

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, October 2025

A Review Article on Bioavailability and Bioequivalence Studies

Kondhare Karan S.*, Kawade Kartik D., 1Fatangde Tejas B.2, Kuldeep Waidya3

Sahakar Maharshi Kisanravo Varal Patil College of Pharmacy, Nighoj Assistant Professor, Sahakar Maharshi Kisanravo Varal Patil College of Pharmacy, Nighoj karankondhare198@gmail.com

Abstract: Bioequivalence is a comparison of the bioavailability of two drugs, typically a brand name drug and a generic version. Bioavailability refers to the rate and extent to which the active ingredient is absorbed into the bloodstream Bioequivalence ensures that a generic drug is as safe and effective as the brand name drug. It gives patients confidence in the quality of generic medicines. When a drug is given directly into a vein (intravenously), its bioavailability is 100%, as it goes straight into the circulatory system. For other methods, like swallowing a pill, some of the drug is lost during digestion and metabolism, so its bioavailability is less than 100%. A bioequivalence study proves that a generic drug delivers its active ingredient into the bloodstream at the same rate and to the same extent as the original drug If two drugs are proven to be bioequivalent, they are considered therapeutically equivalent, meaning they should have the same effect on the patient. it must be proven to perform like the original brand-name drug. A special study, called a bioequivalence study, compares the two drugs in the body. If the generic drug delivers its active ingredient into the bloodstream at the same speed and in the same amount as the original drug, it is considered bioequivalent. When this happens, it is also considered "therapeutically equivalent," meaning it will have the same medical effect on the patient. This allows a pharmacist to substitute a less expensive generic for a brand-name drug.

Keywords: Bioequivalence, Bioavailability

I. INTRODUCTION

Before two drug products can even be compared, they must be "pharmaceutically equivalent." This means they must be:

The same drug:

They contain the exact same active ingredient.

The same dose:

They have the same amount of that active ingredient.

The same type:

They are in the same form (e.g., both are tablets, capsules, or injections).

Used the same way:

They are taken by the same route (e.g., swallowed, injected, or inhaled).

High quality:

They meet the same strict manufacturing and quality standards.

Can have differences:

They do not have to have the same inactive ingredients (like flavor, color, or fillers), as long as those ingredients don't affect how the drug works.

Once two products are confirmed to be pharmaceutically equivalent, they are tested to prove they are also "bioequivalent".

Same effect:

This means they have the same effect on the body, both in how well they work (efficacy) and how safe they are.

Same absorption:

They deliver the active ingredient into the bloodstream at the same rate and to the same extent as the original drug.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Same total dosage:

This comparison is done using the same total molecular amount of the drug, known as the "molar dose," to account for any differences in the inactive parts of the drug's chemical structure.

Bioavailability and Bio equivalence of drug products and drug product selection have emerged as critical issues in pharmacy and medicine during the last three decades. Concern about lowering health care costs is resulted in a tremendous increase in the use of generic drug products currently about one half of all prescriptions written are for drugs that can be substituted with a generic product. This phenomenal growth of the generic pharmaceutical industry and the abundance of multi source products have prompted some questions among many health professionals and scientists regarding the therapeutic equivalency of these products. Inherent in the currently accepted guidelines for product substitution is the assumption that a generic drug considered to be Bioequivalent to a brand-name drug would elicit the same clinical effect

Bioequivalence Studies:-

Bioequivalence studies are conducted to compare two medicinal products containing the same active substance. The goal is to ensure that the two products are therapeutically equivalent, meaning they have the same effect on the body.

Bioequivalence is crucial because it allows patients to switch between different versions of a medicine, such as from a brand name to a generic version, without compromising the efficacy or safety of the treatment.

- *Comparative Bioavailability Studies*: Measure the concentration of the active substance in the blood or plasma over
- *Comparative Clinical Trials*: Compare the efficacy and safety of the two products in patients.
- *Comparative Pharmacodynamic Studies*: Measure the effects of the two products on the body, such as blood pressure or heart rate.

Benefits :-

- *Increased Access to Medicines*: Bioequivalence studies facilitate the approval of generic medicines, making them more widely available and affordable.
- *Improved Patient Outcomes*: By ensuring that different versions of a medicine are therapeutically equivalent, bioequivalence studies help to maintain the efficacy and safety of treatments.
- *Reduced Healthcare Costs*: Generic medicines are often cheaper than brand name medicines, which can help to reduce healthcare costs.

