

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Imi

Volume 5, Issue 3, October 2025

Coccinia Grandis: An Overview of its Phytochemistry and Pharmacological Applications in Modern Medicine

Fadila Ali Garba, Dr. Prashant, Dr. Hitesh Kinger

Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan

Abstract: Plants have played a significant role in maintaining human health and improving the quality of human life. Coccinia grandis, commonly known as ivy gourd or kundru, is a tropical vine belonging to the Cucurbitaceae family. It is widely distributed in tropical and subtropical regions of Asia, Africa, and Australia. Studies shows that the plant part extract possess a lot of medicinal properties like antidiabetic, antioxidant, Larvicadal, Cooling effect to the eye, Gonorrhea, Hypolipidemic, Skin diseases, Urinary tract infection Hypoglycemic, Cure sores on tongue, Analgesic, Antipyretic, Hepatoprotective, Tuberculosis, Eczema. Anti-inflammatory, Antispasmodic, Asthma, Bronchitis, GIT disturbances and many more.this review highlight that every part of coccinia grandis possess a great activities and are valuable as medicine. This review gives different insight on the phytochemistry of coccinia grandis it pharmacological applications in modern medicine and how coccinia grandis different plant part is so important and very useful in the treatment of various aliments.

Keywords: Cucurbitaceae

I. INTRODUCTION

The Ayurveda is India's oldest medical system, having been practiced for around 5,000 years. The Chinese medical system was established in 200 B.C. and is still used today. The Unani medical system, also known as Greco-Arab medicine, dates back to Hippocrates, the father of medicine (460–360 B.C.). Twenty-one thousand plants are classified as herbs or therapeutic plants by the World Health Organization (WHO).

The great majority of people, especially those who reside in rural areas, rely heavily on medicinal plants to treat their illnesses. India is home to over 7000 different types of plants. According to WHO estimates, around 80% of people in poor nations get their main medical treatment mostly from traditional medicine. Plants have significantly contributed to preserving human health and raising living standards.(Pekamwa et al., 2013)One of nature's greatest gifts, plants, have been used to make medications.

They are used to make a variety of medications. We refer to these kinds of plants as medicinal plants. One As a precursor to the synthesis of numerous beneficial medications, we employ one or more of its organs for therapeutic purposes. Approximately 80% of modern medications are derived either directly or indirectly from plants, according to some liberal estimates.²

BOTANICAL DESCRIPTION OF COCCINIA GRANDIS

Coccinia grandis, commonly known as ivy gourd or kundru, is a tropical vine belonging to the Cucurbitaceae family. It is widely distributed in tropical and subtropical regions of Asia, Africa, and Australia. The plant is cultivated for its edible fruits, which are used in various culinary preparations and traditional medicines. (N. Jagannath,) It is a fast

²(Hossain et al.,2014)

¹ (Nagare et al., 2015)

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

growing perennial climbing shrub with white flowers. It grows several meters long and forms dense mat that readily cover shrubs and small trees.³

AGRONOMY

C. grandis grows as a dioecious perennial climberor as trailing herbaceous vine in adaptable climate ranging from semi-arid areas, dry monsoonal forest, tropical and subtropical rainforest, wooded grasslands, coastal and riparian areas, rice fields, in disturbed areas, open places, cane fields, roadside and around villages as well as backyard fences in the tropical and subtropical regions. It is usually found growing at low altitude but is also found up to 1000m as in Uganda and up to 2350m elevation in Ethiopia in all types of soil. It is a robust, hardy, sun-loving and aggressive vine and has an extensive root system which also makes it an invasive weed. It climbs over shrubs and trees and smothers them, forming a dense sun-blocking canopy. ⁴

PLANT DESCRIPTION

It can grow up to 3m (i.e., 9ft 10in). The roots are tuberous; stems are green along with simple axillary tendrils. Leaves are glabrous and pentagonal in shape with dentate margins measuring about 6.5 to 8.5 cm long and 7 to 8 cm wide. Flowers are monoecious, white, star-shaped about 4cm in diameter and contain 5 tubular petals, female and male flowers emerge at the axils on the petiole having 3 stamens. The fruit is the edible part of the plant; they are slimy in touch, pulpy and ovoid to an ellipsoid shape. Young fruits are green in colour and turn to scarlet red when ripen which ranges from 2.5 to 5 cm in length and 1.3 to 2.5 cm in diameter. Fruits contain numerous seeds with thickened margins measuring up to 6 to 7 mm in length.⁵

