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Abstract: Computerized Maintenance Management Systems (CMMS) are essential for manufacturing 

industries to transform their maintenance operations into a more digital and automated format. Using 

basic work order capabilities, inventory, assets, and scheduled preventative maintenance, a CMMS 

improves operational efficiency, maximizes resource utilization, and minimizes equipment downtime. 

Various incidents across companies that advance beyond Industry 4.0 have increased CMMS capabilities 

with new advanced technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), cloud 

computing, and predictive analytics being added as a means for real-time data capture, better decision 

making, and predictive-based maintenance schedules for improving equipment reliability and 

productivity of the plant. Unfortunately, there are ongoing issues, such as interfaceability between 

systems, lack of formalized standards for data exchange, cybersecurity reliability, and especially 

predictive output for real-time applicability. This survey examines the literature on CMMS utilization in 

the manufacturing sector and reviews different technology trends, research approaches, and applications 

in several key maintenance areas. This study reviews critical research gaps and discusses avenues for 

establishing intelligent, autonomous, and integrated maintenance management systems aligned with 

Industry 5.0. Ultimately, this analysis concludes that future CMMS frameworks must develop into 

adaptive, data-driven, and self-learning maintenance ecosystems capable of supporting proactive 

decision-making, seamless connections, and sustainability via advanced manufacturing operations 
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I. INTRODUCTION 

In the era of digital transformation and Industry 4.0, manufacturing industries are experiencing increasing demands for 

efficiency, reliability, and sustainability. Unplanned equipment failures, subpar maintenance planning, and ineffective 

data-driven decision-making are major contributors to production losses in industrial cases. Conventional maintenance 

processes are typically manual and reactive and cannot fulfill the complexity and pace of operations in modern 

manufacturing settings [1, 2]. Maintenance teams would start using paper-based logs and manual scheduling; however, 

isolated databases made managing their assets difficult and forecasting when things might fail effectively difficult. As 

manufacturing systems have become more automated and interconnected, the need for a holistic technology-enabled 

maintenance management approach has become unavoidable. This need has given rise to Computerized Maintenance 

Management Systems (CMMS), which have changed how organizations manage, monitor, and implement maintenance 

activities [3, 4]. 

A Computerized Maintenance Management System is a software-based platform created to enhance and streamline 

maintenance activities, consolidate asset-related information, and develop predictive maintenance approaches. The 

CMMS provides an accessible and systematic framework for managing work orders, planning preventive maintenance, 

managing spare part inventories, and evaluating asset performance. CMMS brings digitization to maintenance 

workflows, which increases transparency and consistency, as well as opportunities for data accessibility across an entire 

organization. In manufacturing environments, machine uptime is directly related to productivity and profit, and CMMS 
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assists organizations in improving equipment uptime, increasing reliability, and extending the life of their assets. Over 

the past ten years, CMMS has transitioned from a basic data-recording tool to an intelligent, interconnected system 

capable of performing predictive analytics and providing real-time decision support. This is driven by the convergence 

of technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), cloud computing, and data analytics, 

which allow maintenance teams to transition from reactive to predictive and prescriptive maintenance paradigms [5, 6]. 

The advancement in maintenance management techniques mirrors this change. Maintenance activities were largely 

reactive, meaning that activities requiring fixing occurred only after the equipment broke down. The simplicity of this 

approach, which reacts only after failure, typically results in downtimes that can be costly, as well as safety concerns 

that are prevalent in these approaches. The next step introduced preventive maintenance, where the focus of 

maintenance tasks reduced the need for service on equipment/parts by performing regular scheduled service and 

replacement of parts at predefined intervals. Although this approach is a notable improvement over the purely reactive 

maintenance approach, it leads to as many, if not more, instances of over-maintenance or serviced parts that do not 

require servicing or otherwise limit the frequency of maintenance on an asset. Assisted databases and sensors have 

advanced condition-based and predictive maintenance strategies for wind turbines. CMMS has embedded predictive 

models to analyze the sensor data, with the guidance of chips or devices that can determine any deviations from the 

expected performance, calculate the remaining useful life (RUL), and manage to maintain assets at intervals that 

approach or are below the RUL thresholds. The impact of these changes leads to a more optimized use of resources in 

manufacturing firms, with significant potential limitations in maintenance efforts when comprehensive, maximizing 

overall equipment effectiveness (OEE) endeavors. 

In today's manufacturing settings, computerized maintenance management systems (CMMS) are vital for addressing 

the demands of complicated maintenance processes. A CMMS is widely considered a centralized database that digitally 

connects maintenance teams, assets, and operational data. This allows maintenance engineers to use digital dashboards 

and reporting tools to visualize the health of equipment, plan intervention requirements, and track the completion of 

work in real time. A core feature of CMMS is work order management, which automates the process of generating, 

assigning, and monitoring requested work for maintenance and is specialized for documentation. The inventory 

management modules provide organizations with visibility to safely stock sufficient spare parts and consumable items 

as needed, eliminating either outages or excessive storage. The asset management feature allows organizations to track 

all of their asset information, such as the entire lifecycle of machinery from when the asset was purchased until the time 

the asset is disposed of, and provides the organization with the asset performance, depreciation, and maintenance 

history. Preventive maintenance scheduling allows organizations to schedule machinery maintenance before 

breakdowns at optimal intervals. These functionalities enable manufacturers to establish and support a data-driven 

maintenance culture that focuses on efficient, accountable, and continuous improvement [9-11]. 

The amalgamation of Computerized Maintenance Management Systems (CMMS) with Industry 4.0 technologies has 

led to further advancements in their function. In novel manufacturing environments, Internet of Things (IoT) sensors 

continuously collect real-time data related to the condition of machines, such as temperature, vibration, and pressure. 

These data then become available to the CMMS, which uses artificial intelligence algorithms to process the collected 

data and recognize faulty conditions or conditions outside the normal operating parameters. Predictive analytics in a 

CMMS can estimate failures and autonomously generate maintenance requests before they occur. Cloud computing 

delivers scalability and remote access, allowing maintenance departments to access asset data and work orders from 

anywhere [12]. This accessibility can be beneficial for large-scale manufacturing and multiple locations. Additionally, 

digital twins, or virtual models of physical assets, will increasingly be integrated with CMMS to model equipment, 

create maintenance schedules, and simulate the potential for maintenance decisions before their application. This type 

of integration will drive CMMS to become the backbone of intelligent maintenance systems, enabling autonomous 

monitoring and reasoning in an adaptive framework [13]. 

When a manufacturing organization adopts a CMMS, it obtains several advantages. First, unplanned downtimes are 

significantly reduced because CMMS allows scheduling work orders based on predictive maintenance instead of 

reactive maintenance. Automated labor scheduling and job task allocation reduce idle time (when a machine is capable 

of running but not doing anything) as CMMS manages resource allocation and minimizes machine failure without prior 
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warning. Additionally, CMMS makes it easier for organizations to spend less on maintenance costs by reducing 

reliance on emergency repairs, minimizing redundant maintenance, and reducing spare parts inventories. Similarly, 

CMMS helps organizations make data-driven decisions regarding maintenance operations by producing analytical 

reports from maintenance histories and trends in performance and reliability. These data allow organizations to identify 

and rectify operational failures, improve equipment reliability, and adjust maintenance plans to optimize reliability 

within a framework of continuous improvement. From a compliance perspective, CMMS provides a digital trail without 

the usual paperwork for regulatory audits and provides organizations with traceability of safety inspections and 

maintenance records. As the sustainability of operations is being increasingly recognized, CMMS enhances the 

environmentally sustainable practices of a manufacturing organization by monitoring energy consumption, reducing 

waste, and extending the usable life of the equipment. The long-term practical advantages of CMMS lead to higher 

productivity, reduced operational costs, and improved competitiveness. [14, 15]. 

Although CMMS has many advantages, various challenges in its implementation must be addressed to realize its full 

potential. The most significant challenge is the high initial investment required for CMMS software, infrastructure, and 

training. Many small- and medium-sized enterprises (SMEs) experience financing and technical limitations that may 

prevent them from adopting these technologies. Data management is also a challenge because the performance of 

CMMS relies on the input data being of good quality, consistency, and completeness. Integrating CMMS with other 

enterprise systems, such as Enterprise Resource Planning (ERP) and Supervisory Control and Data Acquisition 

(SCADA), is complicated because mismatches can occur in formats and communication protocols that provide 

alternatives to supplying the command. Cybersecurity threats have increased as CMMS systems are made available in 

the cloud and embedded within IoT devices, requiring strong protections to ensure data security, including encryption, 

multi-factor authentication, and access management. The implementation of CMMS is further reliant on user buy-in 

and training. Resistance to change toward digital measures, user awareness, and poor adoption of new preservation 

programs within the maintenance crew will impact system utilization and overall return on investment. Addressing 

these challenges requires technical solutions, managerial authority, and change management [16]. As the manufacturing 

sector progressively shifts toward Industry 5.0, focusing on human-machine collaborations and sustainability, CMMS 

will become a significant component of valuable and adaptable maintenance systems. The next generation of CMMS 

platforms will leverage artificial intelligence for real-time fault prediction, natural language processing for voice-based 

work order generation, and augmented reality for interactive maintenance. For example, maintenance technicians may 

wear AR headsets that allow them to visualize information on an asset, receive instructions for step-by-step repair, or 

consult experts remotely through integrated communication systems. Machine learning algorithms continuously 

evaluate historical data to optimize maintenance planning, resources, and spare part inventories. These developments 

will transform CMMS from a simple maintenance tool to a fully self-learning, completely autonomous maintenance 

ecosystem that will build continuous improvement and operational resilience [17]. Furthermore, the increasing focus on 

sustainability and energy efficiency in manufacturing is broadening the scope of CMMS from operational performance 

to environmental impact. Intelligent CMMS platforms can capture energy consumption behaviors, identify areas of 

inefficiency, and issue recommendations for correcting each issue to reduce waste. The introduction of digital twins and 

blockchain will further enhance the assurance of traceability, accountability, and transparency throughout the 

maintenance supply chain. Such a system can authenticate the legitimacy of components, effectively record 

maintenance transactions, and help implement circular economy principles by tracking asset reuse and recycling 

processes. 

