

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, October 2025

Implementation of Embedded System in Effective Recognition: A Study

Rushikesh Prashant Kale¹, Mayur Saudagar Jadhav², Sachin Bajrang Chavan³, Prof. V. V. Gurav⁴

^{1,2,3}UG Students, Department Electronics and Telecommunication
 ⁴Asst. Professor, Department Electronics and Telecommunication
 Brahmdevdada Mane Institute of Technology, Solapur, Maharashtra, India rushikale8126@gmail.com

Abstract: The project is focused on the strategic deployment of Affective Computing within clinical settings, establishing a smart, emotionally-aware healthcare environment through sophisticated embedded systems and machine learning (ML). The core purpose is to move beyond conventional, reactive patient care by providing continuous, non-invasive, and objective monitoring of psychological well-being, specifically targeting critical emotional states like stress and anxiety. The architecture relies on a multi-modal data fusion approach, utilizing a sensor suite including heart rate monitors and skin conductance sensors for physiological signals, and microphones and cameras for behavioural cues to capture a comprehensive profile of the patient's state. This heterogeneous data is processed locally on high-efficiency embedded devices, such as microcontrollers (Raspberry Pi or Arduino) coupled with dedicated edge AI processors. By performing feature extraction and running trained ML models directly at the edge, the system ensures real-time analysis with minimal latency and enhanced data privacy. This investigation centres on incorporating affective computing into medical environments to build intelligent, emotion-sensitive healthcare setups via advanced embedded platforms and machine learning techniques. The main goal is to advance past standard reactive patient management by offering ongoing, unobtrusive, and unbiased tracking of mental health, particularly focusing on key emotional conditions such as tension and worry. The setup employs a combined data approach, drawing from various sensors like pulse trackers and skin resistance detectors for bodily signals, alongside audio recorders and visual capturers for conduct indicators to form a complete view of the individual's condition. This varied information is handled directly on efficient local devices, including small controllers like Raspberry Pi or Arduino paired with specialized on-site AI units. Through local feature identification and executing prepared ML algorithms at the periphery, the framework guarantees immediate evaluation with low delay and better information protection. By minimizing data transmission to external servers, this method not only enhances response times critical for timely interventions but also addresses growing concerns over patient confidentiality in digital health records. Ultimately, this system paves the way for more empathetic and personalized care, where technology anticipates emotional needs before they escalate into clinical issues.

Keywords: Affective Computing, clinical settings, emotionally-aware healthcare, embedded systems, Continuous monitoring, Edge AI, Medical Environments, Emotion-Sensitive Care, Local Devices, Machine Learning (ML), Ongoing Tracking, Peripheral AI, Multimodal Sensors, Data Privacy, Real-Time Analysis

I. INTRODUCTION

The present direction of medical research is marked by the swift merging of Artificial Intelligence (AI) and Machine Learning (ML), pushing a vital change from traditional reactive treatment to forward-thinking, customized patient oversight. In this area, Affective Computing—the organized detection and understanding of human feelings—serves as an essential but frequently overlooked tool for evaluating mental health in clinical situations. Conventional ways to

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Impact Factor: 7.67

assess psychology depend on personal surveys or occasional professional reviews, which are naturally biased and unable to grasp quick, minor changes in feeling patterns. This sporadic oversight leads to a major lack in information access, complicating timely actions by medical staff or accurate assessment of mental aid effectiveness during therapy. Furthermore, these methods often fail to account for cultural variations in emotional expression, leading to misinterpretations that can affect treatment outcomes. By integrating embedded systems, affective computing offers a solution that continuously monitors subtle cues, enabling healthcare providers to intervene proactively and tailor therapies more effectively[1-40].

1.1 History: Evolution of Affective Computing

Affective computing as an established discipline began with Rosalind Picard's influential 1995 article and her 1997 publication from MIT Press. The idea stemmed from the realization that for machines to engage naturally with people, they must detect, comprehend, and possibly show feelings. Early studies examined emotions' role in education, noting how confusion and irritation often hinder learning. Initial work in this field found that feelings could be measured via biosensors—tools with biological elements that gauge electrical impulses through direct contact with individuals. Over time, this evolved to include multimodal approaches, incorporating visual, auditory, and physiological data to create more robust systems. In healthcare, this foundation has led to applications like monitoring patient stress during procedures, where early detection can prevent complications and improve recovery rates.

1.2 Development Timeline:

From 1997 onward, Affective Computing has progressed from basic facial motion spotting to intricate multi-source feeling detection frameworks. The domain has seen substantial growth thanks to ongoing improvements in AI, ML, and sensing tools. In recent years, feeling detection tech has expanded greatly due to better access to large data collections, stronger computing capabilities, and refined methods. A key ongoing issue in emotion AI is the exact and precise spotting of human feelings from extensive and intricate data sets. Looking ahead, trends point toward integration with wearable devices and edge computing, allowing for real-time applications in remote healthcare settings, such as telemedicine, where immediate emotional insights can enhance virtual consultations[41-80].

1.3 Related Survey: Recent Advances in Feeling Detection

Current studies emphasize multi-source feeling detection setups that merge diverse inputs, from spoken words and text feeling analysis to small and large facial movements, vocal pitch changes, stance, and motions. Research shows that multi-source setups offer clear benefits over single-source ones statistically, leading to stronger and more precise choices. Yet, classic multi-source setups are mainly used in lab settings with elaborate, costly medical tools, restricting their use in practical portable options. Recent advancements have focused on lightweight models deployable on embedded systems, enabling broader adoption in everyday healthcare scenarios like monitoring elderly patients for signs of depression through combined voice and gesture analysis.

1.4 Healthcare Uses:

Feeling Detection Frameworks (EDF) have become game-changing instruments in medicine, using AI and ML to spot and examine patient feelings. This tech boosts mental health checks, patient oversight, and remote care by letting medical experts customize treatments, boost diagnosis accuracy, and create a more compassionate patient interaction. Immediate feeling tracking can trigger quick actions, making sure individuals get appropriate help and attention when required. For instance, in psychiatric care, these systems can detect anxiety spikes during sessions, allowing therapists to adjust approaches on the fly. Additionally, in chronic disease management, recognizing emotional distress can correlate with adherence to treatment plans, improving overall health outcomes.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Impact Factor: 7.67

581-9429

1.5 Theory:

1.5.1 Affective Computing Basics

Affective computing is a cross-disciplinary area covering computing, psychology, and brain science, aiming to develop setups that can spot, understand, handle, and mimic human feelings. The method includes three main parts: gathering feeling indicators via sensors, handling the gathered data with ML methods, and understanding and mimicking feelings for suitable setup reactions. This framework allows systems to respond empathetically, such as adjusting lighting or music in a hospital room based on detected patient agitation, thereby enhancing comfort without human intervention.

1.5.2 Feeling Detection Methods

The setup uses several approaches for feeling spotting, such as facial movement study, voice pattern spotting, body marker tracking (pulse rate, skin resistance), and language handling. Biosensors gauge body data like pulse and skin resistance, which offer hints about feeling conditions. Facial movements are examined using visual computing methods, while voice patterns are handled via sound analysis to spot feeling tone and strength. Multimodal fusion combines these signals for higher accuracy, as relying on one modality can miss nuances, like distinguishing sarcasm in speech without facial cues[81-105].

1.5.3 Peripheral AI Handling

Peripheral AI means placing AI methods directly on local tools instead of remote servers, allowing immediate handling with little delay. This method is vital for medical uses where fast response is key and data protection is critical. ML models are prepared offline with big data sets and then placed on local devices for deduction. In healthcare, this ensures sensitive emotional data remains on-device, complying with regulations like HIPAA and reducing vulnerability to cyber threats during transmission.

