

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, October 2025

Electronic Waste Management: Challenges, Strategies, and Sustainable Solution

Govind Kumar Maurya¹, Manjesh Kumar², Vishal Yadav³, Yogesh Yadav⁴, Virendra Sahani⁵
Assistant Professor, Department of Electrical Engineering, Prasad Institute of Technology, Jaunpur (U.P.), India^{1,2}
Assistant Professor, Department of Computer Science, Prasad Institute of Technology, Jaunpur (U.P.), India³
Assistant Professor, Department of Applied Science, Prasad Institute of Technology, Jaunpur (U.P.), India^{4,5}

Abstract: The rapid growth of electronic devices has led to a significant increase in electronic waste (e-waste) globally. This paper examines the current state of e-waste management, the difficulties in collecting, recycling, and disposing of it, as well as the strategies for sustainable management. The study highlights contemporary methods such as urban mining, material recovery, and policy frameworks supporting circular economy approaches. E-waste contains hazardous materials like lead, mercury, and cadmium, which pose serious environmental and health risks if improperly managed.

Keywords: E-waste, recycling, sustainable management, hazardous waste, electronic devices, circular economy

I. INTRODUCTION

Discarded electrical and electronic equipment, such as computers, cell phones, televisions, and home appliances, is referred to as electronic waste, or e-waste. Global e-waste is predicted by the UN to have reached 57.4 million metric tons in 2021 and is predicted to grow yearly. E-waste improper disposal can result in resource loss, health risks, and environmental contamination. Particularly in nations with high levels of electronic consumption, e-waste management has emerged as a critical component of sustainable development. Collection, transportation, recycling, and secure disposal are all components of good management.

II. PAPER REVIEW

This report provides a comprehensive assessment of global e-waste generation, collection, and recycling. It highlights the increasing volume of e-waste worldwide and emphasizes the need for sustainable management and circular economy approaches.[1] This study analyzes global e-waste flows, identifying hotspots of production and disposal. It stresses the role of policy, awareness, and infrastructure in managing e-waste effectively.[2]India's e-waste rules provide a legal framework for collection, recycling, and safe disposal. They introduce Extended Producer Responsibility (EPR) to ensure manufacturers take responsibility for end-of-life electronics.[3] This paper evaluates the economic potential of recycling Waste Electrical and Electronic Equipment (WEEE). It highlights cost-benefit analysis of recycling techniques and the recovery of valuable metals.[4]The study discusses India's challenges in ewaste handling, including informal recycling, lack of awareness, and policy gaps. It recommends formal recycling networks and public participation to improve management.[5] This paper reviews China's e-waste recycling practices, highlighting advanced recovery technologies and environmental impacts. It emphasizes state regulation and urban mining as key strategies.[6]The authors provide an overview of global e-waste management approaches, comparing developed and developing countries. It emphasizes safe recycling methods and mitigation of hazardous impacts. [7] This review highlights the health and environmental risks associated with improper e-waste disposal, including exposure to heavy metals and toxic chemicals. It stresses public awareness and safe recycling practices.[8] The paper assesses worldwide e-waste generation and environmental consequences. It provides a critical analysis of informal recycling practices and their ecological risks.[9] This study explores challenges and opportunities in India's e-waste sector. It highlights informal recycling hazards and the economic potential of formalized recycling and urban mining.[10]

DOI: 10.48175/IJARSCT-29257

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, October 2025

III. COMPOSITION OF E-WASTE


E-waste can be classified into three categories:

- 1. Large household appliances: Refrigerators, washing machines, air conditioners.
- 2. IT and telecommunications equipment: Computers, mobile phones, printers.
- 3. Consumer electronics: Televisions, audio devices, cameras.

Hazardous components include-Lead (Pb) in cathode ray tubes, Mercury (Hg) in switches and fluorescent lamps, Cadmium (Cd) in batteries, Brominated flame retardants in plastics Valuable components include: Gold (Au), Silver (Ag), Copper (Cu), and Palladium (Pd)

Rare earth metals for electronic circuits

Due to the heavy metal ion composition contained in E-waste such as Cd, Pb, Br, Hg, Cr, and other flame retardants, it is very dangerous to humans and the environment in many circumstances when in direct contact with this kind of waste . The improper use of landfilling and watertreatment is causing ion leaching and the contamination of natural resources (air, water, and soil) .

These hazardous materials can destroy humans' cardiovascular, respiratory, digestive, and even neurological systems on a direct interaction basis [5,6]. Furthermore, using highly concentrated acids and cyanide to leach and recover costly metals also poses serious health risks. While there is a large amount of consumption and demand for E-waste, it cannot be monitored appropriately, as suggested by a recent study which indicates that approximately 7–20% of electronic residuals are exported as secondhand items (e.g., metal scraps) or imported.

IV. CHALLENGES IN E-WASTE MANAGEMENT

- 1. Rapid Technological Obsolescence: Devices become outdated quickly, increasing waste volume.
- 2. Lack of Awareness: Consumers often dispose of e-waste improperly.
- 3. Informal Recycling Sector: Informal recycling methods in developing countries involve open burning and acid leaching, which are hazardous.
- 4. Collection and Segregation: Efficient collection systems are lacking in many regions.
- 5. Policy and Regulation: Enforcement of e-waste management rules remains a challenge.