Taxonomical classification

Kingdom: Plantae Order: Cucurbitales Family: Cucurbitaceae Genus: Coccinia Species: C. grandis

Binomial name: C. grandis (L) J. Voig(Packirisamy Meenatchi)

PHYTOCHEMISTRY OF COCCINIA GRANDIS

C. grandis is rich in various bioactive compounds that are the reason for this plant's various pharmacological activities. The bioactive compounds extracted from various plant parts encompass a diverse array of chemical groups. ⁶ It is important due to its nutritive value and contains water 94 %, dietary fibre 1.6 g, protein 1-2 g, fat 0.4 g, carbohydrates 3.1 g, carotene 156 µg, iron 14 mg, vitamin-A 260 IU, vitamin-C 28 mg, energy 18 kcal.

Copyright to IJARSCT www.ijarsct.co.in

ISSN 2581-9429 IJARSCT

³(Shahid Iqbal Mohammed)

⁴(Aubine Molly Beera)

⁵(Aubine Molly Beera)

⁶(Md. Sabbir Hossain)

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, October 2025

Table 1: Chemical constituent⁷

Leaves and stems	ß- Sitosterol, Cephalandrol, Cephalandrine A & B, Heptacosane			
Roots	Alkaloids, ß- Amyrin, ß- Sitosterol, Carbonic acid, saponin- Coccinoside,			
	flavonoid- Ombuin 3-o-arabinofuranoside, Lupeol, Resins, Stigmast-7- en- 3- one.			
Fruit	ß- Amyrin acetate, ß- Sitosterol, ß- Carotene, Cucurbitacin B, Lycopene, Lupeol,			
	Taraxerol, Taraxerone			
Seeds	The seeds contain fat and fixed oil which are mainly esters of linoleic, oleic and			
	palmitic acids.			

GENETIC DIVERSITY OF COCCINIA GRANDIS

The *Coccinia* genus comprises 30 species confined to tropical Africa, except *Coccinia grandis*, which occurs wild from Senegal east to Somalia and south to Tanzania, and also in Saudi Arabia, Yemen and India. *Coccinia grandis* is native to India, especially the eastern regions, besides Orissa, Jharkhand, Chhattisgarh, Madhya Pradesh, Gujarat, Maharastra and Andhra Pradesh, where a rich gene pool is available in natural forests as well as in homestead gardens due to its wider adaptability to adverse climatic conditions.⁸

The genus Coccinia Wight &Arn. Has nearly 30 species confined to tropical Africa but only one species Coccinia grandis (L.) Voight (Syn. Coccinia indica Wight &Arn. Or Cephalandra indica Nand.) is cultivated extensively in India, Myanmar, Srilanka and Malaysia and called ivy gourd, which is a dioecious perennial and has a Sanskrit equivalent "bimba", taking it to pre-Christian era.⁹

PHARMACOLOGICAL ACTIVITY

It has been mentioned in Ayurveda and Unani systems of medicine for treatment of diabetes, asthma, cough, bronchitis, skin eruptions, tongue sores, earache, jaundice, stomatitis, anthelmintic, digestant, liver tonic, febrifuge and expectorant and locally as analgesic ¹⁰

A daily consumption of 100 g fruits is effective for lowering sugar content of diabetic patients. It is rich in vitamin C, B1 and B2which is straightening the bones. These vitamins are required to strong the immune system of human body. Tendrils of ivy gourd are also rich in mineral like potassium, calcium and iron, which are needed in optimum quantity for functioning of body. ¹¹

TABLE 2: MEDICINAL VALUE OF SOME PART OF COCCINIA GRANDIS 12

PLANT PART	MEDICINAL VALUE				
Leaf	Antidiabetic, Oxidant, Larvicadal, GI disturbances, Cooling effect to the eye				
	Gonorrhea, Hypolipidemic, Skin diseases, Urinary tract infection				
Fruit	Hypoglycemic, Cure sores on tongue, Analgesic, Antipyretic, Hepatoprotective,				
	Tuberculosis, Eczema. Anti-inflammatory				
Stem	Antispasmodic, Asthma, Bronchitis, GIT disturbances, Urinary tract infection, S				
	diseases, Expectorant				
Root	Hypoglycemic, Antidiabetic, Skin diseases, Removes pain in joint, Urinary tract				
	infection.				