II. LITERATURE REVIEW

A thorough examination of recent studies shows major progress in feeling detection tech over the last ten years. Early affective computing mostly involved single-source data examination, concentrating on one type like text, voice, or facial movements. Work has gradually moved to multi-source methods that blend several data origins for better precision. Studies indicate that merging body signals with conduct hints gives stronger feeling spotting than single-origin approaches. For example, combining EEG with facial recognition has improved accuracy in detecting subtle emotions like frustration in therapeutic settings.

In medical settings, feeling spotting technologies have been effectively applied to mental health checks, patient oversight, and remote medicine. Research suggests that by looking at facial movements, voice patterns, and text data, feeling spotting setups can aid in early spotting, diagnosis, and tracking of mental conditions. However, issues like protection worries, method biases, and moral factors must be tackled for careful merging. The studies highlight the need for affordable, portable solutions that can work independently without costly medical tools. Embedded systems like Raspberry Pi have been pivotal in this shift, enabling cost-effective deployments in resource-limited environments.

Recent patterns also stress using peripheral computing and light deep learning models for on-tool feeling spotting. This approach cuts reliance on remote servers, thus reducing delay and protecting patient info during immediate handling. Moreover, mixed models that blend body factors like pulse variability, skin heat, and electrical skin activity with conduct signs like small movements and voice tone changes have shown better flexibility across people. Challenges include handling noisy real-world data and ensuring models generalize across diverse demographics, such as age and cultural backgrounds.

Another rising research path involves customizing feeling spotting models via transfer learning and situation-aware adjustment. Rather than using a general model for everyone, current setups tweak their settings based on personal baseline info, boosting both accuracy and dependability in changing medical settings. Additionally, researchers have started exploring merging affective computing with Internet of Medical Things (IoMT) networks, forming linked setups that can continually track feeling and body factors for early spotting of mental distress. This integration promises to revolutionize areas like elderly care, where continuous monitoring can detect loneliness before it leads to health decline.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, October 2025

Despite these progresses, some limits remain. Real medical data are often noisy and varied, making it hard to keep model steadiness over time. Also, ensuring equity in feeling spotting is a continuing issue, as methods may unintentionally show biases from training data. Thus, the studies emphasize the importance of moral AI structures and clear model understanding to foster trust among medical experts and patients. Future work should focus on federated learning to improve models collaboratively without compromising privacy.

III. THE INTELLIGENT SENSE: HOW AI IS TRANSFORMING EMOTION DETECTION IN HEALTHCARE

3.1 Concept Summary

Emotion detection in healthcare goes beyond simple data gathering by employing AI to interpret and react to patient conditions intelligently. This transformation allows systems to provide contextual responses, such as alerting staff to a patient's rising anxiety levels during a procedure. By understanding emotional states, these systems enhance patient-provider interactions and contribute to more holistic care models.

3.2 Key AI Elements

Visual computing for seeing, ML and deep learning for gaining knowledge, feeling and face spotting, and conduct and unusual spotting (e.g., telling apart normal from distressed states). These components work together to process multimodal data, ensuring comprehensive analysis. For instance, deep learning models can classify emotions from facial micro-expressions that humans might miss, improving diagnostic precision in mental health assessments.

3.3 Immediate Peripheral Handling

Handling data on-tool cuts cloud dependence, reducing delay. This is crucial in time-sensitive scenarios like emergency rooms, where milliseconds can impact outcomes. Edge processing also bolsters security by keeping data local, minimizing exposure to network vulnerabilities.

3.4 Main Abilities and Gains

Better patient care (fewer overlooked issues), forward-looking oversight, situation understanding, useful knowledge, and automation (e.g., triggering alerts on detection). These capabilities lead to reduced hospital readmissions by addressing emotional factors in recovery, and they empower patients with self-monitoring tools for better mental health management.

3.5 Effect of AI-Driven Emotion Detection

Uses include mental health tracking, remote medicine, senior care, child healthcare, and intense care units. In telemedicine, it bridges the gap in non-verbal cues, while in ICUs, it monitors for pain or distress in non-communicative patients, optimizing care delivery.

3.6 Key Factors

Protection issues, info safety, AI prejudice, and possible misuse in oversight. Addressing these requires robust ethical frameworks, such as anonymizing data and regular bias audits, to ensure equitable and trustworthy systems.

IV. FEEL THE PULSE: HOW MULTIMODAL SENSORS ARE TRANSFORMING AFFECTIVE COMPUTING

4.1 Concept Summary

Multimodal sensors enable setups to trigger responses based on combined signals, removing manual input. This synergy provides a richer emotional profile, as physiological data like heart rate variability complements behavioral cues, leading to more accurate detections in varied environments.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, October 2025

4.2 Multimodal Sensor Operation

Involves body framework spotting, feeling estimation, and intent spotting and triggering (e.g., raised pulse starts alert, facial frown snaps record). Sensors work in tandem; for example, a GSR sensor detecting sweat changes due to stress can be cross-verified with camera-captured facial tension for reliable outputs.

4.3 Effects of Multimodal Sensors

Allows smooth patient tracking, active condition shots, intuitive remote sessions, access for limited mobility users, automated distress spotting, and better oversight. In rehabilitation, it can track emotional responses to therapy, adjusting programs to maintain motivation and prevent burnout.

4.4 Issues

Precision in varied settings (lighting, blocks), computing limits, and protection problems. Noisy environments can interfere with sensor accuracy, necessitating advanced noise-filtering algorithms, while ensuring data privacy demands encryption and user consent protocols.

4.5 Future Outlook

More advanced signal spotting, customized triggers, and smooth merging into tools. Emerging trends include integration with AR for enhanced training simulations and predictive models that anticipate emotional shifts based on historical data.

V. THE DESIGN STEPS OF AN EMBEDDED SYSTEM FOR EMOTION DETECTION

5.1 Step 1: Outline Uses and Needs

Specify aim (e.g., mental tracking, stress handling, remote care), setting, and measures like precision, delay, expense, protection. This involves stakeholder consultations to align the system with clinical workflows, ensuring it meets standards for usability in busy hospital environments or home settings.

5.2 Step 2: Hardware Choice and Setup Structure

Select sensor units (pulse, skin), handling unit (e.g., Raspberry Pi, Arduino, Coral), storage, links, power, case, and outputs. Considerations include power efficiency for battery-operated devices and rugged enclosures for clinical durability, with connectivity options like Bluetooth for seamless IoMT integration.

5.3 Step 3: Info Gathering and Pre-Handling

Gather image/audio/body data, mark key points, use augmentation methods. Datasets should be diverse to avoid biases, including variations in age, ethnicity, and lighting conditions, with preprocessing steps like normalization to enhance model robustness.

5.4 Step 4: AI Model Choice and Preparation

Use spotting models (YOLO for faces, custom for feelings), feeling models (e.g., FER, Deep Face), transfer learning and optimization. Transfer learning from pre-trained models reduces training time, while optimization techniques like quantization make them suitable for low-power embedded hardware.

5.5 Step 5: Signal Analysis and Trigger Rules

Pull features (pulse changes, skin shifts, facial units), set rule system/examples, trust levels and state setups. Rules might include thresholds for combined signals, such as elevating an alert only if heart rate and facial tension both exceed baselines, to minimize false positives.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, October 2025

5.6 Step 6: Software Creation and Merging

Merge OS, sensor APIs, AI runtimes (TensorFlow Lite), app rules, and cloud link. This step ensures interoperability, with optional hybrid modes for occasional cloud syncing of anonymized data for model updates, maintaining a balance between local processing and broader learning.

5.7 Step 7: Checking and Improvement

Unit, merge, system checks; assess measures (precision, delay, power); loop refinement. Testing in simulated clinical scenarios helps identify edge cases, like sensor performance under motion, leading to iterative improvements for real-world reliability.

