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Abstract: This investigation demonstrates the successful fabrication of silver-substituted copper ferrite 

nanoparticles (AgxCu1-xFe2O4, where x = 0.05, 0.1, 0.2) through microwave-assisted biosynthesis 

utilizing Asteracantha longifolia leaf extract as both reducing and stabilizing agent. X-ray diffraction 

analysis confirmed single-phase cubic spinel structures with lattice parameters ranging from 8.294 to 

8.165 Å. Electron microscopy revealed morphological transitions from spherical to irregular geometries 

with crystallite sizes between 15.43 and 18.85 nm. Enhanced optical absorption in the UV-visible region 

(300-800 nm) resulted from surface plasmon resonance effects of silver nanodomains. Magnetic 

characterization showed decreased saturation magnetization correlating with silver content, attributed to 

diamagnetic Ag⁺ ions disrupting magnetic exchange interactions. Thermal analysis indicated structural 

stability up to 600°C with minimal mass loss. Antioxidant evaluation through DPPH radical scavenging 

demonstrated concentration-dependent activity enhancement, with AgxCu1-xFe2O4 exhibiting 55.35% 

radical neutralization efficiency compared to 41.87% for undoped copper ferrite. 
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I. INTRODUCTION 

Spinel ferrite nanoparticles represent a class of nanocrystalline materials attracting considerable scientific attention due 

to their unique combination of magnetic, electrical, and catalytic properties [1]. Copper ferrite (CuFe2O4) 

nanostructures exhibit exceptional magnetoelectrical characteristics coupled with robust catalytic functionality, 

demonstrating remarkable thermodynamic stability and chemical resistance under extreme operational conditions [2, 3]. 

These properties make them suitable for applications including magnetic data storage, catalysis, ferrofluids, biosensors, 

and environmental remediation. Contemporary synthetic approaches for spinel-type compounds encompass various 

methodologies including coprecipitation, solvothermal crystallization, lyophilization techniques, microemulsion 

templating, and sol-gel polymerization protocols. Among these methods, microwave-assisted sol-gel auto-combustion 

using citric acid as fuel presents a particularly effective route for generating monodisperse nanocrystalline particles 

under moderate thermal conditions. This approach offers sustainable alternatives that minimize dependency on 

expensive reagents and toxic precursors while reducing energy consumption. Asteracantha longifolia, a medicinally 

significant species in traditional Ayurvedic pharmacopeia, contains abundant bioactive metabolites including fatty acid 

esters, mineral cofactors, polyphenolic antioxidants, proanthocyanidin oligomers [4], nitrogenous alkaloids [5], 

enzymatic proteins[6], amino acid residues [7], terpenoid compounds [8], vitamin complexes [9], and glycosidic 

derivatives [10]. These constituents confer therapeutic properties against various disorders and provide antifungal, 

cytotoxic, anti-inflammatory, antipyretic, antioxidant, insecticidal, hepatoprotective, immunomodulatory, antiplatelet, 

and antiviral bioactivities. Previous investigations have demonstrated the potential of plant extracts for metallic 

nanoparticle fabrication [11-13]. However, research concerning microwave-assisted synthesis of pristine and silver-

modified copper ferrite nanomaterials utilizing Asteracantha longifolia foliar extracts remains limited. This 
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investigation addresses this gap, focusing on the controlled fabrication of Ag-CuFe2O4 and CuFe2O4 nanoparticles 

possessing distinctive microstructural architectures and enhanced physicochemical properties  [14]. 

 

II. MATERIALS AND METHODS 

2.1 Plant Material Collection and Extract Preparation 

Fresh Asteracantha longifolia leaves were collected from Mahad city, Raigad, Maharashtra. The leaves were 

thoroughly cleaned under tap water, washed with double-distilled water, and dried for four days under shade conditions. 

After drying, the leaves were ground using mortar and pestle and stored in an airtight bottle. 