Given the critical role of CMMS in modern manufacturing, there is a pressing need to consolidate the existing body of 

research to understand its capabilities, limitations, and future directions. Although numerous studies have explored 

individual aspects of CMMS, such as predictive maintenance, IoT integration, and asset management, comprehensive 

reviews focusing on CMMS as a unified system remain limited. This survey aims to fill this gap by providing an in-

depth analysis of CMMS research and applications in the manufacturing context. This study examined four key 

functional domains: work order management, inventory management, asset management, and preventive maintenance, 

each representing a vital CMMS ecosystem component. Through a systematic literature review, this study identifies 

technological advancements, implementation challenges, and open research issues that require further exploration. 
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Special emphasis is placed on understanding how CMMS contribute to smart manufacturing, the role of data analytics 

in predictive maintenance, and the challenges related to system interoperability, cybersecurity, and user adoption. 

The introduction of Computerized Maintenance Management Systems has fundamentally transformed maintenance 

operations in manufacturing, shifting them from reactive to proactive and predictive paradigms. A CMMS enhances 

operational efficiency and equipment reliability and aligns with digital transformation and sustainability objectives. As 

industries embrace intelligent manufacturing technologies, CMMS will remain central to achieving data-driven, 

autonomous, and sustainable maintenance. Therefore, this survey serves as a timely and comprehensive overview of 

CMMS evolution, current research trends, and the future trajectory of maintenance management in the era of Industry 

4.0 and beyond. 

 

II. RELATED WORK ON COMPUTERIZED MAINTENANCE MANAGEMENT SYSTEM 

This section surveys recent and influential literature on Computerized Maintenance Management Systems (CMMS) as 

applied to manufacturing, organized into four functional domains commonly handled by CMMS: work order 

management, inventory (spare parts) management, asset management, and preventive (including predictive) 

maintenance. For each domain, we summarize the key approaches, representative findings, and practical/technical 

trends reported in the literature, highlighting where CMMS research has concentrated and where gaps remain. 

 

Work order management  

Work order management is the workflow backbone of a CMMS; it covers fault reporting, ticket generation, 

prioritization, routing, technician assignment, execution, and closure with documentation. Recent research has focused 

on automating and optimizing these sub-processes using text mining of unstructured work order descriptions, 

prioritization heuristics, and decision support systems that use asset criticality and production impact to triage work. 

Studies have shown that natural language processing (NLP) and machine learning classifiers can dramatically reduce 

sorting and improve assignment accuracy. Simultaneously, fuzzy logic and multi-criteria decision-making models have 

been proposed to prioritize work when multiple constraints (safety, spare availability, and production schedules) 

compete. There is also growing interest in mobile-enabled CMMS features (technician apps, barcode/RFID scanning) 

that reduce the latency between fault detection and work order closure.  

 
Fig. 1. Key steps of the work order management 
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Despite these advances, persistent issues remain unresolved. Many industrial work orders remain noisy/unstructured, 

automated detection (IoT alerts) integration with human-reported tickets often causes duplicate or inconsistent records, 

and adaptive scheduling under dynamic production constraints remains an open optimization problem. 

Shankar et al. [19] conducted a comprehensive study on the impact of implementing Computerized Maintenance 

Management Systems (CMMS) in manufacturing industries, emphasizing its role in improving productivity, cost 

efficiency, and safety performance. In a structured survey of Indian sectors, we identified 11 key performance 

indicators (KPIs) for evaluating a computerized maintenance management system (CMMS). The findings indicate that 

CMMS enhances productivity, maintenance planning, and resource utilization with less downtime. This study suggests 

that a well-implemented CMMS enables data-driven decision-making but requires further customization for various 

industrial environments. 

Abdalaal and Shukri [20] investigated the deployment of a CMMS to replace existing traditional paper systems in 

industrial maintenance workshops. A CMMS is essential for facilitating preventive and predictive maintenance, 

scheduling, and resource allocation. This study acknowledges that attendant issues with implementation or lack of user 

training will result in an inability to harness the system’s full implications and loss of worker engagement with the 

process.  Abdalaal and Shukri posit that CMMS can be leveraged successfully under proper conditions, including 

providing training, phased implementation, and sustained engagement to facilitate long-term working reliability. 

Shankar et al. [21] addressed the obstacles and solutions for integrating CMMS in the manufacturing environment. This 

study identified nine significant barriers: employee reluctance to change, legacy data integration, insufficient training, 

and technological issues. The authors provided solutions such as clear communication, engaging staff, training, and 

data governance frameworks. Their study indicates the need to align technology implementation with organizational 

change management to achieve successful digital transformation in maintenance functions.   

Ogbeifun et al. [22] reviewed how organizations can take advantage of the different benefits of CMMS to manage 

maintenance through three case studies, two at academic institutions and one at a manufacturing organization. The 

study demonstrated that the benefits received rely significantly on user competence and analytical use of the data. 

While educational institutions primarily use CMMS for planning and reporting, manufacturing organizations are 

achieving advanced performance benchmarking. The authors concluded that the nature of human capacity is key to 

fully capitalizing on the CMMS promise of reliability and continuous improvement. Simard et al. [23] developed 

VulcanH, a modern prototype CMMS for preventive and predictive maintenance of underground mining equipment. In 

this study, we employed human-centered design and explainable artificial intelligence (XAI) to mitigate end-user 

distrust of automation. They used predictive maintenance experts to conduct usability tests with the VulcanH. They 

found that VulcanH performed efficiently and was easy to use to support the transition from preventive to predictive 

maintenance. Participants preferred graphical explanations of AI outputs, reinforcing the importance of transparency in 

predictive maintenance. The study emphasizes that explainable CMMS platforms can enhance user confidence and 

decision accuracy in industrial maintenance. 

Benhanifia et al. [24] systematically reviewed predictive maintenance (PdM) practices in the manufacturing sector 

following the PRISMA 2020 framework. This review analyzes academic research and patient data to identify the 

technological trends and industrial applications. It highlights the role of AI, IoT, and big data analytics in enabling real-

time monitoring and predictive fault diagnosis, significantly improving equipment uptime, and reducing maintenance 

costs. However, the study noted a lack of standardized ROI assessment models for PdM implementation, calling for 

future research on unified performance metrics and cost-benefit evaluation methodologies to address this gap. 

Table 1: Summary of the Computerized maintenance management system for work order management 

Ref. Author(s) 

& Year 

Title Study Focus / 

Objectives 

Major Findings Limitations / 

Future Scope 

[19] L. Shankar, 

C. D. Singh, 

and R. 

Singh 

Impact of 

Implementation of 

CMMS for 

Enhancing the 

To evaluate 

CMMS's benefits 

and key 

performance 

Identified 11 KPIs for 

CMMS selection. 

CMMS improved 

productivity, 

The study is limited 

to survey-based 

data and suggests 

developing 
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(2021) Performance of 

Manufacturing 

Industries 

indicators (KPIs) in 

Indian 

manufacturing 

industries. 

reliability, safety, and 

cost efficiency. 

customized CMMS 

models for different 

industry types. 

[20] O. A. A. 

Abdalaal 

and M. I. 

Shukri 

(2020) 

Implementation of 

the Computerized 

Maintenance 

Management 

System in the 

Maintenance 

Workshop 

To compare 

traditional paper-

based systems with 

CMMS-based 

preventive 

maintenance. 

Demonstrated CMMS 

enhances scheduling, 

data recording, and 

preventive 

maintenance; user 

training is crucial. 

Limited field 

testing emphasized 

the need for 

stepwise training 

and phased 

deployment for 

successful 

implementation. 

[21] L. Shankar, 

C. D. Singh, 

and R. 

Singh 

(2024) 

Challenges and 

Solutions for 

Implementing 

CMMS in 

Manufacturing 

Industries 

To identify 

significant 

challenges and 

propose solutions 

for CMMS 

implementation. 

Highlighted nine 

significant barriers 

(resistance to change, 

data integration, 

training)—proposed 

communication, 

training, and phased 

rollout strategies. 

It lacked 

quantitative 

analysis; validation 

was suggested 

through industrial 

case studies. 

[22] E. Ogbeifun, 

P. 

Pasipatorwa, 

and J. H. C. 

Pretorius 

(2021) 

Harnessing the 

Multiple Benefits 

of a Computerised 

Maintenance 

Management 

System 

To assess CMMS 

utilization in 

academic and 

industrial 

organizations 

through case studies. 

The benefits found 

depend on human 

analytical capacity. 

Manufacturing firms 

achieved advanced 

benchmarking and 

reliability analysis. 