DOI: 10.48175/IJARSCT-29250

In Vivo Studies Required:-

In vivo studies are necessary for certain medicines to ensure they work as expected. These include:

- *Oral medicines* for serious conditions or with narrow therapeutic ranges.
- *Medicines with complex absorption* or unstable properties.
- *Medicines with known bioavailability issues*.
- *Non-oral medicines* that are absorbed systemically.

Clinical or pharmacodynamic studies

- *Sustained release medicines* that are absorbed systemically.
- *Combination medicines* that work systemically.
- *Non-oral medicines* that don't require systemic absorption.

To prove that the medicine works as expected and to check for any unintended absorption.

- *Link early and late clinical trial formulations*.
- *Compare clinical trial and stability study formulations*.
- *Link clinical trial and marketed drug products

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

The design of a pharmacokinetic study depends on:

- *Type of medicine and dosage form*.
- *Safety considerations for human testing*.
- *Availability of analytical methods*.
- *Research questions to be answered*.

Study Design Options:-

- *Standard design*: Used for most medicines.
- *Parallel design*: Used for medicines with very long half-lives or variable effects.

Bioavailability/Bioequivalence Testing

To compare two medicines (e.g., brand and generic), researchers:

- *Give each medicine to healthy volunteers*.
- *Take blood samples* at regular intervals.
- *Measure the medicine's concentration* in the blood.

Comparing Medicines

Researchers compare the medicines' effects using:

- *Pharmacokinetic parameters* (e.g., AUC, Cmax, Tmax).
- *Pharmacodynamic endpoints* (e.g., effects on the body).

Requirements for Bioequivalence:-

To be considered bioequivalent, the medicines must meet certain criteria:

- *90% confidence interval* for AUC and Cmax must fall within 80-125%.
- *Tmax* must be within a clinically acceptable range.

Advantages:-

- *Ensures efficacy and safety*: Bioequivalence studies ensure that generic medicines are as safe and effective as brand name medicines.
- *Promotes competition*: Bioequivalence studies facilitate the approval of generic medicines, increasing competition and reducing prices.
- *Increases access to medicines*: Bioequivalence studies make it possible for generic medicines to be approved, increasing access to essential medicines.
- *Reduces healthcare costs*: Generic medicines are often cheaper than brand name medicines, reducing healthcare costs.
- *Encourages innovation*: Bioequivalence studies encourage innovation in the pharmaceutical industry by allowing for the development of new formulations and generics.
- *Improves patient outcomes*: Bioequivalence studies help ensure that patients receive effective and safe treatments.
- *Supports regulatory decisions*: Bioequivalence studies provide regulatory agencies with the data needed to make informed decisions about medicine approvals.
- *Facilitates global harmonization*: Bioequivalence studies help facilitate global harmonization of regulatory standards.

Disadvantages:-

- *Time-consuming and costly*: Bioequivalence studies can be time-consuming and costly to conduct.
- *Limited scope*: Bioequivalence studies may not capture all aspects of a medicine's efficacy and safety.
- *Variability in results*: Bioequivalence studies can produce variable results, making it difficult to draw conclusions.
- *Limited generalizability*: Bioequivalence studies may not be generalizable to all patient populations.
- *Regulatory challenges*: Bioequivalence studies can be subject to regulatory challenges and disputes.
- *Limited understanding of complex medicines*: Bioequivalence studies may not fully capture the complexity of certain medicines, such as biologics.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Potential for bioinequivalence: Bioequivalence studies may not always detect differences in bioavailability between

Limited focus on patient-centered outcomes: Bioequivalence studies may focus on surrogate endpoints rather than patient-centered outcomes.

Importance of Bioavailability/Bioequivalence Studies

Bioavailability and bioequivalence studies play a crucial role in the development and approval of new and generic medicines. These studies ensure that medicines are safe, effective, and of high quality.

Advantages:-

- *Ensures efficacy and safety*: Bioequivalence studies ensure that generic medicines are as safe and effective as brand name medicines.
- *Promotes competition*: Bioequivalence studies facilitate the approval of generic medicines, increasing competition and reducing prices.
- *Increases access to medicines*: Bioequivalence studies make it possible for generic medicines to be approved, increasing access to essential medicines.
- *Reduces healthcare costs*: Generic medicines are often cheaper than brand name medicines, reducing healthcare costs.
- *Encourages innovation*: Bioequivalence studies encourage innovation in the pharmaceutical industry by allowing for the development of new formulations and generics.