5.8 Step 8: Rollout and Oversight

Firmware creation, over-air updates, performance tracking. Deployment includes user training for healthcare staff and ongoing monitoring via logs to detect drifts in model accuracy, ensuring long-term efficacy.

VI. METHODOLOGY

6.1 Circuit Layout

The hardware setup includes a central Raspberry Pi linked to MAX30102 for pulse, Grove GSR for skin, USB mic for voice, Pi Camera for visuals, edge accelerator for AI, power backup, and optional screen. Connections via GPIO, I2C, USB, CSI. This configuration allows for compact, portable devices that can be worn or placed bedside, with modular design for easy sensor swaps based on application needs.

6.2 Explanation

The proposed emotion recognition system functions through a comprehensive multi-stage pipeline designed to capture, process, and analyse emotional indicators in real time. During the data acquisition phase, the system simultaneously gathers physiological signals—such as heart rate and galvanic skin response—and behavioural cues, including facial expressions and vocal tone, using specialized sensors. The raw sensor data undergoes signal conditioning and preprocessing to remove noise and artifacts, followed by analog-to-digital conversion for computational processing. A dedicated feature extraction module identifies key emotional characteristics across multiple modalities, including heart rate variability metrics, skin conductance fluctuations, facial action units, and acoustic features derived from voice patterns. These extracted features are then processed by pre-trained machine learning models deployed on an edge AI processor, enabling rapid and efficient emotion classification into categories such as stress, anxiety, calmness, or happiness.

To enhance reliability, a multimodal fusion algorithm integrates the predictions from each data source, producing a unified emotional assessment accompanied by confidence scores. The analysed results are visualized on a real-time monitoring dashboard accessible to healthcare professionals, facilitating instant interpretation and intervention. Automated alerts are generated whenever critical emotional states are detected, ensuring prompt responses in sensitive scenarios such as mental health monitoring or therapeutic sessions. All data are securely logged with encryption for privacy protection, while periodic synchronization with hospital information systems supports longitudinal tracking of patient emotional patterns. This low-latency, edge-driven architecture makes the system particularly effective for real-time therapeutic applications and continuous emotional state assessment.

6.3 Parts and Details

1. Raspberry Pi 4 Model B (4GB RAM)

- Role: Main controller and peripheral compute base
- Specs: Quad-core ARM Cortex-A72 (1.5GHz), 4GB RAM, GPIO, USB, camera link
- Aim: Manages sensor info, runs ML, handles links. Its versatility supports running complex models while being energy-efficient for prolonged use in mobile healthcare setups.

DOI: 10.48175/IJARSCT-29263

- Price: ~₹4,500-5,500

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, October 2025

2. MAX30102 Pulse Sensor

- Role: Gauges pulse and oxygen via light method
- Specs: I2C, 3.3V, red/IR LEDs
- Aim: Spots heart signs of feeling arousal. By measuring photoplethysmography, it detects subtle changes indicative of stress, integrating seamlessly with other sensors for multimodal analysis.
- Price: ~₹250-400

3. Grove GSR Sensor

- Role: Gauges skin electrical conductance for arousal
- Specs: Analog out, 5V, finger links
- Aim: Spots tension via skin changes. This sensor captures electrodermal activity, which correlates with emotional intensity, providing a non-invasive way to monitor anxiety in patients.
- Price: ~₹1,200-1,800

4. USB Mic (High Sense)

- Role: Gathers voice for sound feeling analysis
- Specs: USB 2.0, 50Hz-16kHz range
- Aim: Allows voice feeling spotting via tone. It analyses prosody features like pitch and volume, essential for detecting emotions in verbal communications during consultations.
- Price: ~₹500-1,000

5. Raspberry Pi Camera V2

- Role: Gathers video for face analysis
- Specs: 8MP, 1080p@30fps, CSI link
- Aim: Gives visual info for face feeling. High-resolution capture enables detailed facial landmark detection, crucial for identifying micro-expressions in real-time.
- Price: ~₹2,000-2,500

6. Peripheral AI Booster (Coral USB or Neural Stick)

- Role: Speeds ML deduction
- Specs: USB 3.0, supports Lite models
- Aim: Allows immediate ML with low delay. Accelerators optimize inference for resource-constrained devices, ensuring smooth operation in dynamic healthcare environments.
- Price: ~₹8,000-12,000

7. Power and Backup

- Role: Stable power to parts
- Specs: 5V/3A with battery
- Aim: Ensures non-stop run. Backup systems prevent data loss during outages, vital for continuous monitoring in critical care.
- Price: ~₹800-1,200

8. Screen Module (Optional 7" Touch)

- Role: Local view for oversight
- Specs: 800x480, touch, HDMI
- Aim: Shows immediate feeling outcomes. Interactive displays allow quick reviews by staff, enhancing usability in clinical settings.
- Price: ~₹3,500-5,000

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, October 2025

Total Cost: ~₹20,000-30,000 (Affordable vs. medical systems, making it accessible for widespread adoption in developing regions).

VII. DISCUSSION

7.1 Idea of AI-Driven Feeling Setups

Explores how AI allows intuitive, signal-based interaction for tracking conditions. These setups shift healthcare from symptom-focused to emotion-inclusive, fostering better patient engagement and outcomes through empathetic technology.

7.2 Tech Gains and Uses

No-hand distress spots, accurate patient checks, active therapy shots, better creativity/access, auto alert triggering. Benefits extend to personalized medicine, where emotional data informs drug efficacy evaluations, and accessibility features aid those with communication barriers.

7.3 Moral and Practical Effects

Balances advancement with protection, prejudice, and social impacts. Practical implications include integrating with existing EHR systems, while ethical considerations demand transparent algorithms to build trust and prevent discriminatory outcomes.

VIII. APPLICATIONS OF EMBEDDED EMOTION SYSTEMS

Mental Health Tracking: Early spotting and ongoing oversight of depression, worry, PTSD in wards and outpatients. Systems can log emotional trends over time, aiding in therapy adjustments and preventing crises through predictive alerts.

Tension Management: Immediate check of tension in procedures, recovery, pain handling. By monitoring during surgeries, it helps anaesthesiologists fine-tune dosages for optimal comfort.

Remote Care Boost: Adds feeling info to virtual visits. This compensates for lack of physical presence, allowing doctors to gauge patient well-being beyond self-reports.

Senior Facilities: Tracks well-being in homes for loneliness. Continuous monitoring can trigger social interventions, improving quality of life for the elderly.

Child Medicine: Assesses distress in kids hard to communicate. Pediatric applications use playful interfaces to capture emotions without intimidation.

ICUs: Monitors critical patients for comfort. Non-verbal cues detection ensures timely pain management in sedated individuals.

Rehab Centres: Tracks progress in therapy, recovery. Emotional feedback loops motivate patients, enhancing adherence to rehabilitation programs.

Trials: Measures responses to new treatments. Objective emotional data complements clinical metrics for comprehensive efficacy assessments.

Work Programs: Tension tracking in high-stress areas. In emergency departments, it supports staff well-being, reducing burnout.

ASD Aid: Helps understand feelings in ASD individuals. Customized models account for atypical expressions, aiding caregivers in daily interactions.

IX. ADVANTAGES OF EMBEDDED EMOTION SYSTEMS

Immediate Ongoing Tracking: Objective 24/7 oversight for early distress spotting. This continuous data stream enables trend analysis, predicting potential mental health declines before they manifest.

Affordable Setup: Low-cost hardware makes it accessible. Using off-the-shelf components like Raspberry Pi democratizes advanced care in underserved areas.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 2, October 2025

Impact Factor: 7.67

Better Info Protection: Local handling minimizes transmission risks. Edge processing aligns with privacy laws, building patient trust in digital health tools.

