

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 9, June 2025

On Generalized *U* – Birecurrent Finsler Space in Berwald Sense

Abdalstar A. Saleem¹, Alaa A. Abdallah^{*2} & Ammar Z. Hussein³

¹Department. of Mathematics, Faculty of Sciences- Aden, University of Aden, Yemen
² Department of Mathematics, Education Faculty, University of Abyan, Zingibar, Yemen
³ Department of Mathematics, Education Faculty, University of Lahej, Yafea, Yemen
<u>saleemabdalstar@gmail.com</u>, <u>ala733.ala00@gmail.com</u> & <u>amaralalway@gmail.com</u>

Abstract: In this paper, we introduced a type of generalized birecurrent space in Berwald sense. The necessary and sufficient conditions for some tensors to be generalized birecurrent in Berwald sense have been obtained. Also, some results in the projection on indicatrix with respect to Cartan connection have been discussed.

Keywords: Generalized birecurrent space, Berwald covariant derivative, Curvature tensor U_{jkh}^{i} , Douglas tensor D_{jkh}^{i} , Projection on indicatrix

I. INTRODUCTION

Finsler geometry, which extends the concepts of Riemannian geometry, provides a robust framework for analyzing spaces with direction-dependent (anisotropic) metric characteristics. In recent years, there has been increasing attention on recurrent Finsler structures, which are defined by the parallel transport of specific curvature tensors along geodesics. A key element in this study is Berwald's covariant differentiation, an essential technique within Finsler geometry. The Fundamentals and recent studies of Finsler geometry and the relationships between the curvature tensors in Finsler spaces discussed by [1, 4].

The generalized birecurrent Finsler spaces for some curvature tensors in Berwald sense have been studied by [3, 9, 13]. Also, the conditions for some tensors in Berwald sense have been obtained by [2, 5]. The curvature tensor U_{jkh}^{i} and relations it with several tensors in different spaces studied by [16-18].

Let us consider an n – dimensional Finsler space F_n equipped with the line elements (x, y) and the fundamental metric function F positive homogeneous of degree one in y^i . The vectors y_i and y^i satisfy [12, 14]

(1.1) a)
$$y_i y^i = F^2$$
 and b) $\dot{\partial}_i y_j = \dot{\partial}_j y_i = g_{ij}$.

The fundamental metric tensor is satisfied [4, 10, 11, 15]

(1.2) a)
$$g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j F^2$$
, b) $g_{ij}(x, y) y^i = y_j$ and c) $C_{ijk} = \frac{1}{2} \dot{\partial}_k g_{ij}$

The tensor C_{ijk} is homogeneous of degree -1 in y^i and symmetric in all its indices Berwald's covariant derivative of the metric function *F*, metric tensor g_{ij} , vectors y^i and y_i , the unit vectors l^i and l_i are vanishing identically, i.e. [6, 8] (1.3) a) $B_k F = 0$, b) $B_k g_{ii} = -2C_{iiklb}y^h = -2y^h B_k C_{iik}$, c) $B_k y^i = 0$,

(12) (13)
$$l_{k} = l_{k} = l_$$

Berwald's covariant derivative of an arbitrary tensor field T_h^i with respect to x^l is given by

(1.4) a)
$$\mathbf{B}_k T_h^i = \dot{\partial}_k T_h^i + T_h^r G_{rk}^i - T_r^i G_{sk}^r - (\dot{\partial}_r T_h^i) G_{hi}^r$$

And the commutation formula for the operator $\dot{\partial}_i$ and B_k are given by [14]

b)
$$\dot{\partial}_j \mathbf{B}_k T_h^i - \mathbf{B}_k \dot{\partial}_j T_h^i = T_h^r G_{jkr}^i - T_r^i G_{jkh}^r$$

K.Yano [19], defined the normal projective connection coefficients Π_{ik}^{i} by

Copyright to IJARSCT www.ijarsct.co.in

ISSN: 2581-9429

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 9, June 2025

(1.5) a)
$$\Pi^{i}_{jk} = G^{i}_{jk} - \frac{1}{n+1} y^{i} G^{r}_{jkr}$$
 and b) $G^{i}_{jk} = \partial_{j} G^{i}_{k}$.