Applications:-

- *New drug development*: Bioavailability studies are essential for new drug development, as they help to identify the optimal formulation and dosing regimen.
- *Generic drug development*: Bioequivalence studies are required for generic drug approval, as they demonstrate that the generic medicine is equivalent to the brand name medicine.
- *Formulation changes*: Bioequivalence studies are necessary when changes are made to a medicine's formulation, such as changes to the excipients or manufacturing process.

Regulatory Requirements:-

- *FDA guidelines*: The US FDA provides guidelines for bioequivalence studies, including requirements for study design, conduct, and analysis.
- *International guidelines*: Other regulatory agencies, such as the EMA and WHO, also provide guidelines for bioequivalence studies.
- *Regulatory submissions*: Bioequivalence studies are submitted to regulatory agencies as part of the approval process for new and generic medicines

Study Design:-

- *Crossover design*: Bioequivalence studies typically use a crossover design, where each subject receives both the test and reference medicines.
- *Randomization*: Subjects are randomized to receive either the test or reference medicine first.
- *Washout period*: A washout period is included between treatments to ensure that the first medicine is eliminated from the body before the second medicine is administered.

Bioequivalence Metrics:-

- *AUC*: The area under the plasma concentration-time curve (AUC) is a key metric for bioequivalence.
- *Cmax*: The maximum plasma concentration (Cmax) is also an important metric.
- *Tmax*: The time to reach maximum plasma concentration (Tmax) may also be evaluated.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

Jy Solution 1900: 2015

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Statistical Analysis:-

90% confidence interval: Bioequivalence is typically demonstrated if the 90% confidence interval for the ratio of the test and reference medicines falls within a predefined acceptance range.

ANOVA: Analysis of variance (ANOVA) is often used to analyze bioequivalence of data

REFERENCES

- [1]. Birkett DJ (2003). Generics-equal or not?. Aust Prescr 26:85-7
- [2]. Center for Drug Evaluation and Research (2003). Guidance for industry: Bioavailability and Bioequivalence studies for orally administered drug products General considerations. United StatesFood and Drug Administration.
- [3]. Central Drugs Standard Control Organization (2005). 4. Guidelines given by Indian regulatory department for the conduct of bioavailability/bioequivalenceTrials.
- [4]. http://en.wikipedia.org/wiki/Bioequivalence.
- [5]. Committee for medicinal products for human use (20 January 2010). Guidelines on the investigation of Bioequivalence. European medicines agency. Retrieved 21 April 2011.
- [6]. Food and Drug Administration (FDA), Guidance for Industry Statistical approaches to establishing Bioequivalence 2001.
- [7]. Grizzle JE. The two period change-over design and its use in clinical trials. Biometrics 1965;21:467-80
- [8]. Zar JH. Biostatistical Analysis 2nd edition New Jersey: Prentice –Hall, Inc. Englewood Cliffs 1984.
- [9]. Armitage P. Statistical methods in medical research. New York: Wiley and sons 1973.
- [10]. Cochran WG, Cox GM. Experimental design. 2nd Ed. New York: Wiley and Sons 1957.
- [11]. Fisher RA. The design of experiment. 8th Ed. New York: Hafner publishing company 1966.
- [12]. Food and drug administration (FDA), Division of Biopharmaceutics, Bioavailability protocol guidelines For ANDA and NDA Submission, 1977.
- [13]. Abdou HM. Dissolution, Bioavailability & Bioequivalence. Easton: MACK Publishing Company;1989.
- [14]. Blanchard J, Sawchuk RJ, Brodie BB, editors. Principles and Perspectives in Drug Bioavailability.Basel (Switzerland): S. Karger; 1979.
- [15]. Health Canada. Conduct and Analysis of Bioavailability and Bioequivalence Studies: Part A: Oral Dosage formulations used for systemic effects (1992); Part B: Oral modified release formulations (1996); Report C: Report on bioavailability of oral dosage formulations, not in modified release form, Or drugs used for systemic effects, having complicated or variable pharmacokinetics (1992).1992-1996.
- [16]. Chow S-C, Liu J-P. Design and Analysis of Bioavailability and Bioequivalence Studies. New York:Marcel Dekker, Inc.; 1992
- [17]. EMEA (European Agency for the Evaluation of Medicinal Products), CPMP (Committee forProprietary Medicinal Products). Note for guidance on the investigation of bioavailability and Bioequivalence. 2001
- [18]. FDA (U.S. Food and Drug Administration), CDER (Center for Drug Evaluation and Research). Guidance for Industry: Bioavailability and bioequivalence for orally administered drug products general Considerations (Draft). 2002.
- [19]. FDA (U.S. Food and Drug Administration), CDER (Center for Drug Evaluation and Research). Guidance for Industry: Food effect bioavailability and fed bioequivalence studies 2002
- [20]. Marzo A. Clinical pharmacokinetic registration files for NDA and ANDA procedures. Pharm Res 1997;36:425-45
- [21]. Benziger DP, Kaiko RF, Miotto JB, Fitzmartin RD, Reder RF, Chasin M. Differential effects of Food on the bioavailability of controlled-release oxycodone tablets and immediate-release oxycodone solution. J Pharm Sci 85, 1996, 407-410.
- [22]. Delrat P, Paraire M, Jochemsen R. Complete bioavailability and lack of food-effect on pharmacokinetics of gliclazide 30 mg modified release in healthy volunteers. Biopharm Drug Dispos 23, 2002, 151-157.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Impact Factor: 7.67