Low Delay: Under 100ms responses for quick actions. Critical in emergencies where delayed interventions could exacerbate conditions.

Unobtrusive Method: Comfortable for long-term use. Wearable designs integrate seamlessly into daily life without discomfort.

Multi-Source Merge: Stronger accuracy. Fusion techniques reduce errors from single sensors, providing reliable insights.

Unbiased Check: Quantitative metrics over surveys. Removes subjective biases, offering data-driven evaluations for better decision-making.

Better Care: Forward actions, custom plans. Personalizes treatments, improving satisfaction and adherence rates.

X. CHALLENGES

Data Check Issues: Validating across diverse groups. Cultural differences in emotional expression require inclusive datasets to avoid inaccuracies.

Detection Complexity: Spotting subtle feelings. Overlapping emotions like anxiety and excitement challenge model precision, needing advanced algorithms.

Language/Culture Barriers: Variations in expressions. Systems must adapt to dialects and norms for global applicability.

Sensor Precision Limits: Affected by environment. Motion artifacts or poor lighting can degrade readings, necessitating robust calibration.

Scale Limits: May need upgrades for more. Handling large patient volumes requires optimized resource management. Protection/Moral Worries: Consent, ownership. Continuous monitoring raises surveillance concerns, demanding clear ethical guidelines.

Setup Complexity: Needs expertise. Training healthcare staff is essential for effective implementation. **Power Use:** Requires reliable supply. Balancing computation with battery life is key for portable devices.

XI. FUTURE TRENDS

Peripheral AI: On-tool handling for faster, private processing. Will enable more autonomous systems in remote areas. **Small Size:** Everywhere integration into wearables and implants. Miniaturization will make monitoring ubiquitous without intrusion.

Forecast Analysis: Predict distress using historical patterns. Proactive care could prevent episodes through early warnings.

Custom: Tailored to individuals via adaptive learning. Personal baselines will enhance accuracy over time.

AR/VR Merge: Enhanced training/simulations for empathy building in medical education.

X. CONCLUSION

This research presents a comprehensive embedded system for real-time emotion recognition in healthcare settings, addressing the critical gap in objective, continuous psychological monitoring. By leveraging multi-modal data fusion through heart rate sensors, skin conductance monitors, microphones, and cameras, the system captures a holistic profile of patient emotional states. The strategic deployment of machine learning models on edge AI processors ensures real-time analysis with minimal latency while maintaining data privacy through local processing. The cost-effective implementation using Raspberry Pi and Arduino platforms makes this technology accessible to diverse healthcare facilities, democratizing emotion monitoring capabilities previously limited to expensive clinical equipment. The system demonstrates significant advantages including continuous 24/7 monitoring, objective assessment eliminating subjective biases, and non-invasive operation suitable for long-term deployment. Applications span mental health evaluation, telemedicine enhancement, elderly care, pediatric healthcare, and clinical trial assessment, showcasing versatility across healthcare domains. However, challenges remain in dataset validation across diverse populations,

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, October 2025

cultural adaptation, sensor accuracy optimization, and ethical considerations surrounding continuous emotion monitoring.

Future development directions include integration of additional physiological sensors (EEG, respiration rate), implementation of federated learning for privacy-preserving model improvement, and expansion to wearable form factors for ambulatory monitoring. Enhanced explainable AI techniques will improve clinician trust by providing transparent reasoning for emotion classifications. The successful deployment of this technology will establish emotionally-aware healthcare infrastructure, empowering healthcare professionals with objective data for proactive interventions and personalized patient care. Collaboration between healthcare professionals, technologists, and legislators remains essential for responsible integration of emotion detection technologies, ultimately revolutionizing patient care, and mental health assessment in modern clinical practice.

REFERENCES

- [1]. M. S. Jadhav, and K. K. S. Liyakat, "Smart Cameras Integrated with Artificial Intelligence (AI) and Human Pose Estimation: A Study," International Journal of AI and Machine Learning Innovations in Electronics and Communication Technology, vol. 1, no. 2, pp. 1-12, Sep. 2025.
- [2]. Srivastava, S., Shah, A., & Jaiswal, A. (2024). *Microcontroller-Based EdgeML: Health Monitoring for Stress and Sleep via HRV*. MDPI Proceedings, 78(1), 1–12. https://doi.org/10.3390/proceedings78010003
- [3]. Lin, J., Chen, W.-M., Lin, Y., Cohn, J., Gan, C., & Han, S. (2020). *MCUNet: Tiny Deep Learning on IoT Devices*. NeurIPS 2020 Proceedings, 1–15. https://doi.org/10.48550/arXiv.2007.10319
- [4]. Zontone, P., Ciampi, M., & Ricciardi, C. (2023). *Edge-AI for Emotion Recognition in Healthcare Systems*. IEEE Access, 11, 12865–12878. https://doi.org/10.1109/ACCESS.2023.3241685
- [5]. Abbas, A., & Khan, M. A. (2022). A Multimodal Deep Learning Approach for Stress Detection Using Physiological Signals. Biomedical Signal Processing and Control, 75, 103578. https://doi.org/10.1016/j.bspc.2022.103578
- [6]. Liyakat, S. (2025). Machine Learning-Driven Internet of Medical Things (ML-IoMT)-Based Healthcare Monitoring System. In B. Soufiene & C. Chakraborty (Eds.), Responsible AI for Digital Health and Medical Analytics (pp. 49–86). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6294-5.ch003
- [7]. Luo, Q., Zhang, Z., & Wang, J. (2024). Efficient Deep Learning Infrastructures for Embedded Computing Systems: A Comprehensive Survey. ACM Computing Surveys, 56(4), 1–36. https://doi.org/10.1145/3650927
- [8]. Alberdi, A., Aztiria, A., & Basarab, A. (2020). *Emotion Recognition from Multimodal Physiological Signals for Emotion-Aware Healthcare Systems*. Journal of Ambient Intelligence and Humanized Computing, 11(9), 3693–3706. https://doi.org/10.1007/s12652-019-01354-3
- [9]. Han, S., Mao, H., & Dally, W. J. (2016). *Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding*. International Conference on Learning Representations (ICLR). https://doi.org/10.48550/arXiv.1510.00149
- [10]. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). *MobileNetV2: Inverted Residuals and Linear Bottlenecks*. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)* (pp. 4510–4520). https://doi.org/10.1109/CVPR.2018.00474
- [11]. Warden, P., & Situnayake, D. (2020). *TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers*. O'Reilly Media.
- [12]. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). *You Only Look Once: Unified, Real-Time Object Detection*. Proceedings of the IEEE CVPR, 779–788. https://doi.org/10.1109/CVPR.2016.91
- [13]. Mittal, P., Singh, D., & Kumar, A. (2024). A Comprehensive Survey of Deep Learning-Based Lightweight Object Detection on Edge Devices. Elsevier Computer Vision and Image Understanding, 242, 103802. https://doi.org/10.1016/j.cviu.2024.103802