 
Figure 1 Dried and processed A. longifolia leaves prepared for aqueous extraction. Images were captured in Cholai, 

Maharashtra, India (GPS coordinates: 17°9'12" N, 73°46'8" E) 

For extract preparation, 20 g of powdered plant material was added to a 500 mL flask containing 200 mL of water. The 

mixture was heated for three minutes in a microwave at 350-watt power, followed by 30 minutes of ultrasound 

treatment. The aqueous extract was filtered using Whatman No. 41 filter paper and stored in a refrigerator for 

subsequent use. 

 

2.2 Biosynthesis of Copper Ferrite Nanoparticles 

CuFe2O4 nanoparticles were synthesized using microwave-assisted sol-gel auto-combustion method with citric acid as 

fuel in the presence of A. longifolia leaf extract. Precursor materials Cu(NO₃)₂·3H₂O, Fe(NO₃)₃·9H₂O, and citric acid 

(metal salt to citric acid ratio of 1:3) were completely dissolved in 50 mL of deionized water separately. Subsequently, 

20 mL of A. longifolia leaf extract was added. Ammonium hydroxide was added dropwise to adjust the pH to 7. The 

mixed solution was placed in a microwave oven and heated with magnetic stirring at 80°C until gel formation occurred. 

The obtained gel was continuously heated and stirred at 140°C in the microwave, leading to spontaneous combustion 

and ferrite powder formation. The powder was calcined in a muffle furnace for three hours at 700°C. 

 

2.3 Biosynthesis of Silver-Doped Copper Ferrite Nanoparticles 

Ag-doped CuFe2O4 nanoparticles were prepared following the same procedure, with the addition of silver at different 

ratios. Three compositions (Ag~0.05~Cu~0.95~Fe₂O₄, Ag~0.1~Cu~0.9~Fe₂O₄, and AgxCu1-xFe2O4) were synthesized 

by adding cupric nitrate, ferric nitrate, and silver nitrate in appropriate stoichiometric ratios. 

 

III. RESULTS AND DISCUSSION 

3.1 Structural Characterization 

X-ray diffraction patterns confirmed the successful formation of cubic spinel structures in all samples. Characteristic 

diffraction peaks appeared at 2θ values of approximately 18.3°, 30.1°, 35.5°, 43.1°, 53.4°, 57.0°, and 62.6°, 

corresponding to the (111), (220), (311), (400), (422), (511), and (440) crystallographic planes. The most intense peak 

at 35.5° corresponds to the (311) plane, typical for spinel ferrites as shown in Figure 1. As silver doping concentration 
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increased from 5% to 20%, notable enhancement in peak intensity and sharpness occurred, particularly in the (311) 

reflection, indicating improved crystallinity and larger crystallite size with higher silver content [15, 16]. 

 
Figure 1 X-ray diffraction (XRD) patterns of AgxCu(1-x)Fe2O4 (x=0.1) nanocomposites 

The absence of additional peaks corresponding to metallic silver or silver oxide phases suggests successful 

incorporation of silver ions into the spinel lattice structure. The lattice parameter exhibited a non-monotonic trend, 

decreasing from 8.294 Å for pure CuFe2O4 to 8.270 Å for 5% silver doping, reaching a minimum of 8.165 Å at 10% 

silver doping, before increasing to 8.240 Å at 20% silver doping. This variation indicates complex substitution 

mechanisms and possible phase segregation at higher doping levels [17]. 

Table 2 Full width Half maximum (FWHM), Crystallite size (D) nm for AgxCu(1-x)Fe2O4 (x= 0.1) nanoparticles 

2θ θ in Degree Radian(θ) FWHM 

Degree (θ) 

FWHM 

Radian (θ) 

Cos θ D= 0.9λ/βCosθ D nm 

18.214 9.107 0.159 0.44791 0.008 0.987 179.74 17.97 

29.899 14.949 0.261 0.45514 0.008 0.966 180.77 18.08 

35.839 17.919 0.313 0.57368 0.010 0.952 145.62 14.56 

37.074 18.537 0.323 0.67087 0.012 0.948 124.97 12.50 

43.946 21.973 0.383 0.73111 0.013 0.927 117.24 11.72 

53.926 26.963 0.470 0.38789 0.007 0.891 229.90 22.99 

58.032 29.016 0.506 0.59421 0.010 0.875 152.96 15.30 

63.827 31.914 0.557 1.00737 0.018 0.849 92.95 9.29 

74.623 37.312 0.651 0.60665 0.011 0.796 164.71 16.47 

       15.43 

 

