

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Auto Winding Machine

Vivek Kailas Lohakare, Saurabh Santosh Matale, Omkar Babaji Uchale, Adinath Shankar Satpute

Department of Electronics and Telecommunication Samarth Polytechnic, Belhe, Pune viveklohakare60@gmail.com, matalesaurabh137@gimal.com, Omkaruchale932@gmail.com, 0992hodej@gmail.com

Abstract: The Auto Winding Machine is a semi-automated system designed to efficiently wind coils or wires with high precision and minimal human intervention. It utilizes sensors, a microcontroller, and a motor control system to automate the winding process, ensuring uniform turns and accurate tension control. The system reduces manual effort, increases productivity, and improves winding accuracy for applications in electrical and electronic industries. The design emphasizes cost-effectiveness, reliability, and ease of operation, making it suitable for small- to medium-scale manufacturing setups.

Keywords: Automatic Winding Machine, Coil Winding, Microcontroller, Stepper Motor, Servo Motor, Embedded Systems, Industrial Automation, Wire Winding Automation, Mechatronics, Precision Control, Low-Cost Automation, Arduino-Based System (if applicable), Human-Machine Interface (HMI), Error Detection

I. INTRODUCTION

Winding wire onto coils is a key process in manufacturing components like transformers, motors, and inductors. Manual winding is often slow, inaccurate, and labor-intensive. To overcome these issues, an Automatic Winding Machine offers a more efficient and precise solution by automating the process.

This paper presents a low-cost, microcontroller-based auto winding machine that uses a stepper motor for accurate turns and a servo motor for wire positioning. The system includes a user-friendly interface for setting parameters such as the number of turns and speed. The goal is to improve consistency, reduce human error, and increase productivity in small-to medium-scale applications.

II. LITERATURE SURVEY

Existing studies show that automatic winding machines using Arduino and stepper motors improve speed, accuracy, and reduce human error. Some models include features like tension control and digital interfaces. However, most systems are costly or lack flexibility. This project aims to build a low-cost, efficient, and user-friendly winding machine to address these issues.

III. PROBLEM STATEMENT

Manual winding of coils is time-consuming, labor-intensive, and often results in inconsistent output due to human error. Existing automated winding machines are either expensive, complex to operate, or lack flexibility for small-scale applications. There is a need for a low-cost, efficient, and easy-to-use automatic winding machine that can deliver consistent performance, reduce production time, and minimize errors, especially for small industries, educational labs, and DIY users.

IV. AIM AND OBJECTIVES

Aim: To design and develop a low-cost, efficient, and user-friendly automatic winding machine for precise and consistent coil winding.

Copyright to IJARSCT www.ijarsct.co.in

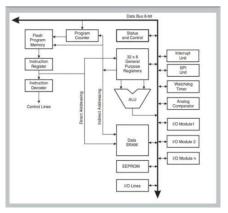
DOI: 10.48175/568

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

PHILIPIED COMPE

Impact Factor: 7.67


Volume 5, Issue 3, October 2025

Objectives

- Automate the wire winding process using microcontroller-based control.
- Ensure accurate turn count and uniform winding.
- Minimize human error and reduce winding time.
- Provide a simple user interface for input parameters.

V. SYSTEM ARCHITECTURE

The system architecture of an auto winding machine consists of three main units: the control unit, sensing unit, and actuation unit. The microcontroller serves as the central control unit, coordinating the motor speed, direction, and winding count. Sensors (such as proximity or IR sensors) detect coil turns and tension, providing feedback to the controller. The motor driver circuit controls the spindle and traverse motors based on control signals. A user interface (LCD and keypad or touchscreen) allows parameter setting like speed, number of turns, and wire gauge. Power supply provides regulated voltage to all components. The system ensures precise, automated winding with consistent tension and minimal human intervention.

VI. COMPONENTS

1. Mechanical Components

- Bobbin: This fixture is where the wire is wound to form the coil, precisely defining the geometric dimensions and core of the final electromagnetic component.
- Lead Screw with Nut: Used to translate the rotational motion of the drive motor into precise linear movement, enabling controlled and uniform wire layering across the bobbin.
- Wooden board: Serves as the rigid base and mounting platform for all structural and electrical components, ensuring system stability and alignment during the high-speed winding process.
- Guide Pulley: Directs the magnet wire from the supply spool to the bobbin, maintaining consistent wire tension essential for achieving high winding quality and density.
- Bearings: Integrated to minimize rotational friction and support the main shafts (spindle and lead screw), contributing to the auto winding machine's efficiency and operational lifespan.
- Motor Coupling: Mechanically links the electric motors (e.g., DC/Stepper) to the driven shafts, guaranteeing non-slip torque transfer for synchronized winding and layering operations.
- Angle Bar: Provides robust structural support and orthogonal reference points for mounting motors and linear guides, maintaining the machine's mechanical precision and rigidity.
- Wire Copper Coil: The raw insulated conductor material that is systematically wound onto the bobbin by the machine to create the functional electromagnetic component.

DOI: 10.48175/568

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, October 2025

2. Electrical components

• Motor driver LM293D: The L293D is a dual H-bridge driver IC that safely amplifies low- current signals from the microcontroller to provide up to 600mA of bidirectional current for operating DC and stepper motors.