¹²⁽NAGARE ET AL., 2015)

⁷ (Nagare et al., 2015)

^{8 (}Lalu PrasadYadav)

⁹(Bharti Jha)

^{10 (}Junaid Niazi)

¹¹ (Jitendra Kumar Tak)

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, October 2025

TABLE 3: PHARMACOLOGICAL ACTIVITIES OF COCCINIA GRANDIS

Sr	PLANT	PHARMACOLOGICAL	MECHANISM OF	REFERENCE
NO	PARTS	ACTIVITIY	ACTION	REFERENCE
1	Leaves	Antibacterial activity	The crude extract showed a broad spectrum of antibacterial activity by inhibiting both the gram positive and gram negative groups	Sivaraj, A., Jenifa, B. P., Kavitha, M., Inbasekar, P., Senthilkumar, B., & Panneerselvam, A. (2011). Antibacterial activity of Coccinia grandis leaf extract on selective bacterial strains. <i>Journal of Applied Pharmaceutical Science</i> , (Issue), 120-123.
2	Leaves	Anthelmintic Activity	The extracts caused paralysis followed by death of all selected worms at the selected concentrations.	Dewanjee, S., Maiti, A., Kundu, M., & Mandal, S. C. (2007). Evaluation of anthelmintic activity of crude extracts of Diospyros peregrina, Coccinia grandis and Schima wallichii. <i>Dhaka University Journal of Pharmaceutical Sciences</i> , 6(2), 121-123.
3	Leaves	Anti-inflammatory	Effectiveness of extract in the early phase of inflammation suggests the inhibition of histamine and serotonin release.	Niazi, J., Singh, P., Bansal, Y., & Goel, R. K. (2009). Anti-inflammatory, analgesic and antipyretic activity of aqueous extract of fresh leaves of Coccinia indica. <i>Inflammopharmacology</i> , 17, 239-244.
4	Fruits	Antidiabetic Activity	Treatment with Coccinia grandis fruit extract in diabetic rats exhibited significant improvement in the pancreatic histoarchitecture leading to a normalization of the tissue structure, regeneration of pancreatic beta-cells and improved islet indicating a potential regenerative effect of Coccinia grandis on pancreatic tissues.	Jagannath, N. Antidiabetic Activity of Coccinia Grandis fruit extract in streptozotocin Induced diabetic rats.
5	Fruits	Antilithiatic Activity	The extract dose of 100 mg/kg also caused reduction of calcium, oxalates, phosphorus and creatinine in blood serum level the results were found statistically	Kumar, M., Alok, S., Kumar, S., & Verma, A. (2014). In-vivo study of antilithiatic activity on the fruits extracts of Coccinia indica (Wight & Arn.) ethylene glycol induced lithiatic in rats. <i>International Journal of Pharmacognosy</i> , 1(1),

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29354

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

			significant.	51-58.
6	Leaves	Antibacterial Activity	Out of six solvent extracts of C. grandis methanol and ethyl acetate, leaf extracts have shown the best antimicrobial activities compared to the rest of the four solvent extracts. Methanolic extract 1.56 mg/ml and 0.78 mg/ml was the MIC values for the respective plants.	Debasmita, D., Santosh, K. S., Smarita, L., Rajesh, K. M., Biswakanth, K., & Shakti, R. (2023). Evaluation of the antibacterial activity of Coccinia grandis, against bacteria isolated from chronic suppurative otitis media infection.
7	Leaves	Analgesic	The extract produced marked analgesic activity comparable to morphine at 300 mg/kg, which suggests the involvement of central mechanisms.	Niazi, J., Singh, P., Bansal, Y., & Goel, R. K. (2009). Anti- inflammatory, analgesic and antipyretic activity of aqueous extract of fresh leaves of Coccinia indica. <i>Inflammopharmacology</i> , 17, 239-244.
8	Leaves	Antipyretic	A significant reduction in hyperpyrexia in rats was also produced by all doses of extract with maximum effect at 300 mg/kg comparable to paracetamol.	Niazi, J., Singh, P., Bansal, Y., & Goel, R. K. (2009). Anti-inflammatory, analgesic and antipyretic activity of aqueous extract of fresh leaves of Coccinia indica. <i>Inflammopharmacology</i> , 17, 239-244.
9	Fruit & leaves	Anti oxidant	its action is on lipid peroxidation and to the enhancing effect on cellular antioxidant defense contributing to the protection against oxidative damage of various cells.	Sharma, A. K., Chaudhary, M., Kumar, R., Chauhan, B., Sharma, S., & Sharma, A. D. (2011). Antioxidant Activity of Coccinia grandis Fruits and Leaves. <i>Inventi Rapid: Ethnopharmacology</i> .
10	Unripe fruits	antioxidant, antiglycation, insulin secretory activities.	C. grandis extract exerted a dose dependent radical scavenging activity and exhibited a significant antiglycation potential. The extract also showed a significant insulinotrophic property with 1.28 and 1.71- fold increase in insulin release when compared to control at 0.25 and 0.50	Meenatchi, P., Purushothaman, A., &Maneemegalai, S. (2017). Antioxidant, antiglycation and insulinotrophic properties of Coccinia grandis (L.) in vitro: Possible role in prevention of diabetic complications. <i>Journal of Traditional and Complementary Medicine</i> , 7(1), 54-64.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