Crystallite sizes calculated using the Scherrer equation demonstrated considerable variation across different 

compositions, with average values of 15.43 nm, 15.56 nm, 16.49 nm, and 18.85 nm for undoped, 5%, 10%, and 20% 

silver-doped samples, respectively, suggesting that 10% silver doping promotes optimal crystal growth [18]. 
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3.2 Thermal Analysis 

Thermogravimetric analysis revealed a multi-stage thermal decomposition process with excellent stability. The material 

exhibited minimal weight loss (0.864%) up to approximately 100°C, likely attributed to desorption of physisorbed 

water and volatile impurities. A more significant decomposition stage occurred between 100-300°C with 5.210% 

weight loss, corresponding to removal of chemisorbed water, organic residues from synthesis, and possible structural 

hydroxyl groups. The major thermal event happened between 300-600°C with substantial 24.144% weight loss, 

attributed to decomposition of organic ligands, carbonaceous materials, or precursor residues, and potentially some 

structural rearrangement of the spinel ferrite matrix. Beyond 600°C, the material demonstrated remarkable thermal 

stability with only minor weight changes, indicating formation of stable Ag-doped CuFe2O4 crystalline phase. 

 

3.3 Spectroscopic Analysis 

FTIR spectra revealed characteristic vibrational modes of the spinel ferrite structure with systematic changes upon 

silver incorporation. All samples exhibited fundamental metal-oxygen stretching vibrations in the fingerprint region, 

with prominent peaks around 579-651 cm⁻¹ and 419-428 cm⁻¹ corresponding to tetrahedral (Fe³⁺-O) and octahedral 

(Cu²⁺/Fe³⁺-O) site vibrations, respectively, confirming the cubic spinel structure as shown in Figure 2. Broad 

absorption bands in the 3000-3500 cm⁻¹ region and around 1640 cm⁻¹ were attributed to O-H stretching and bending 

vibrations of surface-adsorbed water molecules and hydroxyl groups [19, 20]. 

 
Figure 2 FTIR spectra of AgxCu(1-x)Fe2O4 (x=0.1) showing characteristic absorption bands of the spinel ferrite 

structure. 

UV-Vis absorption spectra demonstrated significant optical property modifications upon silver incorporation, with 

dramatic enhancement in absorption intensity and spectral profile changes. Pure CuFe2O4 exhibited a broad absorption 

band around 460 nm, characteristic of d-d transitions in Cu²⁺ and Fe³⁺ ions within the spinel structure. Upon silver 

doping, progressive increase in overall absorption intensity occurred along with emergence of additional absorption 

features. The intense absorption in the UV region (200-300 nm) can be attributed to ligand-to-metal charge transfer 

transitions involving silver ions and possible surface plasmon resonance effects [18, 20]. 

 

3.4 Morphological Analysis 

SEM micrographs revealed distinct morphological variations in Ag~x~Cu~1-x~Fe₂O₄ nanocomposites as silver 

concentration increased. Pristine CuFe2O4 exhibited agglomerated spherical particles with sizes ranging from 50-200 

nm, forming clustered microstructures. Upon 5% silver incorporation, the morphology became more uniform with 
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reduced agglomeration. The 10% silver-doped sample displayed well-defined crystalline facets with particle sizes 

between 100-500 nm, suggesting enhanced crystallinity. At 20% silver content, larger polyhedral particles emerged 

with distinct grain boundaries, reaching sizes up to 1 μm. This progressive morphological evolution demonstrates that 

silver doping significantly influences crystal growth kinetics and surface energy. 