Focused on limited 

case studies; 

recommended 

broader cross-

sector studies for 

generalization. 

[23] S. R. 

Simard, M., 

Gamache, P. 

Doyon-

Poulin 

(2024) 

Development and 

Usability 

Evaluation of 

VulcanH, a CMMS 

Prototype for 

Preventive and 

Predictive 

Maintenance of 

Mobile Mining 

Equipment 

To design and 

evaluate a human-

centered CMMS 

integrating 

preventive and 

predictive 

maintenance (PdM). 

VulcanH showed high 

usability and 

promoted transition 

from PM to PdM; 

users preferred 

explainable AI with 

visual data. 

Prototype stage 

only; recommended 

inclusion of full-

scale planning and 

real-world 

deployment testing. 

[24] A. 

Benhanifia, 

Z. B. 

Cheikh, P. 

M. Oliveira, 

A. Valente, 

and J. Lima 

(2025) 

Systematic Review 

of Predictive 

Maintenance 

Practices in the 

Manufacturing 

Sector 

To systematically 

review AI- and IoT-

driven predictive 

maintenance 

approaches in 

manufacturing. 

I found that PdM 

improves reliability 

and cost efficiency 

using AI and IoT. 

Identified global 

industrial trends and 

technology gaps. 

Noted lack of 

standardized ROI 

models and unified 

evaluation metrics; 

urged 

interdisciplinary 

and empirical 

research. 
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Inventory management  

Spare parts and consumables management within a CMMS has been extensively studied because stock-outs or excess 

inventories directly affect maintenance costs and downtime. Classic inventory approaches (safety stock, min–max 

policies, and EOQ variants) remain widely used, but contemporary research increasingly combines inventory control 

with conditions or predictive signals from assets. Data-driven joint models that link predicted failure times to spare-part 

demand lead to lower holding costs and require fewer emergency procedures than conventional models. RFID and 

barcode-enabled tracking, plus ERP–CMMS integration, are recurring practical recommendations to improve the 

accuracy of part counts and lead-time management. Literature surveys covering decades of spare-part research highlight 

heterogeneity in part criticality, demand intermittency, and lead-time variability as the primary modeling challenges 

motivating stochastic and classification-based stocking policies (critical vs. non-critical spares). Open issues include 

modeling multi-echelon spare networks for large manufacturers, better real-time demand forecasting when predictive 

maintenance is used, and automatic requisitioning that respects budget constraints and production priorities. 

Fig. 2 shows that the cost-benefit analysis in maintenance includes fixed order costs, spare part purchasing costs, and 

inventory holding costs, emphasizing the intricate link between inventory and overall maintenance profitability.  

 
Fig. 2. Cost-benefit analysis in inventory management 
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Shankar Lakshmi et al. [21] present a comprehensive overview of challenges and solutions for implementing 

Computerized Maintenance Management Systems (CMMS) in manufacturing industries. Their 2024 study emphasized 

that a CMMS is crucial for manufacturing sectors that aim to increase productivity, reduce downtime, minimize 

maintenance and operation costs, and achieve profitability, competitiveness, and sustainability goals. This study 

highlights the automation of maintenance activities through CMMS as a key enabler for these objectives, stressing the 

importance of proper implementation to harness its full benefits. 

Farid Sukmana et al. [25] in their 2024 study, scrutinize the efficiency of CMMS project stages using the K-Means 

clustering method. They demonstrated how this methodology can identify areas that require improvement by evaluating 

four CMMS development projects (Tim, Lix, Akb, and Mnk). Their findings indicate that the "Tim" project exhibited 

more efficient CMMS development stages, whereas "Lix" and "Akb" projects were less efficient, particularly during the 

implementation phases. The "Mnk" project showed mixed efficiencies across its stages. This study contributes to the 

understanding of optimizing CMMS deployment by identifying the bottlenecks. 

Md Mahamudur Rahaman Shamim [26] contributes a systematic literature review 2025 focusing on maintenance 

optimization within smart manufacturing facilities. Guided by the PRISMA 2020 framework, this review synthesizes 

the advancements, applications, and challenges of integrating Lean, Total Productive Maintenance (TPM), and digitally 

driven reliability models. This study analyzed 112 peer-reviewed articles published between 2010 and 2024 to 

comprehensively understand the evolution of CMMS-supported maintenance strategies in the context of Industry 4.0. 

Ogbeifun et al. [22] highlighted the multiple benefits of computerized maintenance management systems in their 2021 

study. They explained that CMMS leverages information and communication technology to enhance the planning and 

management of maintenance activities, resource allocation, and production scheduling. The authors emphasize that 

CMMS facilitates improved communication among stakeholders, streamlines planning processes, provides easy access 

to historical data, and enhances reporting and performance measurements, allowing maintenance operations to thrive in 

the digital era. 

Simon Robatto Simard et al. [23] detail the design, development, and usability evaluation of "VulcanH," a CMMS 

prototype specifically designed for preventive and predictive maintenance of mobile mining equipment. Published in 

2024, this study aims to expand the knowledge of trust in automation (TiA) for predictive maintenance (PdM) and 

contribute to the literature on explainability considerations for AI-driven PdM. Their qualitative research focused on 

helping empirical realities in operational environments, showing the possibilities of targeted solutions for CMMS in 

less demanding industrial contexts. 

Piyush Sehgal et al. [27] discussed CMMS as a means to harness the performance of Indian manufacturing industries in 

their 2021 publication. The authors argued that CMMS creates a simplee method for predicting an asset that requires 

preventive maintenance, thus leading to better business by reducing costs and enhancing profits. The authors also found 

that CMMS organizes work orders, which helps minimize paperwork and eventually gives management the power to 

manage tasks for better organizational management and subsequently improve maintenance practices. 

Abdeldjalil Benhanifia et al. [24] conducted an in-depth literature review regarding predictive maintenance (PdM) 

practices for the manufacturing sector in 2025, which was aligned with the PRISMA 2020 method. The study asserted 

that PdM could transform Industry 4.0 and significantly enhance sustainable management in manufacturing process 

efficiency. The authors also discussed the use of PdM in various manufacturing methods with a relevant intention 

focused on integrating advanced technological applications, such as AI and IoT, which commonly produce advanced 

CMMS. 

Lakshmi Shankar et al. [19] studied the use of the CMMS implementation to enhance the performance of the 

manufacturing industry in 2021. They define CMMS as maintenance-based software or Enterprise Asset Management 

(EAM) used for planning, scheduling, managing, and monitoring maintenance activities related to equipment, 

machinery, automobiles, or other facilities. The authors concluded that industry CMMS applications increase 

productivity, organizational growth and operational efficiency. 

Tangbin Xia et al. [28] published research in 2023 on multi-level maintenance and inventory joint optimization for a k-

out-of-n hyper-system, considering supplier selection with incentive discount policies. With a high impact factor of 

11.000000, this study proposes a multilevel opportunistic maintenance and inventory control joint optimization (M-
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OMICJO) policy to maximize maintenance outsourcing profits. It considers complex factors such as personnel 

dispatching costs, PM and CM costs, system failure penalties, fixed order costs, spare part purchasing costs, and 

inventory holding costs. It provides an advanced model for integrated maintenance and inventory management. 

Table 2: Summary of the Computerized maintenance management system for Inventory management 

Ref. Author(s) & 

Year 

Title / Focus Study Objective / 

Methodology 

Major Findings Limitations / 

Future Scope 

[19] L. Shankar, C. 

D. Singh, and 

R. Singh (2021) 

Impact of CMMS 

Implementation on 

Enhancing 

Manufacturing 

Performance 

Investigated CMMS 

as Enterprise Asset 

Management (EAM) 

software for 

optimizing 

maintenance 

processes. 

Found that CMMS 

enhances 

productivity, 

organizational 

growth, and overall 

operational 

efficiency. 

Suggested further 

expansion to other 

industrial sectors 

for validation. 

[21] L. Shankar, C. 

D. Singh, and 

R. Singh (2024) 

Challenges and 

Solutions for 

Implementing 

CMMS in 

Manufacturing 

Industries 

Identified key 

barriers to CMMS 

adoption and 

proposed strategies 

for effective 

implementation. 

Highlighted that 

CMMS increases 

productivity, reduces 

downtime, and 

lowers costs when 

properly 

implemented. 

Recommended 

empirical validation 

of proposed 

solutions through 

industrial case 

studies. 

[22] E. Ogbeifun, P. 

Pasipatorwa, 

and J. H. C. 

Pretorius (2021) 

Harnessing the 

Multiple Benefits of 

a Computerised 

Maintenance 

Management System 

Explored CMMS 

advantages through 

three case studies 

from academia and 

industry. 

Demonstrated that 

CMMS improves 

communication, 

resource planning, 

data access, and 

performance 

reporting. 

Case studies are 

limited to specific 

institutions; broader 

industrial validation 

is needed. 

[23] S. R. Simard, 

M., Gamache, 

P. Doyon-

Poulin (2024) 

Development and 

Usability Evaluation 

of VulcanH, a 

CMMS Prototype for 

Preventive and 

Predictive 

Maintenance 

Developed and tested 

“VulcanH,” a CMMS 

prototype integrating 

AI-driven predictive 

maintenance. 

Found that VulcanH 

improves trust in 

automation and 

usability for 

predictive 

maintenance in 

mining equipment. 