			mg/mL, respectively.	
11	Fruits	Mouth Ulcer, wound healing	Topical application of gel at 20%w/w concentration showed significant reduction in carrageenan induced rat paw edema.	DEORE, P. (2017). Coccinia grandis fruit extract gel for the treatment of mouth ulcer along with associated wound and inflammation. <i>J. Res. Educ. Indian Med</i> , 23(1-2), 43-58.
12	methanol extract leaves	Antinociceptive Effects	The highest level of serum glucose reduction was observed with an extract dose of 400 mg per kg body weight, when serum glucose level was found to be reduced by 56.3%.	Sutradhar, B. K., Islam, M. J., Shoyeb, M. A., Khaleque, H. N., Sintaha, M., Noor, F. A., & Rahmatullah, M. (2011). An evaluation of antihyperglycemic and antinociceptive effects of crude methanol extract of Coccinia grandis (L.) J. Voigt.(Cucurbitaceae) leaves in Swiss albino mice. Advances in Natural and Applied Sciences, 5(1), 1-5.
13	Hydromet hanol leaves extract	Cataract	The highest level of serum glucose reduction was observed with an extract dose of 400 mg per kg body weight, when serum glucose level was found to be reduced by 56.3%.	Umamaheswari, M., & TK, C. (2008). Effect of the fractions of Coccinia grandis on naphthalene-induced cataractogenesis in rats. International Journal of Biomedical and Pharmaceutical Sciences, 2(1), 70-74.
14	Ethanolic extract of	Antihyperlipidemic	Synchronous	Hossain, M. F., Rahaman, M. A.,
	leaves		administration of ethanolic extract of C. grandis notably prevented the rise in serum total cholesterol, LDL-cholesterol, VLDL-cholesterol, triglycerides. There was a momentous decrease in body weight and increase in HDL-cholesterol was observed in C. grandis extract treated rats.	Abdullah-Al-Mamun, H. K., Isalm, M. S., &Sumsuzzman, D. M. (2017). ANTIHYPERLIPIDEMIC ACTIVITY OF COCCINIA GRANDIS ON HIGH FAT DIET INDUCED WISTAR ALBINO RATS. European Journal of Biomedical, 4(05), 25-28.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29354

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

	leave		significant mucosal	&Divyashanthi, C. M. (2019).
	extract		protection by reducing the ulcer index	Evaluation of antiulcer activity of ethanolic leaf extract of Coccinia grandis in indomethacin induced gastric ulcer model. <i>International Journal of Basic & Clinical Pharmacology</i> , 8(4), 629.
15	Leaf extract	Wound Healing	The leaf extract protected thehumanfibroblasts and keratinocytes from hydrogen peroxide-induced oxidative stress by increasing cell survival rate by morethan 20% in all test doses.	Namchaiw, P., Jaisin, Y., Niwaspragrit, C., Malaniyom, K., Auvuchanon, A., &Ratanachamnong, P. (2021). The leaf extract of Coccinia grandis (L.) Voigt accelerated in vitro wound healing by reducing oxidative stress injury. Oxidative Medicine and Cellular Longevity, 2021(1), 3963510.
16	Ethanol leaf extract	Antidyslipidemic	Oral administration with ethanolic extract at the dose of 500 mg/kg body weight for 7 days, in dyslipidemic hamsters resulted in significant lowering of plasma levels of TG, TC and Gly	Singh, G., Gupta, P., Rawat, P., Puri, A., Bhatia, G., & Maurya, R. (2007). Antidyslipidemic activity of polyprenol from Coccinia grandis in high-fat diet-fed hamster model. <i>Phytomedicine</i> , <i>14</i> (12), 792-798.
17	Ethanolic extract of leaves	cholesterol lowering activity	C. grandis extract (25 mg/kg) also produced significant (p<0.05) total cholesterol lowering and HDL increasing(p<0.05)	Al-Amin, M. M., Uddin, M. M. N., Rizwan, A., & Islam, M. S. (2013). Effect of ethanol extract of Coccinia grandis Lin leaf on glucose and cholesterol lowering activity. <i>British Journal of Pharmaceutical Research</i> , 3(4), 1070-1078.
18	Alcoholic extract of fruit	Hepatoprotective Activity	the animal livers exhibited an almost normal architecture barring a little deformation of hepatocytes with pyknosis and clearing of cytoplasm	Vadivu, R., Krithika, A., Biplab, C., Dedeepya, P., Shoeb, N., & Lakshmi, K. S. (2008). Evaluation of hepatoprotective activity of the fruits of Coccinia grandis Linn. International Journal of Health Research, 1(3).
19	Methanol fruit exract	Antimicrobial activity	The activity was more pronounced on gram-positive organisms with Staphylococcus aureus being more susceptible and Salmonella paratyphi	Shaheen, S. Z., Bolla, K., Vasu, K., & Charya, M. S. (2009). Antimicrobial activity of the fruit extracts of Coccinia indica. <i>African Journal of Biotechnology</i> , 8(24).

