Airflow Analysis, *International Journal of Image Processing and Smart Sensors*, vol. 1, no. 1, pp. 55-65, Jun. 2025.
- [227]. N. R. Mulla and K. K. S. Liyakat, (2025). A Study on Machine Learning for Metal Processing: A New Future, *International Journal of Machine Design and Technology*, vol. 1, no. 1, pp. 56–69, Jun. 2025.
- [228]. Nikat Rajak Mulla and Kazi Kutubuddin Sayyad Liyakat, (2025). Sensor-based Aircraft Wings Design Using Airflow Analysis, *International Journal of Image Processing and Smart Sensors*, vol. 1, no. 1, pp. 55-65, Jun. 2025.
- [229]. N. R. Mulla, and K. K. S. Liyakat, "Node MCU and IoT Centered Smart Logistics," *International Journal of Emerging IoT Technologies in Smart Electronics and Communication*, vol. 1, no. 1, pp. 20-36, Jun-2025