In the prototype 

stage, future work 

should include full-

scale deployment 

and comparative 

analysis. 

[24] A. Benhanifia, 

Z. B. Cheikh, P. 

M. Oliveira, A. 

Valente, and J. 

Lima (2025) 

Systematic Review 

of Predictive 

Maintenance 

Practices in the 

Manufacturing 

Sector 

Conducted a 

systematic review 

(PRISMA 2020) on 

PdM integration 

using AI and IoT. 

Showed PdM 

enhances reliability 

and cost-efficiency 

while improving 

manufacturing 

sustainability. 

Identified gaps in 

ROI measurement 

and standardization 

of PdM evaluation 

metrics. 

[25] F. Sukmana, M. 

S. R. F. Arif, 

and D. A. D. P. 

Susanto (2024) 

Efficiency 

Evaluation of CMMS 

Project Stages Using 

K-Means Clustering 

Analyzed four 

CMMS development 

projects (Tim, Lix, 

Akb, Mnk) using K-

Means clustering. 

Found “Tim” most 

efficient; “Lix” and 

“Akb” less efficient, 

especially during 

implementation 

phases. 

Recommends 

optimization 
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Asset management  

Asset management research related to CMMS addresses lifecycle tracking, reliability assessment, and decision support 

for repair versus replacement choices. Contemporary works emphasize condition-monitoring integration (vibration, 

thermal, and acoustic sensors) and the rise of “digital twin” approaches that pair a virtual asset model with CMMS 

records to enable simulations of maintenance strategies and what-if analyses. Machine learning models, ranging from 

classical survival analysis to deep learning-based remaining useful life (RUL) estimators, are increasingly embedded 

into asset-management modules to produce health scores and prognostics. Reviews on predictive maintenance and 

digital twins report improved fault detection rates and more informed lifecycle decisions when CMMS stores high-

quality historical maintenance logs linked to the sensor streams. However, integration challenges persist: heterogeneous 

data formats, varying sampling rates, and sparse failure labels complicate model training, and ensuring that prognostic 

outputs are explainable and actionable for maintenance planners remains a research/implementation need. 

 
Fig. 3. Asset management flowchart 

Mhlaba and Masinde [26] designed a hardware-based asset-monitoring prototype to automate laptop tracking in 

academic environments. The system reduces manual supervision and prevents equipment loss by integrating the real-

time data. Their research highlighted how low-cost microcontrollers and wireless modules can be integrated into a 

CMMS to provide continuous asset condition updates. This type of automation significantly improves the accuracy of 

maintenance schedules, allows for reduced asset downtime, and provides timely services. The following study 

exemplifies how systems can be scaled in an industrial setting, where CMMS integration can add value to asset 

utilization and lifecycle efficiency management. 

Wang et al. [27] provided the design of an IoT-enabled enterprise asset management framework that focused on the 

real-time monitoring of industrial assets. Their design connected sensor data collection to cloud-connected CMMS 

modules, automating the CMMS's fault detection process and maintenance scheduling. Using wireless sensors located 

within operational machines will create the system's ability to provide uninterrupted performance telemetry and 

automatically generate a work order. The results prove that enhanced asset management with IoT increases operational 

visibility and precision in preventative maintenance. This model connects the physical equipment and digital 
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management system and identifies the critical rollout of interoperability between the design of both ideal states of the 

IoT and CMMS architectural models in an intelligent manufacturing system.  

Li et al. [28] examined the role of RFID technology in gaining real-time tracking and monitoring of assets. This 

proposed system uses RFID tags and readers to monitor the movement and location of the tagged equipment and place 

them into the CMMS database. RFID technology enables improved inventory records, decreases human error, and 

supports proactive decisions regarding preventive maintenance. This study illustrates how RFID can enhance the 

abilities of CMMS by automating the identification and monitoring of assets. In addition, this group strongly suggested 

using hybrid RFID and sensor data to overcome read range and physical interference issues in industrial environments. 

Thaduri, Galar, and Kumar [29] investigated big data analytics concerning railway asset management and highlighted a 

shift to predictive maintenance. This study integrates sensor-based data collection with CMMS analytics to forecast 

equipment degradation and optimize maintenance intervals. Using advanced analytics, asset performance data is 

transformed into actionable insights for decision-making. This study demonstrates that real-time data integration into 

CMMS can drastically improve reliability, safety, and cost efficiency. The authors concluded that data-driven CMMS 

solutions are critical for developing intelligent asset management systems for large-scale industrial operations. 

Adame et al. [30] developed CUIDATS, an RFID–Wireless Sensor Network hybrid monitoring platform for medical 

equipment tracking. This system enhances asset visibility, reduces losses, and supports proactive maintenance. Data 

from distributed sensors is transmitted to a centralized CMMS to ensure real-time condition awareness. This study 

highlights the potential of hybrid architectures to merge environmental and positional data for comprehensive asset 

management. Such systems can be utilized directly in manufacturing through IoT-based CMMS frameworks that 

provide enhanced operational reliability, less downtime, and strategic planning based on real-time asset data. 

Al Mamun et al. [31] have proposed an intelligent model for bin-status monitoring that uses rule-based algorithms for 

real-time asset monitoring. Although this model applies to waste management, it illustrates a pathway for IoT data 

streams to trigger actions for automated maintenance in a CMMS. For example, their architecture can detect real-time 

anomalies, issue alerts, and prioritize service activities based on usage intensity. This application demonstrates how 

condition-based maintenance (CBM) principles can be applied to asset domains beyond the industrial machinery 

domain. Suppose the CMMS framework in manufacturing uses rules-based logic, similar to the CMMS references 

above, which assists industries that rely heavily on machinery and equipment. In this case, the net impact is increased 

efficiency, thoughtful (or optimized and balanced) resource allocation, and maintenance will evolve (hopefully) into a 

predictive maintenance culture across asset networks. 

Manbachi et al. [32] explicitly proposed a co-simulation monitoring framework to enhance asset operational efficiency 

in smart infrastructure. This system employs virtual simulation models integrated synchronously with real-time sensor 

data to determine asset health, eliminate bottlenecks, predict failures, and optimize service windows. The framework 

enables proactive decision-making and reduces unscheduled downtime when integrated with a CMMS. The authors 

emphasize that simulation-enhanced CMMS architectures can test multiple maintenance scenarios and minimize 

production disruption. This study underscores the relevance of digital twin technology in asset management and 

provides a foundation for intelligent CMMS integration in Industry 4.0 environments. 

Roe, O’Banion, and Olsen [33] discussed mobile LiDAR-based methodologies for large-scale asset inspection in utility 

management. This study emphasizes data acquisition accuracy and standardized condition assessment for CMMS input. 

LiDAR-derived measurements enable the precise detection of surface wear, alignment issues, and structural 

deformations. When combined with CMMS databases, these insights facilitate data-driven maintenance prioritization. 

The study’s methodology demonstrates how geospatial data integration enhances the CMMS’s capability for predictive 

analysis and asset lifecycle management, particularly for distributed infrastructures like pipelines, highways, and power 

transmission networks. 

Rahimi, Gøtze, and Møller [34] proposed an enterprise architecture framework that aligns asset management systems 

with corporate data strategies. Their taxonomy improves the interoperability between CMMS, ERP, and SCADA 

platforms by defining standardized data models and integration workflows. The research demonstrates that a structured 

enterprise architecture enhances CMMS reliability and supports more accurate asset lifecycle analysis. This alignment 
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ensures that asset data collected through IoT and monitoring devices is processed coherently across departments, 

improving decision-making efficiency and reducing data redundancy in the maintenance ecosystem. 

Campbell, Jardine, and McGlynn [35] established holistic asset management strategies based on the financial, 

operational, and maintenance approach. Their model allows for systematically optimizing lifecycle costs via data-

driven computer maintenance management system (CMMS) modules. Campbell et al. also demonstrated that if 

performance metrics, such as the Mean Time Between Failures (MTBF) and Return on Assets (ROA), are coupled with 

maintenance analysis, CMMS is a strategic decision-support system. This study identifies how the role of a CMMS is 

evolving from a simple operational tool to that of an enterprise-level intelligence solution that can help organizations 

align maintenance strategies with broader business and sustainability goals.  Fang et al. [36] also combined Building 

Information Modeling (BIM) and RFID to locate indoor assets in construction contexts. Their hybrid system provides 

real-time asset management and condition monitoring, which is directly integrated into CMMS for automatic 

maintenance scheduling. Their methodology also spans 3D visualization and maintenance analytics, improving 

situational awareness and resource efficiency. This approach demonstrates a hybrid space-time data stream that 

showcases how a CMMS can evolve as a complete visualization-driven asset management solution in both the 

construction and manufacturing industries. Ferdinandus and Setiawan [37] created a web-based road asset management 

system that utilizes GeoJSON and mobile GPS-based technology to provide real-time data updates, asset mapping, and 

condition assessments. Using a CMMS, the system can generate automatic work orders to maintain infrastructure at an 

appropriate standard. The authors state that incorporating mobile sensing and geospatial analytics enhances asset 

transparency and responds rapidly to the deterioration of assets. Their work demonstrated the importance of 

interoperability between mobile sensing systems and CMMS frameworks to manage geographically dispersed assets 

efficiently and ensure optimal maintenance scheduling. 