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 3, October 2025

			A being more resistant.	
20	Leaves extract Methanol leave extract	Antileishmanial anticancer activity	the increased production of Th1 cytokines (IL-12, TNF-a) with a concurrent decrease of Th2 cytokines (IL-10, TGF-b) was also observed in Cg-Extreated infected host macrophages. Ethanolic extracts significantly reduced viable cell count and	Pramanik, A., Paik, D., Naskar, K., & Chakraborti, T. (2017). Coccinia grandis (L.) Voigt leaf extract exhibits antileishmanial effect through pro-inflammatory response: An in vitro study. Current microbiology, 74, 59-67. Bhattacharya, B., Lalee, A., Mal, D. K., & Samanta, A. (2011). Invivo and in-vitro anticancer activity
			increased non viable cell count	of Coccinia grandis (L.) Voigt.(Family: Cucurbitaceae) on Swiss albino mice. <i>Journal of</i> <i>Pharmacy Research</i> , 4(3), 567-569.
22	Leave extract	Antimicrobial Activity	Ethanol extract of leaves exhibited antimicrobial activity against biofilm producing strains UPEC 17 and 82, whereas the aqueous and acetone extracts showed antibacterial activity only against UPEC 57. Ethanol extract of leaves exhibited inhibitory action against ESBL producing UPEC 87 and 96, whereas the aqueous extract inhibited the growth of only UPEC 85	Poovendran, P., Vidhya, N., & Murugan, S. (2011). Antimicrobial activity of Coccinia grandis against biofilm and ESBL producing uropathogenic E. coli. <i>Global J Pharmacol</i> , 5(1), 23-26.
23	Leave extract	Antiproteolytic&leishmani cidal activity	Cg-ex showed appreciable inhibitory activity against trypsin and <i>L.donovani</i> serine proteases rather than chymotrypsin	Das, P., Paik, D., Pramanik, A., De, T., & Chakraborti, T. (2015). Antiproteolytic and leishmanicidal activity of Coccinia grandis (L.) Voigt leaf extract against Leishmania donovani promastigotes.
24	Hydromet hanolic leave extract	antioxidant activities	All the fractions showed effective Hdonoractivity, reducing power, free radical scavenging activity, metal chelating ability and inhibition of β-carotene bleaching.	Umamaheswari, M., & Chatterjee, T. K. (2008). In vitro antioxidant activities of the fractions of Coccinia grandis L. leaf extract. <i>African Journal of Traditional, Complementary and Alternative Medicines</i> , 5(1), 61-73.
25	Ethanolic	Visceral Leishmaniasis	Cg-LE stimulated	Lahiry, S., Das, A. K., Das, S. N.,

