IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

Cyber Security in Blockchain

Vansh R. Gawande, Prof. D. G. Ingale, Dr. A. P. Jadhao, Prof. S. V. Raut Prof. S. V. Athawale

Department of Computer Science and Engineering

DRGIT&R College of Engineering, Amravati

Abstract: Blockchain technology has gained significant attention for its potential to enhance cyber security in various digital domains. It provides a decentralized and tamper-resistant framework that ensures transparency, data integrity, and trust without the need for centralized authorities. By utilizing cryptographic algorithms and consensus mechanisms, blockchain effectively mitigates cyber threats such as data breaches, identity theft, and Distributed Denial of Service (DDoS) attacks. This paper discusses the role of blockchain in strengthening cyber security, its working principles, and its applications in secure data management. Furthermore, it addresses existing challenges including scalability, energy consumption, and privacy concerns. The study concludes that blockchain presents a promising approach

Keywords: Blockchain, Cyber Security, Data Integrity, Cryptography, Decentralization

for achieving robust and secure digital infrastructures in the modern cyber environment.

I. INTRODUCTION

In today's digital era, cyber security has become one of the most critical aspects of information technology. With the rapid growth of online transactions, cloud computing, and IoT devices, securing data and ensuring privacy have become major challenges. Traditional security systems often rely on centralized architectures that are vulnerable to cyberattacks, data manipulation, and single points of failure.

Blockchain technology offers a revolutionary approach to overcoming these challenges through its decentralized, distributed, and immutable nature. Each transaction in a blockchain is recorded in a block that is cryptographically linked to the previous one, forming a secure chain of information. This ensures transparency, integrity, and traceability of data, making it nearly impossible for hackers to alter or delete records.

By combining cryptography, consensus algorithms, and peer-to-peer networking, blockchain enhances the security of digital systems and minimizes the risk of unauthorized access. Therefore, integrating blockchain technology into cyber security frameworks can significantly improve data protection, trust, and resilience in modern digital infrastructures.

II. LITERATURE SURVEY

The paper presents a comprehensive layeroriented survey of security threats, vulnerabilities, and detection methods in blockchain systems. The authors classify the blockchain architecture into multiple layers and analyze the potential attacks and vulnerabilities at each layer. They also propose a seven-category vulnerability taxonomy and review existing detection techniques, highlighting their advantages, limitations, and research challenges. This survey provides a systematic framework for understanding blockchain security and designing effective defense mechanisms.

This paper explores the integration of blockchain technology into traditional cryptographic protocols to enhance security and performance. It addresses the limitations of existing protocols, such as single points of failure and inefficiencies, by leveraging blockchain's features like decentralization, immutability, and programmability. The study focuses on the application of blockchain in authentication protocols, key agreement protocols, and e-commerce protocols, providing a comprehensive overview of current research and future directions

This chapter explores the application of blockchain technology to improve cybersecurity in IoT (Internet of Things) environments. IoT networks often face challenges such as device heterogeneity, weak authentication, centralized vulnerabilities, and data tampering. The authors argue that blockchain's decentralization, immutability, and consensus mechanisms can mitigate many of these threats. The study reviews existing solutions, frameworks, and proposed models where blockchain enhances the security, privacy, and reliability of IoT systems.

DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

This paper provides a comprehensive survey of six prominent blockchain platforms—Ethereum, Hyperledger Fabric, IOTA, EOS, VeChain, and Quorum—that are increasingly adopted to enhance the security of Internet of Things (IoT) systems. The study analyzes how each platform addresses IoTspecific challenges such as decentralized trust, data integrity, and secure communication. The authors also compare these platforms based on their consensus mechanisms, scalability, and suitability for various IoT applications.

III. PROPOSED SYSTEM

The proposed system focuses on enhancing cyber security by integrating blockchain technology into existing digital infrastructures. In this system, all transactions or data exchanges are recorded in a distributed ledger that is shared among multiple network nodes. Each block contains encrypted information and a unique hash value that links it to the previous block, ensuring immutability and data integrity.