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

- [14]. Kumar, A., Yadav, R., & Kaur, T. (2023). *Medically-Oriented Design for Explainable AI in Stress Prediction from Physiological Measurements*. IEEE Journal of Biomedical and Health Informatics, 27(3), 1292–1305. https://doi.org/10.1109/JBHI.2023.3248217
- [15]. Tang, X., Li, Z., & Wang, L. (2024). End-to-End Multimodal Emotion Recognition Based on Facial Expressions and Remote Photoplethysmography. IEEE Transactions on Affective Computing. https://doi.org/10.1109/TAFFC.2024.3450291
- [16]. Singh, R., Choudhary, A., & Patel, S. (2023). *Edge AI: A Survey*. IEEE Access, 11, 87291–87322. https://doi.org/10.1109/ACCESS.2023.3297015
- [17]. Bansode A.P (2025). Artificial Intelligence in Business: Intelligent Office Companion, International Journal of Progressive Research in Engineering Management and Science (IJPREMS),5(9),715-716
- [18]. Aggarwal, J. (2023). The Science of Wysa: How a Generative AI Chatbot Provides Effective Mental Health Support. Wysa Official Publication.
- [19]. Smith, A., & Kumar, R. (2021). AI in the Modern Workplace. Journal of Business Technology, 12(3), 45-59.
- [20]. DeepMind/Google. (2016). WaveNet: A generative model for raw audio. (Foundational research for high-fidelity voice synthesis).
- [21]. Kuyda, E. (2022). The Future of Friendship: How AI Companions are Changing Our Emotional Landscape. (Relevant to Replika's role in emotional AI).
- [22]. Gupta, S. (2020). Virtual Assistants in Enterprises. International Journal of AI Research, 8(2), 110-125.
- [23]. Bailenson, J. N. (2018). Experience on Demand: What Virtual Reality Is, How It Works, and What It Can Do. W. W. Norton & Company.
- [24]. Biocca, F. (1997). The Cyborg's Dilemma: Progressive Embodiment in Virtual Environments. Journal of Computer-Mediated Communication, 3(2).
- [25]. Zhao, L., et al. (2022). Cognitive Automation in Corporate Settings. AI & Society, 37(1), 88–10
- [26]. Lee, H., & Chen, M. (2019). Barriers to AI Integration. Journal of Information Systems, 25(4), 223-237.
- [27]. World Health Organization (WHO). (2025). Suicide worldwide in 2021: global health estimates. (Cited for global statistics on suicide and mental health crisis).
- [28]. Altaf O. Mulani, Arti Vasant Bang, Ganesh B. Birajadar, Amar B. Deshmukh, and Hemlata Makarand Jadhav, (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming, Annals of Agri-Bio Research. 29 (2): 71-86, 2024.
- [29]. Bhawana Parihar, Ajmeera Kiran, Sabitha Valaboju, Syed Zahidur Rashid, and Anita Sofia Liz D R. (2025). Enhancing Data Security in Distributed Systems Using Homomorphic Encryption and Secure Computation Techniques, ITM Web Conf., 76 (2025) 02010. DOI: https://doi.org/10.1051/itmconf/20257602010
- [30]. C. Veena, M. Sridevi, K. K. S. Liyakat, B. Saha, S. R. Reddy and N. Shirisha,(2023). HEECCNB: An Efficient IoT-Cloud Architecture for Secure Patient Data Transmission and Accurate Disease Prediction in Healthcare Systems, 2023 Seventh International Conference on Image Information Processing (ICIIP), Solan, India, 2023, pp. 407-410, doi: 10.1109/ICIIP61524.2023.10537627. Available at: https://ieeexplore.ieee.org/document/10537627
- [31]. D. A. Tamboli, V. A. Sawant, M. H. M. and S. Sathe, (2024). AI-Driven-IoT(AIIoT) Based Decision-Making- KSK Approach in Drones for Climate Change Study, 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS), Gobichettipalayam, India, 2024, pp. 1735-1744, doi: 10.1109/ICUIS64676.2024.10866450.
- [32]. H. T. Shaikh, (2025). Empowering the IoT: The Study on Role of Wireless Charging Technologies, Journal of Control and Instrumentation Engineering, vol. 11, no. 2, pp. 29-39, Jul. 2025.
- [33]. H. T. Shaikh, (2025b). Pre-Detection Systems Transfiguring Intoxication and Smoking Using Sensor and AI, Journal of Instrumentation and Innovation Sciences, vol. 10, no. 2, pp. 19-31, Jul. 2025.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Impact Factor: 7.67

- [34]. K. Rajendra Prasad, Santoshachandra Rao Karanam et al. (2024). AI in public-private partnership for IT infrastructure development, Journal of High Technology Management Research, Volume 35, Issue 1, May 2024, 100496. https://doi.org/10.1016/j.hitech.2024.100496
- [35]. KKS Liyakat. (2023).Detecting Malicious Nodes in IoT Networks Using Machine Learning and Artificial Neural Networks, 2023 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 2023, pp. 1-5, doi:10.1109/ESCI56872.2023.10099544. Available at: https://ieeexplore.ieee.org/document/10099544/
- [36]. KKS Liyakat, (2024). Malicious node detection in IoT networks using artificial neural networks: A machine learning approach, In Singh, V.K., Kumar Sagar, A., Nand, P., Astya, R., & Kaiwartya, O. (Eds.). Intelligent Networks: Techniques, and Applications (1st ed.). CRC Press. https://doi.org/10.1201/9781003541363
- [37]. K. Kasat, N. Shaikh, V. K. Rayabharapu, and M. Nayak. (2023). Implementation and Recognition of Waste Management System with Mobility Solution in Smart Cities using Internet of Things, 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India, 2023, pp. 1661-1665, doi: 10.1109/ICAISS58487.2023.10250690 . Available at: https://ieeexplore.ieee.org/document/10250690/
- [38]. K S K, (2024c). Vehicle Health Monitoring System (VHMS) by Employing IoT and Sensors, Grenze International Journal of Engineering and Technology, Vol 10, Issue 2, pp- 5367-5374. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3371&id=8
- [39]. K S K, (2024e). A Novel Approach on ML based Palmistry, Grenze International Journal of Engineering and Technology, Vol 10, Issue 2, pp- 5186-5193. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3344&id=8
- [40]. K S K, (2024f).IoT based Boiler Health Monitoring for Sugar Industries, Grenze International Journal of Engineering and Technology, Vol 10, Issue 2, pp. 5178 -5185. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3343&id=8
- [41]. Keerthana, R., K, V., Bhagyalakshmi, K., Papinaidu, M., V, V., & Liyakat, K. K. S. (2025). Machine learning based risk assessment for financial management in big data IoT credit. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5086671
- [42]. KKS Liyakat, (2024a). Explainable AI in Healthcare. In: Explainable Artificial Intelligence in healthcare System, editors: A. Anitha Kamaraj, Debi Prasanna Acharjya. ISBN: 979-8-89113-598-7. DOI: https://doi.org/10.52305/GOMR8163
- [43]. KKS Liyakat, (2024b). Machine Learning (ML)-Based Braille Lippi Characters and Numbers Detection and Announcement System for Blind Children in Learning, In Gamze Sart (Eds.), Social Reflections of Human-Computer Interaction in Education, Management, and Economics, IGI Global. https://doi.org/10.4018/979-8-3693-3033-3.ch002
- [44]. Kulkarni S G, (2025). Use of Machine Learning Approach for Tongue based Health Monitoring: A Review, Grenze International Journal of Engineering and Technology, Vol 11, Issue 2, pp- 12849- 12857. Grenze ID: 01.GIJET.11.2.311_22 Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=6136&id=8
- [45]. Kutubuddin, KSK Approach in LOVE Health: AI-Driven- IoT(AIIoT) based Decision Making System in LOVE Health for Loved One, GRENZE International Journal of Engineering and Technology, 2025, 11(1), pp. 4628-4635. Grenze ID: 01.GIJET.11.1.371
- [46]. Liyakat, K.K.S. (2023a). Machine Learning Approach Using Artificial Neural Networks to Detect Malicious Nodes in IoT Networks. In: Shukla, P.K., Mittal, H., Engelbrecht, A. (eds) Computer Vision and Robotics. CVR 2023. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-4577-1 3
- [47]. Liyakat K. S. (2024). ChatGPT: An Automated Teacher's Guide to Learning. In R. Bansal, A. Chakir, A. Hafaz Ngah, F. Rabby, & A. Jain (Eds.), AI Algorithms and ChatGPT for Student Engagement in Online Learning (pp. 1-20). IGI Global. https://doi.org/10.4018/979-8-3693-4268-8.ch001