Congress, Puppala, and Lundberg [38] explored using uncrewed aerial vehicles (UAVs) for remote asset inspection in 

transportation systems. When processed and integrated with CMMS, UAV-generated imagery enhances defect 

detection and maintenance planning capabilities. This study reports substantial time savings and safety improvements 

by reducing manual inspections in hazardous environments. The authors propose that UAV-assisted CMMS modules 

can improve condition monitoring accuracy, create digital inspection logs, and support predictive maintenance models. 

Their findings demonstrate the growing role of aerial sensing in intelligent asset management systems in industrial 

applications. 

Shah, Zhong, and Ly [39] examined smartphone-based road asset monitoring using crowdsourced data to update 

CMMS records dynamically. Their system allows real-time fault reporting and geo-tagged image submission by field 

technicians. Integrating mobile technologies improves the responsiveness and data accuracy of CMMS asset databases. 

The authors emphasize the importance of quality assurance protocols for validating the collected data before 

maintenance execution. This model demonstrates how distributed mobile systems empower decentralized asset 

management and enhance collaborative maintenance workflows within industrial organizations. 

Yu, Yuan, and Zheng [40] implemented a university fixed asset information management system using IoT devices. 

The system automates the tracking of movable assets and connects directly to CMMS for condition monitoring and 

maintenance alerts. The results show a significant improvement in preventive maintenance compliance, asset 

accountability, and lifecycle tracking. This study highlights that IoT-driven CMMS can effectively manage diverse 

equipment portfolios while reducing human effort. Such integration is highly relevant to industrial manufacturing, 

where similar frameworks enhance asset utilization and sustainability. 

Zhao [41] investigated GPS tracking data processing to support spatiotemporal analytics for mobile asset management. 

The study’s data-cleaning and pattern-extraction algorithms improve the accuracy of the asset movement history within 

CMMS databases. The model allows predictive routing and scheduling of maintenance based on the actual equipment 

usage. This study emphasizes the integration of advanced data-processing pipelines with CMMS platforms to enhance 

operational foresight. This approach provides a foundation for intelligent decision-making regarding mobile industrial 

assets, logistics planning, and field maintenance operations. 

Robert [42] provided foundational principles for effective asset management, emphasizing the establishment of 

standardized asset hierarchies and performance indicators. His framework aligns with the ISO 55000 guidelines and 
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highlights the necessity of structured CMMS configurations. This study recommends defining data ownership, 

accountability, and continuous improvement metrics to enhance CMMS adoption success. By institutionalizing these 

governance mechanisms, organizations can ensure physical assets' long-term reliability and cost control. This study is a 

guiding reference for industries implementing comprehensive CMMS-driven asset management programs. 

Kusuma wardhani, Gundersen, and Markeset [43] systematically mapped asset management research in the petroleum 

sector, identifying emerging trends in digitalization and reliability-centered maintenance. Their study revealed that 

CMMS adoption improves traceability and facilitates adaptive maintenance strategies under uncertain operational 

conditions. They argued for integrating knowledge management and AI analytics into CMMS to support decision-

making in complex asset environments. These findings provide a roadmap for advancing from traditional to intelligent 

asset management paradigms across critical infrastructure sectors. 

Elehinafe et al. [44] presented a real-time process simulation model for industrial systems and linked it with CMMS to 

enable proactive maintenance and performance benchmarking. Their approach enhances equipment reliability through 

continuous feedback on the condition of the equipment and predictive analytics. Integrating process modeling with 

CMMS data offers a unified view of asset health and operational efficiency. The authors concluded that such hybrid 

architectures significantly improve maintenance scheduling and reduce resource wastage, paving the way for next-

generation self-optimizing maintenance systems in smart manufacturing plants. 

Thaduri et al. [45] further explored large-scale distributed asset management systems for transportation and utilities. 

Their research underscores the need for scalable CMMS architectures to process high-volume sensor data. The 

proposed framework utilizes data aggregation and pattern recognition to generate meaningful asset-health indicators. 

The study demonstrates that when integrated with CMMS, robust data pipelines enable proactive maintenance planning, 

reduce downtime, and improve the operational resilience of CMMS. Their findings contribute to the foundation of data-

intensive asset management strategies applicable across industrial domains. 

Table 3: Summary of the Computerized maintenance management system for asset management 

Ref. Author(s) & Year Title / Focus Study Objective / 

Methodology 

Major Findings Limitations / 

Future Scope 

[26] T. Mhlaba & M. 

Masinde (2015) 

Hardware 

prototype for 

laptop asset 

monitoring 

Developed a low-cost 

microcontroller-based 

asset tracking system 

integrated with 

CMMS. 

Automated asset 

condition updates, 

reduced manual 

errors, improved 

maintenance 

scheduling. 

Focused on an 

academic setting; 

industrial-scale 

validation required. 

[27] C. Wang, Y. Tan & 

Z. Li (2015) 

IoT-based 

enterprise asset 

management 

system 

Designed an IoT-

enabled CMMS 

framework for real-

time fault detection. 

Improved operational 

visibility and 

automated preventive 

scheduling. 

Limited to small-

scale experimental 

validation. 

[28] W. Li et al. (2016) Real-time 

locating 

systems in 

construction 

management 

Reviewed RTLS 

applications for asset 

movement and 

lifecycle monitoring. 

Enhanced CMMS 

asset traceability and 

utilization accuracy. 

Implementation 

complexity in large 

sites. 

[29] A. Thaduri, D. Galar 

& U. Kumar (2015) 

Big data 

analytics for 

railway assets 

Integrated sensor 

analytics with CMMS 

for predictive 

maintenance. 

Improved asset 

reliability, safety, 

and cost efficiency. 

Focused on 

transportation; 

requires industrial 

cross-validation. 

[30] T. Adame et al. 

(2018) 

CUIDATS: 

RFID–WSN 

hybrid 

Developed a hybrid 

IoT system for 

healthcare asset 

Enhanced asset 

visibility and 

proactive 

Need for scalability 

testing in 

manufacturing 
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monitoring 

system 

tracking. maintenance 

scheduling. 

contexts. 

[31] M. A. Al Mamun et 

al. (2016) 

Intelligent bin-

status 

monitoring 

Applied IoT and rule-

based logic to trigger 

CMMS maintenance 

actions. 

Automated servicing 

and improved 

condition-based 

scheduling. 

Domain-specific; 

industrial adaptation 

required. 

[32] A. Manbachi et al. 

(2016) 

Real-time co-

simulation 

monitoring 

framework 

Combined simulation 

models with sensor 

data for predictive 

analysis. 

Enabled proactive 

maintenance and 

reduced downtime 

via CMMS. 

Needs validation on 

full-scale industrial 

plants. 

[33] J. Roe, T. O’Banion 

& E. Olsen (2016) 

Mobile LiDAR-

based utility 

inspection 

Introduced LiDAR-

guided asset 

assessment for 

CMMS data input. 

Improved inspection 

accuracy and 

lifecycle monitoring. 

Costly data 

acquisition and 

processing. 

[34] A. Rahimi, J. Gøtze 

& C. Møller (2017) 

Enterprise 

architecture for 

asset 

management 

Proposed data 

governance model for 

CMMS–ERP–

SCADA integration. 

Enhanced 

interoperability and 

data consistency. 

Lacked a 

quantitative 

assessment of 

integration 

efficiency. 

[35] J. D. Campbell et al. 

(2016) 

Asset 

Management 

Excellence 

Established lifecycle-

based decision 

framework for 

CMMS. 

Integrated financial 

and operational KPIs 

with maintenance 

analytics. 

Theoretical; 

implementation 

studies suggested. 

[36] Y. Fang et al. (2016) BIM + RFID 

for indoor asset 

localization 

Designed a hybrid 

model linking BIM 

visualization with 

CMMS. 

Improved spatial 

awareness and 

automatic 

maintenance 

scheduling. 

Applicable 

primarily to 

construction; needs 

manufacturing 

adaptation. 

[37] R. Ferdinandus & E. 

Setiawan (2016) 

GeoJSON web-

based road asset 

system 

Created a mobile-

GPS and web-

integrated CMMS 

platform. 

Enabled real-time 

asset mapping and 

work order 

automation. 

Limited field testing 

on infrastructure 

assets. 

[38] E. Congress, A. 

Puppala & B. 

Lundberg (2018) 

UAV-based 

asset inspection 

Integrated drone-

collected imagery 

into CMMS 

databases. 

Enhanced defect 

detection, reduced 

manual inspection 

risks. 

Dependent on 

weather and terrain, 

it requires 

automation of 

image analysis. 

[39] R. Shah, R. Zhong & 

T. Ly (2017) 

Smartphone-

based road-

asset 

monitoring 

Used mobile crowd-

sensing for CMMS 

record updating. 

Improved 

responsiveness and 

data accuracy in 

maintenance 

reporting. 

Requires strict 

quality control of 

field data. 

[40] M. Yu, J. Yuan & H. 

Zheng (2018) 

IoT-based fixed 

asset 

information 

management 

Implemented IoT-

driven CMMS for 

asset tracking in 

institutions. 

Improved PM 

compliance and asset 

accountability. 

Focused on 

academic 

institutions, 

industrial trials are 

recommended. 
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[41] J. Zhao (2015) GPS data 

processing for 

mobile assets 

Developed data-

cleaning algorithms 

for spatiotemporal 

tracking. 

Enhanced CMMS 

accuracy and 

predictive 

maintenance 

planning. 