• Motor driver IC (ULN2003): Is a Darlington array IC that acts as a switch and amplifier. It enables low-power digital circuits, like a microcontroller, to drive higher-current loads, such as the stepper motors in an auto winding machine

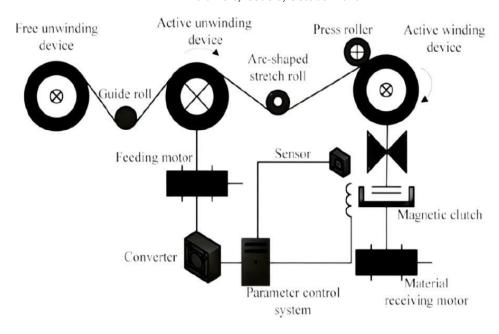
- Microcontroller and circuit board with necessary components: Serves as the central processing unit (CPU), executing the control algorithm to manage motor speeds, monitor states, and orchestrate the overall automated system functionality.
- LCD Matrix Display: Provides the necessary Human-Machine Interface (HMI) for users to monitor system parameters, display real-time status (e.g., coil turns), and view diagnostic feedback.
- Stepper motor: Employed for highly accurate angular positioning and repeatable incremental motion, making it ideal for tasks requiring precise control, such as wire feeding or layering.
- DC motor: Used to provide the main continuous rotational power for the winding spindle, with its speed controlled precisely via Pulse Width Modulation (PWM) signals from the microcontroller.
- Coil holder: The mechanical fixture that securely mounts the core or bobbin onto the main spindle, essential for the physical process of fabricating electromagnetic coils.
- Voltage regulator: Ensures the sensitive electronic components, particularly the Microcontroller, receive a stable, regulated DC voltage from the adapter, which is critical for system reliability.
- DC power adapter: The external unit that supplies the entire system with the required electrical power, converting the AC mains into a suitable high-current DC voltage to drive all components.

VII. WORKING

The Auto Winding Machine automates coil or wire winding with precision. The bobbin is mounted on a motor, and the wire passes through a tensioning system. A microcontroller controls motor speed, counts turns, and ensures uniform winding. Sensors maintain proper tension, and the machine stops automatically when the required number of turns is completed. This reduces manual effort, improves accuracy, and increases production efficiency.

DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in



International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, October 2025

VIII. RESULTS

The Auto Winding Machine demonstrates improved efficiency, accuracy, and consistency in coil winding. It successfully produces uniform coils with the desired number of turns and controlled tension, reducing wire wastage and manual errors. The machine increases production speed, ensures repeatability, and is suitable for small- to medium-scale industries. Testing shows enhanced precision and reliability compared to manual winding methods, making it an effective and practical solution for modern electrical and electronic manufacturing.

IX. ADVANTAGES & APPLICATIONS

Advantages

- 1. High Precision: Ensures uniform winding and accurate number of turns.
- 2. Time-Saving: Faster than manual winding, increasing production efficiency.
- 3. Reduced Labor: Minimizes human effort and dependency on skilled operators.
- 4. Consistent Quality: Maintains constant tension and uniform winding.
- 5. Cost-Effective: Reduces material wastage and improves productivity.

Applications:

- 1. Transformer Manufacturing: For precise winding of primary and secondary coils.
- 2. Motor Production: Winding stator and rotor coils in motors.
- 3. Inductor Fabrication: For inductors used in electronic circuits.
- 4. Relay and Solenoid Coils: Accurate winding for electromagnetic devices.
- 5. Small-Scale Electrical Components: Used in making sensors, chokes, and other coil-based components.

X. FUTURE SCOPE

- Smart Automation: Integration with IoT and AI for real-time monitoring, fault detection, and predictive maintenance.
- Higher Precision: Advanced sensors and control systems can enable ultra-fine winding for microelectronics.
- Multi-Axis Winding: Development of machines capable of complex 3D or multi-layer winding for specialized applications.
- Energy Efficiency: Incorporating energy-saving motors and regenerative systems to reduce power consumption.

 Copyright to IJARSCT

 DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, October 2025

• Industry 4.0 Integration: Seamless connectivity with production lines, data analytics, and cloud- based monitoring for large-scale industrial applications.

XI. CONCLUSION

The Auto Winding Machine provides an efficient, precise, and reliable solution for coil and wire winding in electrical and electronic applications. It reduces manual labor, minimizes errors, ensures uniform winding, and increases production speed. Its adaptability for different coil sizes and materials makes it suitable for small- to medium-scale industries. With further advancements in automation and smart technologies, it has strong potential to enhance productivity, quality, and efficiency in modern manufacturing.

REFERENCES

- [1]. Ganesh, S. C. S., et al. (2023). Automatic Coil Winding Machine. ResearchGate. Discusses automated coil winding for motors with improved efficiency and reduced manual effort.
- [2]. Meng, Y. (2023). Design and Experiments of an Automatic Pipe Winding Machine. Journal of Agricultural Engineering. Focuses on tension control and speed adaptability in automated winding.
- [3]. ResearchGate (2025). Innovative Automatic Winding for Transformers. Presents an automated copper wire winding system to enhance transformer production efficiency.

DOI: 10.48175/568