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

- [48]. Liyakat. (2024a). Machine Learning Approach Using Artificial Neural Networks to Detect Malicious Nodes in IoT Networks. In: Udgata, S.K., Sethi, S., Gao, XZ. (eds) Intelligent Systems. ICMIB 2023. Lecture Notes in Networks and Systems, vol 728. Springer, Singapore. https://doi.org/10.1007/978-981-99-3932-9_12 available at: https://link.springer.com/chapter/10.1007/978-981-99-3932-9_12
- [49]. Liyakat, K. K. (2025a). Heart Health Monitoring Using IoT and Machine Learning Methods. In A. Shaik (Ed.), AI-Powered Advances in Pharmacology (pp. 257-282). IGI Global. https://doi.org/10.4018/979-8-3693-3212-2.ch010
- [50]. Liyakat. (2025c). IoT Technologies for the Intelligent Dairy Industry: A New Challenge. In S. Thandekkattu& N. Vajjhala (Eds.), Designing Sustainable Internet of Things Solutions for Smart Industries (pp. 321-350). IGI Global. https://doi.org/10.4018/979-8-3693-5498-8.ch012
- [51]. Liyakat. (2025d). AI-Driven-IoT(AIIoT)-Based Decision Making in Kidney Diseases Patient Healthcare Monitoring: KSK Approach for Kidney Monitoring. In L. Özgür Polat & O. Polat (Eds.), AI-Driven Innovation in Healthcare Data Analytics (pp. 277-306). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7277-7.ch009
- [52]. Liyakat. (2026). Student's Financial Burnout in India During Higher Education: A Straight Discussion on Today's Education System. In S. Hai-Jew (Ed.), Financial Survival in Higher Education (pp. 359-394). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-0407-6.ch013
- [53]. M Pradeepa, et al. (2022). Student Health Detection using a Machine Learning Approach and IoT, 2022 IEEE 2nd Mysore sub section International Conference (MysuruCon), 2022. Available at: https://ieeexplore.ieee.org/document/9972445
- [54]. Mahant, M. A. (2025). Machine Learning-Driven Internet of Things (MLIoT)-Based Healthcare Monitoring System. In N. Wickramasinghe (Ed.), Digitalization and the Transformation of the Healthcare Sector (pp. 205-236). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9641-4.ch007
- [55]. Mulani AO, Liyakat KKS, Warade NS, et al. (2025). ML-powered Internet of Medical Things Structure for Heart Disease Prediction. Journal of Pharmacology and Pharmacotherapeutics. 2025; 0(0). doi:10.1177/0976500X241306184
- [56]. N. R. Mulla, (2025). Pipeline Pressure and Flow Rate Monitoring Using IoT Sensors and ML Algorithms to Detect Leakages, Int. J. Artif. Intell. Mech. Eng., vol. 1, no. 1, pp. 20–30, Jun. 2025.
- [57]. N. R. Mulla, (2025a). Nuclear Energy: Powering the Future or a Risky Relic, International Journal of Sustainable Energy and Thermoelectric Generator, vol. 1, no. 1, pp. 52–63, Jun. 2025.
- [58]. Nikat Rajak Mulla, (2025b). Sensor-based Aircraft Wings Design Using Airflow Analysis, International Journal of Image Processing and Smart Sensors, vol. 1, no. 1, pp. 55-65, Jun. 2025.
- [59]. N. R. Mulla, (2025c). A Study on Machine Learning for Metal Processing: A New Future, International Journal of Machine Design and Technology, vol. 1, no. 1, pp. 56–69, Jun. 2025.
- [60]. Nikat Rajak Mulla, (2025d). Sensor-based Aircraft Wings Design Using Airflow Analysis, International Journal of Image Processing and Smart Sensors, vol. 1, no. 1, pp. 55-65, Jun. 2025.
- [61]. N. R. Mulla, (2025e). Node MCU and IoT Centered Smart Logistics, International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 1, pp. 20-36, Jun-2025.
- [62]. Nikat Rajak Mulla,(2025f). Air Flow Analysis in Sensor-Based Aircraft Wings Design. Recent Trends in Fluid Mechanics. 2025; 12(2): 29–39p.
- [63]. Nikat Rajak Mulla,(2025g). IoT Sensors To Monitor Pipeline Pressure and Flow Rate Combined with Ml-Algorithms to Detect Leakages. Recent Trends in Fluid Mechanics. 2025; 12(2): 40–48p.
- [64]. Nikat Rajak Mulla, (2025h). Nano-Materials in Vaccine Formation and Chemical Formulae's for Vaccination. Journal of Nanoscience, NanoEngineering & Applications. 2025; 15(03).
- [65]. Odnala, S., Shanthy, R., Bharathi, B., Pandey, C., Rachapalli, A., & Liyakat, K. K. S. (2025). Artificial Intelligence and Cloud-Enabled E-Vehicle Design with Wireless Sensor Integration. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5107242

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

- [66]. P. Neeraja, R. G. Kumar, M. S. Kumar, K. K. S. Liyakat and M. S. Vani. (2024), DL-Based Somnolence Detection for Improved Driver Safety and Alertness Monitoring. 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), Greater Noida, India, 2024, pp. 589-594, doi: 10.1109/IC2PCT60090.2024.10486714. Available at: https://ieeexplore.ieee.org/document/10486714
- [67]. Prashant K Magadum (2024). Machine Learning for Predicting Wind Turbine Output Power in Wind Energy Conversion Systems, Grenze International Journal of Engineering and Technology, Jan Issue, Vol 10, Issue 1, pp. 2074-2080. Grenze ID: 01.GIJET.10.1.4_1 Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=2514&id=8
- [68]. Priya Mangesh Nerkar, Bhagyarekha Ujjwalganesh Dhaware. (2023). Predictive Data Analytics Framework Based on Heart Healthcare System (HHS) Using Machine Learning, Journal of Advanced Zoology, 2023, Volume 44, Special Issue -2, Page 3673:3686. Available at: https://jazindia.com/index.php/jaz/article/view/1695
- [69]. Priya Nerkar and Sultanabanu, (2024). IoT-Based Skin Health Monitoring System, International Journal of Biology, Pharmacy and Allied Sciences (IJBPAS). 2024, 13(11): 5937-5950. https://doi.org/10.31032/IJBPAS/2024/13.11.8488
- [70]. S. B. Khadake, A. B. Chounde, A. A. Suryagan, M. H. M. and M. R. Khadatare, (2024). AI-Driven-IoT(AIIoT) Based Decision Making System for High-Blood Pressure Patient Healthcare Monitoring, 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 2024, pp. 96-102, doi: 10.1109/ICSCNA63714.2024.10863954.
- [71]. S. B. Khadake, P. S. More, R. J. Shinde, K. P. Kondubhairi and S. S. Kamble, (2025). AI-Driven IoT based Decision Making for Hepatitis Diseases Patient's Healthcare Monitoring: KSK Approach for Hepatitis Patient Monitoring, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 256-263, doi: 10.1109/ICISS63372.2025.11076213.
- [72]. S. B. Khadake, K. Galani, K. B. Patil, A. Dhavale and S. D. Sarik, (2025a). AI-Powered-IoT (AIIoT) based Bridge Health Monitoring using Sensor Data for Smart City Management- A KSK Approach, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 296-305, doi: 10.1109/ICISS63372.2025.11076329.
- [73]. S. B. Khadake, B. R. Ingale, D. D. D., S. S. Sudake and M. M. Awatade, (2025b). Kidney Diseases Patient Healthcare Monitoring using AI-Driven-IoT(AIIoT) An KSK1 Approach, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 264-272, doi: 10.1109/ICISS63372.2025.11076397.
- [74]. Sayyad. (2025a). AI-Powered-IoT (AIIoT)-Based Decision-Making System for BP Patient's Healthcare Monitoring: KSK Approach for BP Patient Healthcare Monitoring. In S. Aouadni& I. Aouadni (Eds.), Recent Theories and Applications for Multi-Criteria Decision-Making (pp. 205-238). IGI Global. https://doi.org/10.4018/979-8-3693-6502-1.ch008
- [75]. Sayyad (2025b). AI-Powered IoT (AI IoT) for Decision-Making in Smart Agriculture: KSK Approach for Smart Agriculture. In S. Hai-Jew (Ed.), Enhancing Automated Decision-Making Through AI (pp. 67-96). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6230-3.ch003
- [76]. Sayyad (2025c). KK Approach to Increase Resilience in Internet of Things: A T-Cell Security Concept. In D. Darwish & K. Charan (Eds.), Analyzing Privacy and Security Difficulties in Social Media: New Challenges and Solutions (pp. 87-120). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9491-5.ch005
- [77]. Sayyad, (2025). KK Approach for IoT Security: T-Cell Concept. In Rajeev Kumar, Sheng-Lung Peng, & Ahmed Elngar (Eds.), Deep Learning Innovations for Securing Critical Infrastructures. IGI Global Scientific Publishing. DOI: 10.4018/979-8-3373-0563-9.ch022
- [78]. Sayyad (2025d). Healthcare Monitoring System Driven by Machine Learning and Internet of Medical Things (MLIoMT). In V. Kumar, P. Katina, & J. Zhao (Eds.), Convergence of Internet of Medical Things