Limited dataset; 

scalability analysis 

required. 

[42] J. Robert (2016) Introduction to 

Asset 

Management 

Principles 

Established ISO 

55000-aligned 

CMMS framework. 

Defined hierarchical 

asset modeling and 

governance practices. 

Conceptual work; 

needs empirical 

implementation 

studies. 

[43] R. Kusumawardhani, 

O. Gundersen & O. 

Markeset (2017) 

Mapping 

petroleum asset 

management 

research 

Conducted systematic 

mapping of digital 

asset management 

trends. 

Highlighted CMMS 

integration benefits 

for adaptive 

maintenance. 

Petroleum-centric; 

cross-sector 

applicability 

needed. 

[44] B. A. Elehinafe et al. 

(2019) 

Real-time 

process 

simulation and 

CMMS 

integration 

Linked process 

simulation outputs 

with CMMS 

modules. 

Enabled proactive 

maintenance and 

process optimization. 

Simulation is 

limited to a specific 

industry; it needs a 

generalized model. 

[45] A. Thaduri et al. 

(2015) 

Distributed 

asset data 

analytics for 

CMMS 

Proposed large-scale 

data aggregation for 

CMMS integration. 

Improved scalability 

and predictive 

maintenance 

accuracy. 

Focused on 

transport assets; 

manufacturing 

adaptation required. 

 

Preventive maintenance  

Preventive maintenance (PM) scheduling is a classical CMMS function, a time- or usage-based trigger that reduces the 

likelihood of sudden breakdowns. The literature indicates a clear trend from calendar-based PM to condition-based and 

predictive maintenance (PdM) enabled by IoT sensors, edge/cloud analytics, and machine learning. Systematic reviews 

have summarized that PdM can substantially reduce maintenance costs and downtime when implemented correctly; 

however, success depends on sensor placement, data quality, and the maturity of analytic pipelines. Key research 

directions include feature engineering for anomaly detection, hybrid physics–data models for RUL estimation, and 

prescriptive modules that convert predictions into optimized work orders and spare-part actions. Recent studies have 

also stressed the need to co-design predictive models and inventory policies (joint PdM–spare optimization) to avoid 

situations where accurate failure forecasts cannot be acted upon because parts or personnel are unavailable. Finally, 

there is growing attention on practical deployment challenges, model drift, analytics lifecycle, explainability, and 

cybersecurity for cloud/edge-connected CMMS. 

Shaheen and Németh [49] presented a comprehensive overview of preventive maintenance (PM) evolution, tracing its 

roots to post–World War II Japanese practices that reduced downtime but increased inspection costs. They explained 

how PM transitioned into reliability-centered and risk-based maintenance, aligning objectives with cost, reliability, and 

safety requirements. Their work emphasizes the shift from rigid, time-based scheduling toward knowledge-driven 

decision models, positioning PM as a proactive, data-oriented component of modern maintenance management systems 

integrated within Industry 4.0 ecosystems. 

Duffuaa and Raouf [50] developed a framework for managing maintenance, which includes PM under planning and 

control. Their framework helped ensure that equipment was operated within specified performance limits by utilizing 

PM as part of computerized systems that balanced workloads, scheduling, and capacity. The authors indicated that a 

well-developed PM system would lead to improved machine productivity and reliability, as well as improved 

maintenance function predictability. The study also illustrates how computerized maintenance management systems 
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(CMMS) can support the PM philosophy in practice by managing schedules and coordinating resources systematically, 

thus providing a systematic approach to preventive care in an industrial context. 

Hardt et al. [51] present a digitized model of Total Productive Maintenance (TPM) combining new forms of data 

environments. Their approach utilizes preventive inspection-type processes coupled with real-time data analytics to 

improve maintenance intervals and resource utilization. Their digital TPM approach allows for real-time predictive 

rescheduling based on sensor input, significantly decreasing manual effort and downtime. The findings suggest that 

further PM actions can advance system reliability, prevent premature canning, and improve availability. This study also 

indicates the critical intersections between TPM and Industry 4.0 analytics for continuous advances in preventive 

maintenance. Fusko et al. [52] outlined guidelines for implementing digital PM in Industry 4.0. Their model outlines 

three essential layers: real-time data acquisition, preprocessing, and predictive models, which convert static PM 

schedules into dynamic, condition-based maintenance schedules. Their system links sensors with computerized 

maintenance management systems (CMMS) platforms, supporting ongoing equipment performance monitoring and 

appropriate intervention timing. The authors demonstrated digital PM strategies to minimize the costs associated with 

maintenance, reduce downtime, minimize reliance on people, and improve the responsiveness of the overall system. 

This study focused on the importance of data architecture and model accuracy for managing adaptive preventive 

maintenance. 

Alves and Ravetti [53] proposed a hybrid scheduling model of predictive–preventive maintenance for concurrent 

manufacturing systems. Their work included a combination of robust and semi-heuristic algorithms to incorporate PM 

activities into the production flow design. The simulation results showed considerably reduced downtime and increased 

machine throughput. This study bridges the preventive and predictive domains with the ability of PM schedules to adapt 

to the moment based on operational demand. This shows that integrated PM schemes make significant contributions to 

multi-objective optimization in the manufacturing process, aligning resource use, reliability, and performance, all 

consistent with Industry 4.0 manufacturing systems. Kiangala and Wang [54] provide an experimental framework 

integrating preventive maintenance with SCADA systems with respect to conveyor motors. The framework uses 

vibration sensors to gather data on machine conditions and graphical dashboards to forecast potential maintenance 

needs. This study demonstrates that integrating sensor networks with CMMS disciplines improves the flexibility and 

accuracy of PM practices and decreases downtime by allowing for timely corrective actions. Additionally, the SCADA 

integration of the PM framework can be set up as a closed-loop feedback system based on the condition of the operating 

machines. This development shows how the connections of Industry 4.0 support dynamic maintenance scheduling. 

Li et al. [55] presented a preventive maintenance framework integrating an artificial neural network (ANN) algorithm 

to identify faults and schedule maintenance activities within machining centers. Li et al. used sensor data acquisition, 

signal preprocessing, and ANN-based fault classification to create the framework to determine the probability of failure 

and subsequently adjust the PM interval. Their results demonstrated reduced unplanned downtime and the ability to 

schedule maintenance work optimally. In addition, encouraging intelligent PM scheduling using neural networks can 

decrease over-maintenance. It aligns maintenance activities with the actual degradation conditions of the machine, thus 

optimizing the use of people and resources in automated production environments. 

Chiu et al. [56] have defined a cyber-physical PM management system that marries multi-agent control with a cloud-of-

things architecture. The system integrates real-time maintenance activities across multiple machines to ensure that PM 

activities are performed simultaneously on all connected assets. Prior work has indicated that the cloud-based 

shareability of maintenance scheduling and monitoring roles improves PM accuracy in large-scale smart factories. 

Their work highlighted the benefits of applying CPS, IoT, and cloud intelligence to design scalable preventive 

maintenance solutions that can be used across various sectors. 

Spendla et al. [57] presented an ANN-driven preventive maintenance model to enhance production quality using 

predictive analytics. Their Industry 4.0-based system uses IoT sensors and machine learning to monitor process 

deviations and initiate PM actions before the occurrence of failures. A closed feedback loop between maintenance and 

manufacturing outcomes is established by linking product quality metrics with PM triggers. The results confirm that 

integrating PM with data-driven quality control reduces defect rates, increases uptime, and supports continuous process 

improvement in digital manufacturing systems. 
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Alarcón et al. [58] present an integrated Energy and Maintenance Management System (EMMS) that fuses energy 

analytics with preventive maintenance scheduling. Their system employs energy consumption as an indirect measure of 

equipment condition, enabling proactive PM actions. Integrating maintenance data and energy parameters ensures that 

performance and efficiency are optimized simultaneously. Their results demonstrated that energy-informed PM 

strategies reduce unnecessary interventions while extending equipment lifespan. This study highlights sustainability as 

an emerging dimension of preventive maintenance in innovative manufacturing. 

Toeh et al. [59] present a hybrid preventive–predictive framework using machine learning and fog computing to 

optimize maintenance timing. The system applies genetic algorithms and logistic regression to predict the likelihood of 

machine failure, allowing for decentralized, real-time PM scheduling. Processing data closer to the equipment reduces 

the latency and dependence on the network. It improves the speed and dependability of decision-making and 

demonstrates the value of distributed computing for PM decision-making, specifically with geographically distributed 

industrial assets in Industry 4.0 situations. 

Nordal and El-Thalji [60] described an intelligent maintenance management framework that ties PM functions to an 

enterprise-level digital strategy. Their system connects machine-level monitoring to the ERP module to align PM 

actions with the organization's operational and financial priorities. The model automates the scheduling of maintenance 

tasks and resource planning using AI-based optimization. They positioned PM as a bridge between shop-floor reliability 

management and strategic business objectives, advancing self-learning and data-driven maintenance ecosystems in 

smart manufacturing. 

Bourezza and Mousrij [61] presented an intelligent PM strategy that integrated condition monitoring and remaining 

useful life (RUL) estimation. Their architecture processes real-time sensor data to predict degradation trends and issue 

maintenance recommendations for the equipment. The study shows that RUL-based PM significantly improves decision 

accuracy by reducing both under- and over-maintenance. Technicians benefit from real-time insights that prioritize 

preventive tasks based on equipment condition. This system exemplifies the evolution of scheduled PM to quantitative, 

data-supported maintenance strategies in Industry 4.0. 