Unlike traditional centralized systems, the proposed blockchain-based model eliminates the need for a central authority, thus reducing the risk of data tampering, insider attacks, and unauthorized modifications. The use of cryptographic algorithms such as SHA-256 and digital signatures ensures that only authenticated users can access and verify transactions.

Furthermore, the consensus mechanism—such as Proof of Work (PoW) or Proof of Stake (PoS)—is used to validate each transaction across the network, making the system highly secure against cyber threats like DDoS attacks or data breaches. This approach not only enhances security and transparency but also provides a reliable framework for secure data sharing, authentication, and identity management in cyber environments.

IV. RESULTS AND DISCUSSIONS

The implementation of blockchain technology in cyber security systems demonstrates significant improvements in data protection, transparency, and system reliability. Through its decentralized and cryptographically secured structure, blockchain effectively prevents unauthorized access, data tampering, and network attacks.

Experimental studies and practical applications show that integrating blockchain with existing cyber security frameworks provides better resistance to threats such as Distributed Denial of Service (DDoS), phishing, and identity theft. Each transaction being verified by multiple nodes increases trust among participants and reduces the chances of manipulation or fraud.

Additionally, blockchain's immutable ledger enables accurate tracking of digital activities, which assists in forensic investigations and audit processes. However, certain limitations, such as high computational power requirements and scalability issues, need further optimization. Despite these challenges, the results indicate that blockchain-based security systems offer a more robust and transparent solution compared to traditional centralized models.

V. CONCLUSION

Blockchain technology has emerged as a transformative solution to the growing challenges in cyber security. Its decentralized architecture, cryptographic techniques, and immutable ledger make it highly resistant to cyberattacks and unauthorized data manipulation. By eliminating the dependence on centralized authorities, blockchain enhances transparency, trust, and accountability across digital systems.

The study concludes that blockchain provides a strong foundation for building secure, tamper-proof, and efficient cyber infrastructures. Although certain challenges like scalability, energy consumption, and regulatory acceptance still exist, ongoing research and technological advancements are expected to overcome these issues. Overall, blockchain technology holds great potential to redefine the future of cyber security by providing a more reliable and secure digital ecosystem.

VI. ADVANTAGES

1. Decentralization:

Blockchain eliminates the need for a central authority, reducing the risk of single-point failures and insider attacks.

DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, October 2025

2. Data Integrity:

Each transaction is recorded in an immutable ledger, ensuring that data cannot be altered or deleted once confirmed.

3. Enhanced Security:

Cryptographic algorithms such as hashing and digital signatures protect data from unauthorized access and manipulation.

4. Transparency:

All transactions are visible to authorized participants, increasing trust and accountability in digital systems.

5. Reduced Cyber Threats:

Blockchain helps prevent cyberattacks such as data breaches, DDoS attacks, and identity theft through distributed verification.

6. Improved Authentication:

It provides secure identity management and user authentication without relying on third-party systems.

7. Traceability:

Every transaction can be traced back to its origin, which is useful in audits and forensic analysis.

REFERENCES

- [1] M. J. Islam, S. Islam, M. Hossain, S. Noor, and S. M. R. Islam, —Securing Blockchain Systems: A Layer-Oriented Survey of Threats, Vulnerability Taxonomy, and Detection Methods, || Future Internet, Vol. 17, No. 5, Article 205, May 2025.
- [2] A Survey on the Application of Blockchain in Cryptographic Protocols, || Cybersecurity, Vol. 7, Article 79, Dec. 2024.
- [3] F. Z. Chentouf and S. Bouchkaren, —Blockchain for Cybersecurity in IoT, || in Artificial Intelligence and Blockchain for Future Cybersecurity Applications, Y. Maleh, Y. Baddi, M. Alazab, L. Tawalbeh,
- [4] Romdhani, Eds. Cham, Switzerland: Springer, 2021,
- [5] A Survey on Emerging Blockchain Technology Platforms for Securing the Internet of Things, || Future Internet, Vol. 16, No. 8, Article 285, Aug. 2024.

DOI: 10.48175/568