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 3, October 2025

	leave		reactive oxygen species	& Manna, M. (2018). Ethanolic
	extract		generation and apoptosis.	leaf extract of Coccinia grandis is
	CAHact		Parasites infected	effective against both drug resistant
				and drug sensitive clinical isolates
				~
				of Indian Kala-azar. Journal of
			production after Cg-LE	Parasitic Diseases, 42, 433-441.
			treatment suggested the	
			leishmanicidal activity of	
			the leaf extract. Cg-LE	
			treatment led to	
			mitochondrial membrane	
			damage and DNA	
			fragmentation in	
			promastigotes.	
26	Coccinia	antidepressant activity	The methanol extract	Randhawa, K., Kumar, D., Jamwal,
	indica		significantly reduced the	A., & Kumar, S. (2015). Screening
	aerial		duration of immobility in	of antidepressant activity and
	parts		FST at dose of400 mg/kg	estimation of quercetin from
	1		without affecting	Coccinia indica using TLC
			locomotor activity in	densitometry. <i>Pharmaceutical</i>
			open field test, thus,	biology, 53(12), 1867-1874.
			confirmed	
			itsantidepressant activity,	
			which was statistically	
			equivalent to the standard	
			drug	
27	Ethanol	mast cell stabilizing,	ECGF at (100–150	Taur, D. J., & Patil, R. Y. (2011).
27	extract of	antianaphylactic and	mg·kg-1 ,i.p.)	Mast cell stabilizing,
	fruit	antihistaminic activity	significantly protected	antianaphylactic and antihistaminic
	Huit	antimistaminic activity		
			egg albumin induced	activity of Coccinia grandis fruits
			degranulations of mast	in asthma. Chinese Journal of
			cells and caused	Natural Medicines, 9(5), 359-362.
			reduction of blue dye	
			leakage in passive	
			cutaneous anaphylaxis in	
			dose dependently. The	
			treatment ECGF also	
			inhibited clonidine	
			induced catalepsy in dose	
			dependent manner.	
28	Methanoli	Hepato-restorative Activity	by treating with crude	Yerramilli, V., Singh, M., Singh, I.,
	c leave		methanolic extract of leaf	Nagar, L., & Singh, J. (2024).
	and stem		and stem parts of	Hepato-restorative Activity of
	extract		Coccinia grandis and	Methanolic Extracts of Coccinia
			their corresponding calli	grandis L. Voigt. in CCl4-
			(leaf callus and stem	Intoxicated Rats. Pharmacognosy
			callus at 180mg/kg bw)	Journal, 16(5).
	1	I		

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

Impact Factor: 7.67

			in terms of marked decrease in CCl4 - increased SGOT (Serum glutamic oxaloacetic	
			transaminase), SGPT (Serum glutamic pyruvic transaminase), ALP (Alkaline phosphatase), TB (Total bilirubin) and rise in TP (Total protein)	
			compared to untreated control group.	
29	Aqueous Extract of Leaves	Spasmolytic Activity	Extract possibly stimulates presynaptic cholinergic nerve endings to produce spasmodic response in rabbit jejunum smooth muscle	Farrukh, U., Rizwani, G. H., & Zahid, H. (2016). Spasmolytic Activity of the Aqueous Extract of Leaves of Coccinia grandis L. in Rabbit Smooth Muscles. <i>MADINAT AL-HIKMAH</i> , 59(3), 45.
30	Ethanol leave extract	hepatoprotective activity	The ethanol extract of C. grandis reduced the serum activities caused by Paracetamol and CCl4.	Kundu, M., Mazumder, R., & Kushwaha, M. D. (2012). Evaluation of hepatoprotective activity of ethanol extract of Coccinia grandis (L.) Voigt. leaves on experimental rats by acute and chronic models. <i>Oriental pharmacy and experimental medicine</i> , 12, 93-97.

II. CONCLUSION

For study of coccinia grandis pharmacological activity different part of the coccinia grandis plant were used in different aliments to see if it possess the activity designated. This review highlight the pharmacological activities of coccinia grandis plant belonging to the family of cucurbitaceae. This studies shows that different part of coccinia grandis plant posses great activity but the leaf of coccinia grandis has exceptional medicinal properties compared to the other part of the plant. Coccinia grandis plant has been widely explode for its pharmacological activities and has lots of medicinal properties but more research needs to continue focusing and exploring more activity of the plant.this review artcle give insight on the cocciniagrandis, plantpart, chemical constituitents, different model and approach done on different animals and organism to expolereit activity.