Caterino et al. [62] present a decision-support framework that determines optimal preventive or opportunistic 

maintenance strategies using CPS and IoT integration. Their algorithm selects actions that minimize the total cost and 

maximize reliability under dynamic operational conditions. Simulation tests showed that adaptive PM decisions 

outperformed static maintenance scheduling by balancing performance and cost efficiency. This study advances the 

prescriptive maintenance paradigms by optimizing preventive decisions using real-time analytics and intelligent 

control. 

Masoni et al. [63] present a remote preventive maintenance model utilizing augmented reality (AR) interfaces for 

guided servicing. The system enables remote expert supervision and visual assistance for field technicians performing 

PM tasks. Studies have shown reduced human error, better procedural adherence, and usefulness in training and 

workforce development. This AR-based approach can support maintenance teams distributed across vast geographies 

while expanding PM capabilities to remote or hazardous work environments. The authors note that AR-enabled PM 

operations will enhance and flatten the technical skills in the field. 

Konstantinidis et al. [64] describe their implementation of the MARMA (Maintenance Augmented Reality Maintenance 

Assistant) system in AR with computer vision, which is used to support technicians in performing planned maintenance 

(PM) activities. MARMA provides visual aids in a contextual step-by-step format to provide a degree of task validation 

(as operators have camera-based recognition). Their user-centered designs aim to improve procedural accuracy and 

reduce equipment downtime. Their results suggest that integrating AR with AI and computer recognition will elevate 

PM activities from a "documentation-tied process" to an overall interactive and intuitive maintenance experience to 

support human–machine collaboration principles in Industry 4.0. 

Ceruti et al. introduced a powerful combination of augmented reality (AR) and additive manufacturing (AM) for the 

preventive maintenance (PM) of aerospace parts. The hybrid system features real-time PM visualization to manufacture 

parts using on-demand 3D printing. This Wi-Fi system reduces spare part stock and decreases repair time.  This article 

depicts the fusion of digital visualization and fabrication, as well as observation and service for maintenance practice, 

which is shifting PM ecosystems in high-value aerospace manufacturing to be more sustainable and flexible. 
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Kumar and Galar introduce the term "Maintenance 4.0," and characterize PM as transitioning from reactivity in 

maintenance to predictive and prescriptive paradigms. They noted that PM data ensure the foundation for developing 

AI and IoT initiatives to develop self-learning and adaptive maintenance systems. Their framework encourages 

sustainability, reduces waste, and enhances resource efficiency in modern factories. Maintenance methods, analytics, 

and enterprise digitalization would redefine PM processes as a strategic enabler of intelligent manufacturing systems. 

Giacotto and colleagues majored in the Smart Prescriptive Maintenance Framework (SPDF), which is designed for 

aerospace assembly lines. The framework integrates RAMS indicators with real-time CMMS feedback to synchronize 

PM activities with production operations. This model ensures higher reliability and safety by automatically optimizing 

preventive measures. Their findings confirm that integrating PM into digital twins and feedback loops significantly 

improves asset performance and operational continuity, contributing to data-driven prescriptive maintenance solutions 

in critical manufacturing sectors. 

Shaheen and Németh [68] concluded that PM under Industry 4.0 has evolved from time-based inspection to intelligent, 

interconnected maintenance ecosystems. They assert that integrating PM with AI, IoT, CPS, and cloud computing 

enhances sustainability, machine uptime, and cost-effectiveness. Nonetheless, they identified persistent challenges—

cybersecurity, interoperability, and workforce adaptation–that must be resolved for complete digital transformation. 

Their review positioned preventive maintenance as the cornerstone of intelligent autonomous maintenance management 

systems. 

Table 4: Summary of the Computerized maintenance management system for Preventive maintenance 

Ref. 

No. 

Author(s) & 

Year 

Focus / Title Study Objective / 

Methodology 

Major Findings Limitations / Future 

Scope 

[49] Shaheen & 

Németh (2022) 

Integration of 

maintenance 

functions with 

Industry 4.0 

Reviewed PM 

evolution from time-

based to knowledge-

driven strategies. 

Shifted PM to a data-

oriented approach 

linking reliability and 

cost. 

Requires further 

industrial validation 

and cybersecurity 

integration. 

[50] Duffuaa & 

Raouf (2015) 

Planning and 

Control of 

Maintenance 

Systems 

Modeled PM as a core 

planning and control 

function within 

CMMS. 

Enhanced reliability 

and predictability 

through standardized 

scheduling. 

It focuses on the 

conceptual framework 

and needs proof of 

digital implementation. 

[51] Hardt et al. 

(2020) 

Digital Total 

Productive 

Maintenance 

Embedded PM within 

data-driven TPM 

environments. 

Improved efficiency 

and equipment 

availability via sensor-

based rescheduling. 

Lacked real-time 

industrial case 

validation. 

[52] Fusko et al. 

(2021) 

Digitalizing 

Preventive 

Maintenance 

Outlined a three-layer 

model (data 

collection, pre-

processing, 

prediction). 

Enabled condition-

based PM, reducing 

cost and human 

dependency. 

Relies on data quality 

and modeling 

accuracy. 

[53] Alves & 

Ravetti (2021) 

Hybrid 

Preventive–

Predictive 

Scheduling 

Optimized PM and 

production planning 

for parallel systems. 

Reduced downtime 

and improved 

throughput via robust 

scheduling. 

Limited to simulation; 

needs industrial 

validation. 

[54] Kiangala & 

Wang (2020) 

SCADA-

Integrated PM 

for Motors 

Merged sensor 

feedback with CMMS 

dashboards. 

Enabled real-time PM 

adjustments and 

downtime reduction. 

Confined to specific 

equipment; scalability 

issues remain. 

[55] Li et al. (2020) ANN-Based 

PM for 

Machining 

Used neural networks 

for fault diagnosis and 

dynamic PM 

Reduced unscheduled 

shutdowns and 

optimized resource 

A data-intensive model 

requires domain-

specific training. 
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Centers scheduling. use. 

[56] Chiu et al. 

(2021) 

Cyber-Physical 

PM System 

Developed a multi-

agent cloud-based PM 

architecture. 

Improved 

coordination of 

maintenance across 

smart factories. 

Dependent on cloud 

reliability and network 

latency. 

[57] Spendla et al. 

(2022) 

ANN-Driven 

PM for Quality 

Improvement 

Applied IoT and ML 

for quality-linked PM 

triggering. 

Reduced defects and 

enhanced production 

continuity. 

Limited scope of test 

environment. 

[58] Alarcón et al. 

(2021) 

Energy & 

Maintenance 

Management 

Integration 

Linked energy 

analytics to preventive 

scheduling. 

Optimized 

maintenance and 

energy efficiency 

simultaneously. 

Needs further 

validation in energy-

intensive plants. 

[59] Toeh et al. 

(2021) 

Fog-Computing 

Preventive–

Predictive 

Model 

Used ML and genetic 

algorithms for PM 

timing. 

Enabled low-latency 

real-time PM 

decisions. 

Computational load 

limits deployment in 

small firms. 

[60] Nordal & El-

Thalji (2021) 

Intelligent 

Maintenance 

Management 

Aligned PM with 

enterprise digital 

strategies. 

Automated scheduling 

and resource 

allocation via AI. 

Integration with ERP 

requires data 

standardization. 

[61] Bourezza & 

Mousrij (2022) 

RUL-Based PM 

Strategy 

Applied condition 

monitoring and 

remaining-life 

prediction. 

Reduced under- and 

over-maintenance; 

prioritized tasks 

accurately. 

Sensor accuracy and 

data fusion remain 

challenges. 

[62] Caterino et al. 

(2022) 

CPS-Based 

Decision 

Support for PM 

Optimized preventive 

vs. opportunistic 

maintenance 

selection. 

Lowered total cost and 

increased asset 

reliability. 

Requires real-time 

integration with shop-

floor systems. 

[63] Masoni et al. 

(2021) 

AR-Enabled 

Remote 

Preventive 

Maintenance 

Used AR interfaces 

for guided servicing 

and expert support. 

Reduced human error 

and improved 

maintenance 

efficiency. 

Dependent on AR 

hardware availability 

and training. 

[64] Konstantinidis 

et al. (2021) 

MARMA: AR 

Maintenance 

Assistant 

Combined AR and AI 

for real-time PM 

guidance. 

Improved procedural 

accuracy and 

technician interaction. 

High setup cost and 

camera calibration 

issues. 

[65] Ceruti et al. 

(2021) 

AR + Additive 

Manufacturing 

for PM 

Enabled on-demand 

part fabrication with 

AR instruction. 

Reduced spare 

inventory and 

accelerated repairs. 

Limited to aerospace; 

broader validation 

needed. 

[66] Kumar & Galar 

(2019) 

Maintenance 

4.0 Framework 

Defined PM as a 

foundation for 

predictive and 

prescriptive 

maintenance. 

Enhanced 

sustainability and 

resource optimization. 

Implementation 

barriers in legacy 

systems. 

[67] Giacotto et al. 

(2021) 

Smart 

Prescriptive 

Maintenance 

Framework 

Integrated RAMS and 

digital twins for PM 

synchronization. 

Improved asset 

performance and 

safety in assembly 

lines. 