V. STRATEGIES FOR E-WASTE MANAGEMENT

5.1 Reduce, Reuse, Recycle (3Rs)

Reduce: Design devices with longer life and lower material usage.

Reuse: Donate or refurbish old devices.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29257

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, October 2025

Recycle: Recover metals and plastics through environmentally safe methods.

5.2 Urban Mining

Extraction of valuable metals from e-waste. Reduces dependency on natural resources.

5.3 Advanced Recycling Technologies

Mechanical recycling: Shredding and separation of components. Pyrolysis and Hydrometallurgy: Recovery of metals and plastics safely.

5.4 Policy and Regulation

Implementation of Extended Producer Responsibility (EPR) Strict e-waste disposal norms Public awareness campaigns

VI. CASE STUDY: E-WASTE MANAGEMENT IN INDIA

India generates approximately 3.2 million tons of e-waste annually, ranking third globally. Key initiatives include: E-Waste (Management) Rules, 2016

Authorized recycling facilities for safe material recovery

Awareness campaigns in schools and urban areas

Challenges remain in enforcing formal collection, monitoring informal recycling, and increasing citizen participation.

VII. FUTURE DIRECTIONS

Integration with Circular Economy: Minimize waste through design for recyclability.

Digital Tracking Systems: IoT-based tracking of e-waste flow.

Research on Green Materials: Developing biodegradable and non-toxic electronics.

Automation in Recycling: Using robotics and AI for disassembly and sorting.

The management of e-waste is rapidly shifting toward innovation, sustainability, and international collaboration. The adoption of circular economy principles, which call for electronic products to be made for recycling, repair, and reuse rather than disposal, represents a significant change. In the end, this strategy reduces waste and conserves resources by incentivizing manufacturers to create devices that are simpler to disassemble and recycle. Recycling is becoming more effective and ecologically friendly thanks to technological advancements like robotics and artificial intelligence in sorting and disassembly procedures. Furthermore, cutting-edge techniques like hydrometallurgical and biometallurgical methods are becoming cleaner substitutes for conventional extraction methods, enabling the recovery of valuable metals with little environmental damage.

VIII. CONCLUSION

E-waste management is critical for environmental sustainability and human health. Effective management requires a combination of technological, regulatory, innovation in recycling technologies, and implementation of circular economy principles are key to reducing the environmental footprint of electronic devices. Effective e-waste management also requires a multi-faceted approach, including strengthening policies, integrating the informal sector, investing in sustainable technology, and raising public awareness. Addressing the growing e-waste problem is crucial for mitigating environmental contamination, transforming a challenge into an opportunity for economic growth and a circular economy. Ultimately, a global, collaborative effort is needed to handle e-waste sustainably

REFERENCES

[1]. UNEP (2021). Global E-Waste Monitor 2021. United Nations Environment Programme.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29257

International Journal of Advanced Research in Science, Communication and Technology

9001:201

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Impact Factor: 7.67

- [2]. Baldé, C. P., Wang, F., Kuehr, R., & Huisman, J. (2015). The Global E-Waste Monitor 2014. United Nations University.
- [3]. E-Waste Management Rules, Ministry of Environment, Forest and Climate Change, India (2016).
- [4]. Cucchiella, F., D'Adamo, I., & Rosa, P. (2015). Recycling of WEEE: An economic assessment of present and future e-waste streams. Renewable and Sustainable Energy Reviews, 51, 263–272.
- [5]. Gupta, A., & Sinha, S. (2018). E-Waste Management in India: Issues and Policies. International Journal of Environmental Research, 12(2), 219–228.
- [6]. Li, J., & Zhao, N. (2018). E-waste recycling in China: State-of-the-art and perspectives. Waste Management, 75, 1–12.
- [7]. Kiddee, P., Naidu, R., & Wong, M. H. (2013). Electronic waste management approaches: An overview. Waste Management, 33(5), 1237–1250.
- [8]. Sharma, S., & Chatterjee, S. (2020). Environmental and health hazards of e-waste: A global perspective. Journal of Cleaner Production, 257, 120563.
- [9]. Robinson, B. H. (2009). E-waste: An assessment of global production and environmental impacts. Science of the Total Environment, 408(2), 183–191.
- [10]. Awasthi, A. K., & Li, J. (2017). E-waste management in India: Challenges and opportunities. Resources, Conservation and Recycling, 123, 182–192.
- [11]. Pinto, V. N. (2008). E-waste hazard: The impending challenge. Indian Journal of Occupational and Environmental Medicine, 12(2), 65–70.
- [12]. Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. (2020). The Global E-waste Monitor 2020: Quantities, flows, and the circular economy potential. United Nations University (UNU), ITU, ISWA.
- [13]. Li, J., et al. (2017). Circular economy approaches for e-waste management in Asia. Journal of Environmental Management, 204, 116–125.