REFERENCES

- [1]. Pekamwar, S. S., Kalyankar, T. M., &Kokate, S. S. (2013). Pharmacological activities of Coccinia grandis. *J Appl Pharm Sci*, 3(05), 114-119.
- [2]. Hossain, S. A., Uddin, S. N., Salim, M. A., & Haque, R. (2014). Phytochemical and pharmacological screening of Coccinia grandis Linn. *Journal of Scientific and Innovative Research*, 3(1), 65-71
- [3]. Nagare, S., Deokar, G. S., Nagare, R., &Phad, N. (2015). Review on Coccinia grandis (L.) Voigt (ivy gourd). World journal of pharmaceutical research, 4(10), 728-743.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

- [4]. Sivaraj, A., Jenifa, B. P., Kavitha, M., Inbasekar, P., Senthilkumar, B., & Panneerselvam, A. (2011). Antibacterial activity of Coccinia grandis leaf extract on selective bacterial strains. *Journal of Applied Pharmaceutical Science*, (Issue), 120-123.
- [5]. Dewanjee, S., Maiti, A., Kundu, M., & Mandal, S. C. (2007). Evaluation of anthelmintic activity of crude extracts of Diospyros peregrina, Coccinia grandis and Schima wallichii. *Dhaka University Journal of Pharmaceutical Sciences*, 6(2), 121-123.
- [6]. Niazi, J., Singh, P., Bansal, Y., & Goel, R. K. (2009). Anti-inflammatory, analgesic and antipyretic activity of aqueous extract of fresh leaves of Coccinia indica. *Inflammopharmacology*, 17, 239-244.
- [7]. Jagannath, N. Antidiabetic Activity of Coccinia Grandis fruit extract in streptozotocin Induced diabetic rats.
- [8]. Kumar, M., Alok, S., Kumar, S., & Verma, A. (2014). In-vivo study of antilithiatic activity on the fruits extracts of Coccinia indica (Wight &Arn.) ethylene glycol induced lithiatic in rats. *International Journal of Pharmacognosy*, *I*(1), 51-58.
- [9]. Debasmita, D., Santosh, K. S., Smarita, L., Rajesh, K. M., Biswakanth, K., & Shakti, R. (2023). Evaluation of the antibacterial activity of Coccinia grandis, against bacteria isolated from chronic suppurative otitis media infection.
- [10]. Niazi, J., Singh, P., Bansal, Y., & Goel, R. K. (2009). Anti-inflammatory, analgesic and antipyretic activity of aqueous extract of fresh leaves of Coccinia indica. *Inflammopharmacology*, 17, 239-244.
- [11]. Sharma, A. K., Chaudhary, M., Kumar, R., Chauhan, B., Sharma, S., & Sharma, A. D. (2011). Antioxidant Activity of Coccinia grandis Fruits and Leaves. *Inventi Rapid: Ethnopharmacology*.
- [12]. Meenatchi, P., Purushothaman, A., &Maneemegalai, S. (2017). Antioxidant, antiglycation and insulinotrophic properties of Coccinia grandis (L.) in vitro: Possible role in prevention of diabetic complications. *Journal of Traditional and Complementary Medicine*, 7(1), 54-64.
- [13]. DEORE, P. (2017). Coccinia grandis fruit extract gel for the treatment of mouth ulcer along with associated wound and inflammation. *J. Res. Educ. Indian Med*, 23(1-2), 43-58.
- [14]. Sutradhar, B. K., Islam, M. J., Shoyeb, M. A., Khaleque, H. N., Sintaha, M., Noor, F. A., ... & Rahmatullah, M. (2011). An evaluation of antihyperglycemic and antinociceptive effects of crude methanol extract of Coccinia grandis (L.) J. Voigt.(Cucurbitaceae) leaves in Swiss albino mice. *Advances in Natural and Applied Sciences*, 5(1), 1-5.
- [15]. Umamaheswari, M., & TK, C. (2008). Effect of the fractions of Coccinia grandis on naphthalene-induced cataractogenesis in rats. *International Journal of Biomedical and Pharmaceutical Sciences*, 2(1), 70-74.
- [16]. Hossain, M. F., Rahaman, M. A., Abdullah-Al-Mamun, H. K., Isalm, M. S., &Sumsuzzman, D. M. (2017). ANTIHYPERLIPIDEMIC ACTIVITY OF COCCINIA GRANDIS ON HIGH FAT DIET INDUCED WISTAR ALBINO RATS. *European Journal of Biomedical*, 4(05), 25-28.
- [17]. Datchanamurty, B., Mythireyi, D., &Divyashanthi, C. M. (2019). Evaluation of antiulcer activity of ethanolic leaf extract of Coccinia grandis in indomethacin induced gastric ulcer model. *International Journal of Basic & Clinical Pharmacology*, 8(4), 629.
- [18]. Namchaiw, P., Jaisin, Y., Niwaspragrit, C., Malaniyom, K., Auvuchanon, A., &Ratanachamnong, P. (2021). The leaf extract of Coccinia grandis (L.) Voigt accelerated in vitro wound healing by reducing oxidative stress injury. *Oxidative Medicine and Cellular Longevity*, 2021(1), 3963510.
- [19]. Singh, G., Gupta, P., Rawat, P., Puri, A., Bhatia, G., & Maurya, R. (2007). Antidyslipidemic activity of polyprenol from Coccinia grandis in high-fat diet-fed hamster model. *Phytomedicine*, 14(12), 792-798.
- [20]. Al-Amin, M. M., Uddin, M. M. N., Rizwan, A., & Islam, M. S. (2013). Effect of ethanol extract of Coccinia grandis Lin leaf on glucose and cholesterol lowering activity. *British Journal of Pharmaceutical Research*, 3(4), 1070-1078.
- [21]. Vadivu, R., Krithika, A., Biplab, C., Dedeepya, P., Shoeb, N., & Lakshmi, K. S. (2008). Evaluation of hepatoprotective activity of the fruits of Coccinia grandis Linn. *International Journal of Health Research*, *I*(3).