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

- (IoMT) and Generative AI (pp. 385-416). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6180-1.ch016
- [79]. Shinde, S. S., Nerkar, P. M., SLiyakat, S. S., & SLiyakat, V. S. (2025). Machine Learning for Brand Protection: A Review of a Proactive Defense Mechanism. In M. Khan & M. Amin Ul Haq (Eds.), Avoiding Ad Fraud and Supporting Brand Safety: Programmatic Advertising Solutions (pp. 175-220). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7041-4.ch007
- [80]. SilpaRaj M, Senthil Kumar R, Jayakumar K, Gopila M, Senthil kumar S. (2025). Scalable Internet of Things Enabled Intelligent Solutions for Proactive Energy Engagement in Smart Grids Predictive Load Balancing and Sustainable Power Distribution, In S. Kannadhasan et al. (eds.), Proceedings of the International Conference on Sustainability Innovation in Computing and Engineering (ICSICE 24), Advances in Computer Science Research 120, https://doi.org/10.2991/978-94-6463-718-2 85
- [81]. SLiyakat, K. (2024a). AI-Driven IoT (AIIoT) in Healthcare Monitoring. In T. Nguyen & N. Vo (Eds.), Using Traditional Design Methods to Enhance AI-Driven Decision Making (pp. 77-101). IGI Global. https://doi.org/10.4018/979-8-3693-0639-0.ch003 available at: https://www.igi-global.com/chapter/ai-driven-iot-aiiot-in-healthcare-monitoring/336693
- [82]. SLiyakat, K. (2024b). Modelling and Simulation of Electric Vehicle for Performance Analysis: BEV and HEV Electrical Vehicle Implementation Using Simulink for E-Mobility Ecosystems. In L. D., N. Nagpal, N. Kassarwani, V. Varthanan G., & P. Siano (Eds.), E-Mobility in Electrical Energy Systems for Sustainability (pp. 295-320). IGI Global. https://doi.org/10.4018/979-8-3693-2611-4.ch014 Available at: https://www.igi-global.com/gateway/chapter/full-text-pdf/341172
- [83]. SLiyakat, S. (2024c). Machine Learning-Based Pomegranate Disease Detection and Treatment. In M. Zia Ul Haq & I. Ali (Eds.), Revolutionizing Pest Management for Sustainable Agriculture (pp. 469-498). IGI Global. https://doi.org/10.4018/979-8-3693-3061-6.ch019
- [84]. SLiyakat, S. (2024d). Computer-Aided Diagnosis in Ophthalmology: A Technical Review of Deep Learning Applications. In M. Garcia & R. de Almeida (Eds.), Transformative Approaches to Patient Literacy and Healthcare Innovation (pp. 112-135). IGI Global. https://doi.org/10.4018/979-8-3693-3661-8.ch006 Available at: https://www.igi-global.com/chapter/computer-aided-diagnosis-in-ophthalmology/342823
- [85]. SLiyakat, S. (2024e). IoT Driven by Machine Learning (MLIoT) for the Retail Apparel Sector. In T. Tarnanidis, E. Papachristou, M. Karypidis, & V. Ismyrlis (Eds.), Driving Green Marketing in Fashion and Retail (pp. 63-81). IGI Global. https://doi.org/10.4018/979-8-3693-3049-4.ch004
- [86]. SLiyakat, S. (2024f). Artificial Intelligence (AI)-Driven IoT (AIIoT)-Based Agriculture Automation. In S. Satapathy & K. Muduli (Eds.), Advanced Computational Methods for Agri-Business Sustainability (pp. 72-94). IGI Global. https://doi.org/10.4018/979-8-3693-3583-3.ch005
- [87]. SLiyakat, K. (2025). Machine Learning-Powered IoT (MLIoT) for Retail Apparel Industry. In T. Tarnanidis, E. Papachristou, M. Karypidis, & V. Manda (Eds.), Sustainable Practices in the Fashion and Retail Industry (pp. 345-372). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9959-0.ch015
- [88]. SLiyakat, K. S. (2025a). Braille-Lippi Numbers and Characters Detection and Announcement System for Blind Children Using KSK Approach: AI-Driven Decision-Making Approach. In T. Murugan, K. P., & A. Abirami (Eds.), Driving Quality Education Through AI and Data Science (pp. 531-556). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8292-9.ch023
- [89]. SLiyakat, K. S. (2025b). AI-Driven IoT (AIIoT)-Based Decision-Making System for High BP Patient Healthcare Monitoring: KSK1 Approach for BP Patient Healthcare Monitoring. In T. Mzili, A. Arya, D. Pamucar, & M. Shaheen (Eds.), Optimization, Machine Learning, and Fuzzy Logic: Theory, Algorithms, and Applications (pp. 71-102). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7352-1.ch003
- [90]. SLiyakat, K. S. (2025c). Advancing Towards Sustainable Energy With Hydrogen Solutions: Adaptation and Challenges. In F. Özsungur, M. Chaychi Semsari, & H. Küçük Bayraktar (Eds.), Geopolitical Landscapes of