It focuses on aerospace 

and needs a cross-

industry application. 

[68] Shaheen & Future Summarized the Highlighted AI-, IoT-, Emphasized 
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Németh (2022) Directions of 

PM in Industry 

4.0 

evolution of PM into 

intelligent 

ecosystems. 

and CPS-driven PM 

benefits. 

cybersecurity and 

workforce adaptation 

challenges. 

 

Research gap  

Despite significant advancements in Computerized Maintenance Management Systems (CMMS), several gaps hinder 

their full potential in industrial environments. First, most studies focus on isolated CMMS functionalities, such as work 

order management, inventory control, or preventive maintenance, rather than developing an integrated, interoperable 

framework that supports end-to-end lifecycle management. Second, although IoT, AI, and cloud computing have 

enhanced real-time monitoring and predictive capabilities, their industrial adoption remains limited by data 

interoperability, cybersecurity, and system scalability challenges. Third, many CMMS implementations still rely on 

static rule-based decision models, and adaptive self-learning algorithms that evolve with operational data remain 

unexplored. Moreover, there is limited empirical validation of CMMS-driven predictive maintenance systems across 

heterogeneous manufacturing environments, particularly in small- and medium-sized enterprises (SMEs), where 

resource constraints inhibit digital transformation. The literature also reveals a lack of standardized metrics for 

evaluating CMMS performance, sustainability impact, and return on investment (ROI). Additionally, human–machine 

collaboration aspects, such as user training, change management, and XAI integration, have received insufficient 

attention. Therefore, future research should emphasize the development of intelligent, interoperable, and human-centric 

CMMS architectures aligned with Industry 5.0 principles, incorporating cyber-secure data frameworks, digital twins, 

and adaptive analytics for sustainable and autonomous maintenance management. 

 

III. DISCUSSION 

The evolution of Computerized Maintenance Management Systems (CMMS) reflects the broader digital transformation 

within modern manufacturing ecosystems. The reviewed literature demonstrates that CMMS has transitioned from a 

purely record-keeping tool to an intelligent, data-driven asset and maintenance optimization platform. However, this 

evolution is not uniform across all industrial sectors or technological dimensions. A key discussion point of this review 

is the disparity between theoretical advancements and practical adoption. Although numerous studies propose 

sophisticated models integrating artificial intelligence (AI), the Internet of Things (IoT), and cloud-based data 

architectures, industrial implementation often remains fragmented because of high costs, data heterogeneity, and limited 

interoperability among legacy systems. 

Work order management has benefited substantially from digitalization, with CMMS modules enabling automatic job 

scheduling, resource tracking, and feedback logging. Studies have shown that integrating real-time sensor inputs with 

enterprise resource planning (ERP) systems enhances the accuracy of maintenance prioritization. Nonetheless, many 

organizations still rely on reactive workflows or manual approvals, suggesting that further integration with predictive 

analytics is essential for fully autonomous maintenance planning in the future. In addition, user-centered interface 

design remains a challenge; technicians often face complexity in navigating CMMS dashboards, which limits the 

effectiveness of data capture and feedback loops. 

In inventory management, CMMS-enabled predictive replenishment and spare part optimization have shown 

measurable benefits in reducing downtime and maintenance costs. Integrating IoT-based tracking and RFID systems 

allows real-time monitoring of spare-part usage and inventory levels. However, gaps persist in synchronizing inventory 

systems with predictive maintenance schedules. A truly efficient CMMS should dynamically forecast spare-part 

requirements based on asset health trends rather than static reorder thresholds. This lack of predictive inventory 

intelligence impedes the seamless flow between maintenance planning and logistics management. 

Asset management research within the CMMS framework has made significant strides toward real-time asset health 

monitoring using embedded sensors, wireless communication, and analytics platforms. The literature indicates that 

coupling condition monitoring with CMMS databases enhances equipment reliability and extends the lifecycle 

performance. However, implementing digital twins and automated decision support remains in its infancy. Few 

organizations possess the infrastructure to deploy such cyber-physical asset ecosystems on a large scale. Moreover, 
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concerns regarding data ownership, cybersecurity, and interoperability across vendor platforms continue to constrain 

widespread adoption. 

Preventive maintenance management is one of the most dynamic areas influenced by Industry 4.0. The reviewed studies 

highlight a paradigm shift from calendar-to condition-based and predictive maintenance models. Machine learning, 

neural networks, and augmented reality (AR) tools have enabled the proactive identification of potential faults, thereby 

improving uptime and operational efficiency. Nevertheless, while predictive techniques outperform conventional PM 

approaches, algorithm deployment and data interpretation complexity often require specialized expertise that is not 

readily available in all industries. Furthermore, most case studies focus on large enterprises, and the scalability and 

cost-effectiveness of such advanced PM frameworks for small and medium-sized enterprises (SMEs) remain 

underexplored. 

Another critical issue is the human factor in CMMS adoption. Although automation reduces the reliance on manual 

decision-making, it simultaneously demands higher levels of digital literacy among maintenance staff. The literature 

reveals a consistent lack of attention to user training, change management, and human–machine collaboration 

strategies. Therefore, successful CMMS implementation must focus on technological sophistication and address 

organizational readiness, user trust, and system usability. 

From a strategic perspective, the discussion highlights the growing significance of sustainability and circular economy 

principles in CMMS design. Preventive maintenance supported by energy analytics, such as the EMMS model, shows 

how CMMS can contribute to resource conservation and reduce carbon emissions. However, only a limited number of 

studies have quantified the environmental and economic impacts of CMMS interventions, leaving a gap in 

sustainability-oriented maintenance assessments. 

The synthesis of findings indicates that CMMS is evolving into an intelligent, interconnected ecosystem, but is still 

constrained by fragmented architectures, inadequate data governance, and inconsistent performance evaluation metrics. 

Future CMMS research and implementation must emphasize interoperability standards, secure cloud integration, and 

self-adaptive decision-making algorithms. The convergence of AI, digital twins, and IoT under the umbrella of Industry 

4.0 and 5.0 promises to transform CMMS into the cornerstone of autonomous and sustainable manufacturing. 

 

IV. CONCLUSION AND FUTURE SCOPE 

The review shows that Computerized Maintenance Management Systems (CMMS) have changed from simple 

maintenance record-keeping tools into innovative, data-based platforms that are central to modern manufacturing 

operations. CMMS solutions have enhanced maintenance efficiency, equipment reliability, and decision accuracy 

across all industries through their core work order, inventory, asset, and preventive maintenance management modules. 

Industry 4.0 technologies, such as the Internet of Things (IoT), Artificial Intelligence (AI), cloud computing, and cyber-

physical systems (CPS), have significantly influenced maintenance management, moving from reactive to predictive 

and preventive maintenance paradigms. Further advances have allowed real-time monitoring of equipment health and 

condition-based scheduling of maintenance interventions. Automated fault detection and measurement of productivity 

and cost benefits of using data in maintenance management in the manufacturing sector. 

However, despite technological advances, barriers continue to limit the universal adoption of CMMS and their full 

impact.  Many industrial systems are still segmented and lack the interoperability of maintenance, production, and 

enterprise resource planning systems. Data heterogeneity, cybersecurity considerations, and cost barriers to large IOT 

setups restrict the scalability of large technologies in many sectors, especially small and medium-sized enterprises 

(SMEs). Moreover, the full potential of AI-driven maintenance prediction and decision automation remains 

underutilized because domain-specific datasets, integration frameworks, and standardized evaluation metrics are 

lacking. Human factors, such as workforce resistance to digital tools, insufficient training, and usability issues, pose 

practical barriers to CMMS efficiency improvement. Additionally, sustainability and circular economy considerations 

are only beginning to be incorporated into maintenance analytics, despite their growing relevance in global 

manufacturing policy. 

The future scope of CMMS research and development lies in creating intelligent, interoperable, and adaptive 

maintenance ecosystems. Future systems must emphasize seamless integration across the production, logistics, and 
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enterprise layers through open communication standards and cloud-based architectures. Incorporating digital twin 

technology can enable virtual asset modeling for predictive and prescriptive maintenance, thereby enhancing decision 

accuracy and system resilience. Machine learning and deep reinforcement learning further support adaptive 

maintenance planning by allowing CMMS to learn from operational data continuously. Moreover, embedding 

augmented reality (AR) and virtual reality (VR) interfaces improves technician interaction, remote support, and safety 

in maintenance operations. 

Future CMMS platforms should also focus on sustainability-driven design by incorporating energy analytics, carbon 

footprint tracking, and eco-efficiency metrics to align with Industry 5.0 objectives. Integrating blockchain technology 

can improve data security, traceability, and transparency in maintenance transactions. Furthermore, developing low-

cost, scalable CMMS solutions tailored to SMEs will democratize access to digital maintenance management, fostering 

broader industrial adoption. Human-centered design and XAI mechanisms ensure user trust, transparency, and 

interpretability in AI-based decision-making systems. 

The CMMS is steadily transitioning to a new generation of innovative, sustainable, and autonomous maintenance 

systems. The convergence of AI, IoT, digital twins, and human–machine collaboration will redefine maintenance as a 

strategic function that ensures equipment uptime and contributes to organizational intelligence, energy efficiency, and 

long-term sustainability. Continued interdisciplinary research and industry collaboration will be vital for overcoming 

existing challenges and realizing the full transformative potential of CMMS within the framework of Industry 4.0. 
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