DOI: 10.48175/IJARSCT-29354

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, October 2025

- [22]. Shaheen, S. Z., Bolla, K., Vasu, K., & Charya, M. S. (2009). Antimicrobial activity of the fruit extracts of Coccinia indica. *African Journal of Biotechnology*, 8(24).
- [23]. Pramanik, A., Paik, D., Naskar, K., & Chakraborti, T. (2017). Coccinia grandis (L.) Voigt leaf extract exhibits antileishmanial effect through pro-inflammatory response: An in vitro study. *Current microbiology*, 74, 59-67.
- [24]. Bhattacharya, B., Lalee, A., Mal, D. K., & Samanta, A. (2011). In-vivo and in-vitro anticancer activity of Coccinia grandis (L.) Voigt.(Family: Cucurbitaceae) on Swiss albino mice. *Journal of Pharmacy Research*, 4(3), 567-569.
- [25]. Poovendran, P., Vidhya, N., & Murugan, S. (2011). Antimicrobial activity of Coccinia grandis against biofilm and ESBL producing uropathogenic E. coli. *Global J Pharmacol*, 5(1), 23-26.
- [26]. Das, P., Paik, D., Pramanik, A., De, T., & Chakraborti, T. (2015). Antiproteolytic and leishmanicidal activity of Coccinia grandis (L.) Voigt leaf extract against Leishmania donovani promastigotes
- [27]. Umamaheswari, M., & Chatterjee, T. K. (2008). In vitro antioxidant activities of the fractions of Coccinia grandis L. leaf extract. *African Journal of Traditional, Complementary and Alternative Medicines*, 5(1), 61-73
- [28]. Lahiry, S., Das, A. K., Das, S. N., & Manna, M. (2018). Ethanolic leaf extract of Coccinia grandis is effective against both drug resistant and drug sensitive clinical isolates of Indian Kala-azar. *Journal of Parasitic Diseases*, 42, 433-441.
- [29]. Randhawa, K., Kumar, D., Jamwal, A., & Kumar, S. (2015). Screening of antidepressant activity and estimation of quercetin from Coccinia indica using TLC densitometry. *Pharmaceutical biology*, 53(12), 1867-1874.
- [30]. Taur, D. J., & Patil, R. Y. (2011). Mast cell stabilizing, antianaphylactic and antihistaminic activity of Coccinia grandis fruits in asthma. *Chinese Journal of Natural Medicines*, 9(5), 359-362.
- [31]. Yerramilli, V., Singh, M., Singh, I., Nagar, L., & Singh, J. (2024). Hepato-restorative Activity of Methanolic Extracts of Coccinia grandis L. Voigt. in CCl4-Intoxicated Rats. *Pharmacognosy Journal*, 16(5).
- [32]. Farrukh, U., Rizwani, G. H., & Zahid, H. (2016). Spasmolytic Activity of the Aqueous Extract of Leaves of Coccinia grandis L. in Rabbit Smooth Muscles. *MADINAT AL-HIKMAH*, 59(3), 45.
- [33]. Kundu, M., Mazumder, R., & Kushwaha, M. D. (2012). Evaluation of hepatoprotective activity of ethanol extract of Coccinia grandis (L.) Voigt. leaves on experimental rats by acute and chronic models. *Oriental pharmacy and experimental medicine*, 12, 93-97.