- [23]. Gidal BE, Radulovic LL, Kruger S, Rutecki P, Pitterle M, Bockbrader HN. Inter- and intra-subject variability in gabapentin absorption and absolute bioavailability. Epilepsy Res. 40, 2000, 123-127.
- [24]. Herben VM, Rosing H, ten Bokkel Huinink WW, van Zomeren DM, Batchelor D, Doyle E. Oral topotecan: bioavailablity and effect of food co-administration. Br J Cancer. 80, 1999, 1380-1386.
- [25]. Marzo A, Dal Bo L, Rusca A, Zini P. Bioequivalence of ticlopidine hydrochloride administered in single dose to healthy volunteers. Pharm Res 46, 2002, 401-407.
- [26]. Oliveira CH, Abib E, Vannuchi YB, Sucupira M, Ilha J, De Nucci G. Comparative bioavailability of 4 amoxicillin formulations in healthy human volunteers after a single dose administration. Int J Clin Pharmacol Ther 39, 2001, 167-172.
- [27]. Schug BS, Brendel E, Chantraine E, Wolf D, Martin W, Schall R. The effect of food on the pharmacokinetics of nifedipine in two slow release formulations: pronounced lag-time after a high fat breakfast. Br J Clin Pharmacol 53, 2002, 582-588.
- [28]. Ribeiro W, Zappi EA, Moraes ME, Bezerra FA, Lerner FE, de Nucci G. Comparative bioavailability of two fluconazole capsule formulations in healthy volunteers. Arzneimittelforschung 50, 2000, 1028-1032.
- [29]. Seaber EJ, Peck RW, Smith DA, Allanson J, Hefting NR, van Lier JJ. The absolute bioavailability and effect of food on the pharmacokinetics of zolmitriptan in healthy volunteers. Br Clin Pharmacol 46, 1998, 433-439.
- [30]. LaCreta FP, Kaul S, Kollia GD, Duncan G, Randall DM, Grasela DM. Interchangeability of 400-mg intravenous and oral gatifloxacin in healthy adults. Pharmacother 2000; 20:59S-66S.
- [31]. A text book of Biopharmaceutics and Pharmacokinetics a Treatise by D.M.Brahmankar and Sunil B.Jaiswal 315-363.
- [32]. Marzo A. Clinical pharmacokinetic registrations file for NDA and ANDA procedures. Pharm Res 36, 1997, 425-450.
- [33]. Food and drug administration (FDA), Division of Biopharmaceutics, Bioavailability protocol guidelines for ANDA and NDA Submission, 1977.
- [34]. Guidelines for bioavailability & bioequivalence studies, Central Drug Standard Control Organization, Directorate General of Health Services, Ministry Of Health and Family Welfare, Government of India, New Delhi. (March 2005).
- [35]. R. L. Williams, W. P. Adams, M.-L. Chen, D. Hare, A. Hussain, L. Lesko, R. Patnaik, V. Shah, and the FDA Biopharmaceutics Coordinating Committee. Where are we now and where do we go next in terms of scientific basis of regulation of BA and BE? Eur. J. Drug Metab. Pharmacokinet 25, 2000, 7–12.