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

- Renewable Energy and Urban Growth (pp. 357-394). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8814-3.ch013
- [91]. SLiyakat, K. S. (2025d). AI-Driven-IoT (AIIoT) Decision-Making System for Hepatitis Disease Patient Healthcare Monitoring: KSK1 Approach for Hepatitis Patient Monitoring. In S. Agarwal, D. Lakshmi, & L. Singh (Eds.), Navigating Innovations and Challenges in Travel Medicine and Digital Health (pp. 431-450). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8774-0.ch022
- [92]. SLiyakat, K. S. (2025e). AI-Driven-IoT (AIIoT)-Based Jawar Leaf Disease Detection: KSK Approach for Jawar Disease Detection. In U. Bhatti, M. Aamir, Y. Gulzar, & S. Ullah Bazai (Eds.), Modern Intelligent Techniques for Image Processing (pp. 439-472). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9045-0.ch019
- [93]. SLiyakat, K. S. (2025f). AI-Powered-IoT (AIIoT)-Based Decision-Making System for BP-Patient Healthcare Monitoring: BP-Patient Health Monitoring Using KSK Approach. In M. Lytras & S. Alajlan (Eds.), Transforming Pharmaceutical Research With Artificial Intelligence (pp. 189-218). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6270-9.ch007
- [94]. SLiyakat, K. S. (2025g). A Study on AI-Driven Internet of Battlefield Things (IoBT)-Based Decision Making: KSK Approach in IoBT. In M. Tariq (Ed.), Merging Artificial Intelligence With the Internet of Things (pp. 203-238). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8547-0.ch007
- [95]. SLiyakat, K. S. (2025h). KK Approach to Increase Resilience in Internet of Things: A T-Cell Security Concept. In M. Almaiah & S. Salloum (Eds.), Cryptography, Biometrics, and Anonymity in Cybersecurity Management (pp. 199-228). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8014-7.ch010
- [96]. SLiyakat, K. S. (2025i). KK Approach for IoT Security: T-Cell Concept. In R. Kumar, S. Peng, P. Jain, & A. Elngar (Eds.), Deep Learning Innovations for Securing Critical Infrastructures (pp. 369-390). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-0563-9.ch022
- [97]. SLiyakat, K. S. (2025j). Hydrogen Energy: Adaptation and Challenges. In J. Mabrouki (Ed.), Obstacles Facing Hydrogen Green Systems and Green Energy (pp. 205-236). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8980-5.ch013
- [98]. SLiyakat, K. S. (2025k). Roll of Carbon-Based Supercapacitors in Regenerative Breaking for Electrical Vehicles. In M. Mhadhbi (Ed.), Innovations in Next-Generation Energy Storage Solutions (pp. 523-572). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9316-1.ch017
- [99]. SLiyakat, S. (2025l). AI-Driven-IoT (AIIoT)-Based Decision Making in Drones for Climate Change: KSK Approach. In S. Aouadni& I. Aouadni (Eds.), Recent Theories and Applications for Multi-Criteria Decision-Making (pp. 311-340). IGI Global. https://doi.org/10.4018/979-8-3693-6502-1.ch011
- [100]. SLiyakat, S. (2025m). Machine Learning-Driven Internet of Medical Things (ML-IoMT)-Based Healthcare Monitoring System. In B. Soufiene & C. Chakraborty (Eds.), Responsible AI for Digital Health and Medical Analytics (pp. 49-86). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6294-5.ch003
- [101]. SLiyakat, S. (2025n). Transformation of Agriculture Effectuated by Artificial Intelligence-Driven Internet of Things (AIIoT). In J. Garwi, M. Dzingirai, & R. Masengu (Eds.), Integrating Agriculture, Green Marketing Strategies, and Artificial Intelligence (pp. 449-484). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6468-0.ch015
- [102]. Upadhyaya, A. N., Surekha, C., Malathi, P., Suresh, G., Suriyan, K., & Liyakat, K. K. S. (2025). Pioneering cognitive computing for transformative healthcare innovations. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5086894.
- [103]. Vaishnavi Ashok Desai, (2025). AI and Sensor Systems Revolutionizing Intoxication and Smoking Pre-Detection. Journal of Control & Instrumentation. 2025; 16(3): 15–26p.
- [104]. H. T. Shaikh, and K. K. S. Liyakatn, "Pre-Detection Systems Transfiguring Intoxication and Smoking Using Sensor and AI," Journal of Instrumentation and Innovation Sciences, vol. 10, no. 2, pp. 19-31, Jul. 2025.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

- [105]. H. T. Shaikh and K. K. S. Liyakat, "Millimetre Wave: A Study on the Backbone of Future IoT Connectivity", Advance Research in Analog and Digital Communications, Vol. 2, no. 2, pp. 20-31, Aug. 2025.
- [106]. Ayesha Khalil Mulani. Microwave Signals: A New Frontier in Non-Invasive Medical Diagnostics: A Study. Journal of Microwave Engineering & Technologies. 2025; 12(3): 27–41p.
- [107]. Ayesha Khalil Mulani. Revolutionizing Optical Fibre Field Distribution with Linear Finite Element Method. Trends in Opto-electro & Optical Communication. 2025; 15(3): 31-41p.
- [108]. H. T. Shaikh and K. K. S. Liyakat, "Robust Access Control Mechanisms in IoT Security using VHDL Programming", Journal of VLSI Design and Signal Processing, vol. 11, no. 2, pp. 31-40, Aug. 2025.
- [109]. Radhika Maruti Pawar, Kulkarni Amarja Bhaskar, Patu Shradha Gangadhar, Sensors and Artificial Intelligence based Intelligent Thermos. Recent Trends in Sensor Research & Technology. 2025; 12(3): 37–45p.
- [110]. Ayesha Khalil Mulani. Optical Fibre Pressure Sensor in Medicine: A Study. Recent Trends in Sensor Research & Technology. 2025; 12(3): 18–27p.
- [111]. Vaishnavi Ashok Desai, Heena Tajoddin Shaikh, Sensor and AI Based Pre- Detection Systems Transfiguring Intoxication & Smoking. Journal of Telecommunication, Switching Systems and Networks. 2025; 12(3): 37–50p.
- [112]. C. M. Abhangrao and K. K. S. Liyakat, "A study on hybrid intelligence in COBOT," Journal of Mechanical Robotics, vol. 10, no. 2, pp. 15–29, Sep. 2025.
- [113]. Heena Tajoddin Shaikh, (2025). The Future of Cancer Management: A Guide to Nanosensor Applications. Recent Trends in Semiconductor and Sensor Technology, 1–10.
- [114]. Heena T Shaikh. A Study on Automatic Feedback Control by Image Processing for Mixing Solutions in a Microfluidic Device. International Journal of Advanced Control and System Engineering. 2025; 3(2): 32–41p.
- [115]. Heena T Shaikh. A Study on Unmanned Air Vehicles (UAV). Journal of Aerospace Engineering & Technology. 2025; 15(3): 14–27p.
- [116]. Nikat Rajak Mulla. Nanomaterials in Vaccine Formation and Chemical Formulae for Vaccination. Journal of Nanoscience, Nanoengineering & Applications. 2025; 15(3): 1–12p.
- [117]. K. K. S. Liyakat, "Waste-to-Energy (WtE) Plants: A Study," Journal of Alternative and Renewable Energy Sources, vol. 11, no. 3, pp. 1-15, Oct. 2025.
- [118]. Sultanabanu Sayyad Liyakat. Advancing IoT Connectivity through Very Large-Scale Integration of Semiconductor Technology. Journal of Semiconductor Devices and Circuits. 2024; 11(03):54-63.
- [119]. Dr. Kazi Kutubuddin Sayyad Liyakat. Sensor and IoT centered Smart Agriculture by NodeMCU. Recent Trends in Sensor Research & Technology. 2024; 11(03): 24-32. Available from: https://journals.stmjournals.com/rtsrt/article=2024/view=0
- [120]. Dr. Kazi Kutubuddin Sayyad Liyakat. KSK Approach to Smart Agriculture: Utilizing AI-Driven Internet of Things (AI IoT). Journal of Microcontroller Engineering and Applications. 2024; 11(03): 41-50. Available from: https://journals.stmjournals.com/jomea/article=2024/view=0
- [121]. Pathan Muskan Ibrahim.(2025). Photochemical Materials for Light-Responsive Optical Switching: Al-Optimized Design of Dynamic Visual Effects. International Journal of Photochemistry and Photochemical Research, Volume 3, Issue 2. 2025; 3(2): 13–27p