 
Figure 3 SEM images showing morphological changes in AgxCu(1-x)Fe2O4 with silver doping levels of 10% 

HRTEM analysis of AgxCu(1-x)Fe2O4 revealed well-crystallized nanoparticles with distinct morphological 

characteristics. The particles exhibited spherical to quasi-spherical morphology with sizes ranging from 20-50 nm, 

demonstrating good dispersion with minimal agglomeration. Selected area electron diffraction patterns displayed bright, 

well-defined spots arranged in concentric rings, characteristic of polycrystalline cubic spinel structure, with distinct 

diffraction rings corresponding to (220), (311), (400), (511), and (440) planes. 

 
Figure 9 HRTEM micrographs of Ag0.1Cu0.9Fe2O4 

 

3.5 Elemental Composition 

Compositional examination demonstrated consistent elemental distribution patterns corresponding to increasing dopant 

concentrations. Silver incorporation escalated systematically from 5.03 wt% to 18.32 wt%, confirming effective 

integration within the crystalline framework. Simultaneously, oxygen composition decreased substantially from 84.49 

wt% (undoped material) to 72.42 wt% (maximum silver loading), signifying considerable structural rearrangements. 

Iron distribution underwent dramatic alterations, declining from 12.54 wt% in the parent compound to 4.30 wt% at peak 

doping levels, whereas copper percentages maintained comparative stability across the 2.98-4.95 wt% range. This 

selective iron displacement indicates that silver cations preferentially occupy Fe³⁺ positions within the inverse spinel 

architecture. 
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3.6 Magnetic Properties 

Magnetic characterization through vibrating sample magnetometry revealed distinctive ferrimagnetic behavior across 

all synthesized compositions, with notable variations in saturation magnetization values. Pure CuFe

characteristic S-shaped hysteresis with saturation magnetization 

structure. Silver incorporation progressively altered magnetic properties, where 5% silver

enhanced magnetization reaching approximately 250 emu/g. However, 20% Ag

magnetization around 85 emu/g, attributed to magnetic dilution effects where non

magnetic exchange interactions between Fe³

indicate soft magnetic characteristics with relatively low coercive fields

Figure 4 Vibrating Sample Magnetometry (VSM) hysteresis loops of Ag

 

3.7 Antimicrobial Activity 

Antibiotic susceptibility tests for CuFe2O4

(Bacillus subtilis, Staphylococcus aureus) and gram

using disk diffusion method on Mueller-

distilled water and applied to individual inoculat

of inhibition surrounding the coated samples were measured as parameters of antibacterial property

demonstrated that silver-doped samples displayed superior antimicrobial e

The inhibition zones ranged from 8-19 mm across different bacterial strains, with optimal performance observed at 

moderate silver doping concentrations. The enhanced antimicrobial activity can be attributed to th

between copper ferrite and silver nanoparticles, where silver ions disrupt bacterial cell membranes and interfere with 

cellular metabolism [25]. 
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Magnetic characterization through vibrating sample magnetometry revealed distinctive ferrimagnetic behavior across 

synthesized compositions, with notable variations in saturation magnetization values. Pure CuFe

shaped hysteresis with saturation magnetization approaching 30 emu/g, confirming its inverse spinel 

structure. Silver incorporation progressively altered magnetic properties, where 5% silver-doped samples demonstrated 

enhanced magnetization reaching approximately 250 emu/g. However, 20% Ag- CuFe2O4 displayed reduced saturation 

magnetization around 85 emu/g, attributed to magnetic dilution effects where non-magnetic silver atoms disrupt 

magnetic exchange interactions between Fe³⁺ and Cu²⁺ ions. The narrow hysteresis loops observed across all samples 

ate soft magnetic characteristics with relatively low coercive fields [21, 22]. 
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ed agar plates, which were then incubated at 37°C for 24 hours. Zones 

of inhibition surrounding the coated samples were measured as parameters of antibacterial property [23, 24]. Results 

fficacy compared to undoped copper ferrite. 

19 mm across different bacterial strains, with optimal performance observed at 

moderate silver doping concentrations. The enhanced antimicrobial activity can be attributed to the synergistic effects 

between copper ferrite and silver nanoparticles, where silver ions disrupt bacterial cell membranes and interfere with 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

 

Figure 5 General bacterial strains: Antimicrobial activity of AgxCu(1-x)Fe2O4 (x=0.05, 0.1, 0.2) nanocomposites 

showing zone of inhibition against different bacterial strains: (a) A. Niger, (b) B. subtilis, (c) C. Albicans, (d) K. 

pneumoniae, (e) S. Typhy, and (f) S. aureus. 
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3.8 Antioxidant Activity 

DPPH radical scavenging assay results demonstrated marked enhancement in antioxidant properties upon silver 

incorporation into the copper ferrite matrix. Different concentrations (25, 50, 75, 100, and 150 μg/mL) were evaluated, 

with absorbance measurements revealing systematic decrease with increasing sample concentration across all 

formulations, indicating effective radical neutralization. The inhibition parentage of free radicals was calculated based 

on the formula as follows [26-28]. 

 

���� ���������� �������� (%)  =  % ��ℎ������� ������� =  
��� ��

��
 × 100    (1) 

 

Ac = O.D. of Control (standard) and  

As = O.D. of Sample 

The silver-doped variants exhibited lower absorbance values compared to pristine CuFe2O4, with AgxCu1-xFe2O4 

showing the most pronounced reduction at all tested concentrations. The calculated radical scavenging activity 

percentages substantiated this trend, where the highest silver-doped sample achieved 55.35% RSA at 250 mg 

concentration, significantly surpassing the 41.87% observed for undoped CuFe2O4. This progressive improvement 

correlates directly with increasing silver content, suggesting that silver dopants introduce additional electron-donating 

sites that facilitate DPPH radical neutralization [26-28]. 

 
Figure 6 Comparative analysis of DPPH radical scavenging efficiency of pure and Ag-doped CuFe2O4 nanoparticles at 

different silver doping concentrations 

The enhanced performance can be attributed to synergistic interaction between silver nanoparticles and the ferrite host, 

creating a more efficient electron transfer mechanism. The concentration-dependent behavior observed across all 

samples follows typical antioxidant kinetics, where higher material concentrations provide greater availability of active 

sites for radical scavenging. The silver doping effect becomes increasingly pronounced at higher concentrations, 

indicating that the enhanced antioxidant mechanism is dose-dependent and potentially governed by surface-mediated 

interactions between the nanoparticles and DPPH radicals [29, 30].. 

 

IV. CONCLUSION 

This research successfully established microwave-assisted biosynthesis of Ag-doped CuFe2O4 nanoparticles utilizing 

Asteracantha longifolia leaf extract, presenting an environmentally friendly route for developing advanced 

nanomaterials. Structural characterization confirmed formation of pure cubic spinel phases with silver effectively 
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integrated into the ferrite lattice without generating secondary phases. The systematic modifications in lattice 

parameters (8.294 to 8.165 Å) and crystallite dimensions (15.43 to 18.85 nm) demonstrate how silver incorporation 

influences fundamental material characteristics. Thermal analysis revealed stability up to 600°C, while optical studies 

showed enhanced UV-visible absorption capabilities. Biological evaluation yielded particularly promising results, with 

silver-doped samples displaying superior antimicrobial efficacy against both gram-positive and gram-negative bacterial 

strains, achieving inhibition zones of 8-19 mm. Antioxidant assessment through DPPH radical scavenging assays 

revealed concentration-dependent activity enhancement with silver doping, with AgxCu1-xFe2O4 achieving 55.35% 

radical scavenging activity at 250 mg concentration, substantially exceeding the 41.87% recorded for undoped copper 

ferrite. The combination of environmentally sustainable synthesis, structural integrity, enhanced biological activity, and 

improved antioxidant properties establishes these silver-doped copper ferrite nanoparticles as versatile materials for 

diverse applications including antimicrobial coatings, drug delivery platforms, photocatalytic systems, and 

environmental remediation technologies. Future work should focus on optimizing synthesis conditions and exploring 

additional biological applications to fully exploit their therapeutic potential. 
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