The connection coefficients Π_{ik}^{i} is positively homogeneous of degree zero in y^{i} and symmetric in their lower indices. K. Yano [19] denoted this tensor by U_{jkh}^{i} . Thus

and b) $G_{jkhr}^r = \dot{\partial}_j G_{khr}^r$. $U_{jkh}^i = G_{jkh}^i - \frac{1}{n+1} \left(\delta_j^i G_{jkr}^r + y^i G_{jkhr}^r \right)$ a(1.6) The tensor U_{jkh}^{i} is called curvature tensor and G_{jkh}^{i} is connection of curvature tensor satisfies [17] $G_{ikh}^i y^j = G_{kjh}^i y^j = G_{khj}^i y^j = 0.$ c) (1.6)

This tensor U_{jkh}^{i} is homogeneous of degree -1 in y^{i} and symmetric in its last two indices, i.e.

$$U_{jkh}^i = U_{jhk}^i$$

Also this tensor satisfies the following [18]

(1.7)
$$U_{jrk}^{r} = U_{jkr}^{r} = G_{jkr}^{r},$$

1.8) $U_{jkh}^{i} y^{j} = 0,$ (
(1.9) $U_{ikh}^{i} y^{h} = U_{ihk}^{i} y^{h} = U_{ik}^{i},$ where $U_{ik}^{i} = \Pi_{ik}^{i}.$

The tensor U_{jk}^{i} is called torsion tensor and satisfies

(1.10)
$$U_{jk}^{i} = U_{kj}^{i}$$
,
(1.11) $U_{jr}^{r} = G_{jr}^{r}$,
(1.12) $U_{jk}^{i}y^{k} = U_{kj}^{i}y^{k} = G_{j}^{i}$,

where

$$(1.13) \qquad G_i^i y^j = 2G^i.$$

The tensor U_{jk} is called Ricci tensor satisfies the following [18]

(1.14)
$$U'_{rkh} = U_{kh},$$

 $U_{jk} = \frac{2}{n+1} G_{jk}, (1.15)$

where the tensor G_{ik} is components of the projective connection coefficient.

The Douglas tensor is given by [18]

 $D_{jkh}^{i} = U_{jkh}^{i} - \frac{1}{2} \left(\delta_{j}^{i} U_{kh} + \delta_{k}^{i} U_{jh} \right).$ (1.16)

Also this tensor satisfies the following:

 $D_{jkh}^{i}y^{j} = D_{Kjh}^{i}y^{j} = D_{khj}^{i}y^{j} = 0.$ (1.17)

Definition 1.1. The projection of any tensor T_i^i on indicatrix is given by [7]

(1.18)
$$p.T_j^i = T_\beta^\alpha h_\alpha^i h_j^\beta,$$

where the angular metric tensor is homogeneous function of degree zero in y^i and defined by

b) $h_i^i = \delta_i^i - l^i l_i$. (1.19)

Definition 1.2. If the projection of tensor T_i^i on indicatrix I_{n-1} is the same tensor T_i^i , the tensor is called an indicatrix tensor or an indicatory tensor.

The projection of the vector y^i , the unit vector l^i and the metric tensor g_{ij} on indicatrix are given by [7]

(1.20) a) $p.y^i = 0$, b) $p.l^i = 0$, c) $p.g_{ij} = h_{ij}$, where d) $h_{ij} = g_{ij} - l_i l_j$.

Saleem [16] introduced the generalized $B_l U$ -recurrent Finsler space. *i.e.* the tensor U_{jkh}^i is characterized by the following condition:

 $\mathbf{B}_l U^i_{jkh} = \lambda_l U^i_{jkh} + \mu_l (\delta^i_j g_{kh} + \delta^i_k g_{jh}), \quad U^i_{jkh} \neq 0.$ (1.21)Where λ_l and μ_l are non-zero covariant vector fields.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-28299

818

International Journal of Advanced Research in Science, Communication and Technology

👕 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 9, June 2025

Volume 5, 1350e 5, 50me 2025

II. An Generalized $\mathbf{B}_m \mathbf{B}_l U$ **-Birecurrent Space** Differentiating (1.21) convariantly with respect to x^m in the sense of Berwald, we get

 $\mathbf{B}_{m}\mathbf{B}_{l}U_{jkh}^{i} = (\mathbf{B}_{m}\lambda_{l} + \lambda_{m}\lambda_{l})U_{jkh}^{i} + (\mathbf{B}_{m}\mu_{l} + \lambda_{l}\mu_{m} + \mu_{l}\mathbf{B}_{m})(\delta_{j}^{i}g_{kh} + \delta_{k}^{i}g_{jh}),$

Above equation can be written as

 $(2.1) \qquad \mathbf{B}_m \mathbf{B}_l U^i_{jkh} = a_{lm} U^i_{jkh} + b_{lm} \left(\delta^i_j g_{kh} + \delta^i_k g_{jh} \right), \quad U^i_{jkh} \neq 0,$

where $a_{lm} = B_m \lambda_l + \lambda_m \lambda_l$ and $b_{lm} = B_m \mu_l + \lambda_l \mu_m + \mu_l B_m$ are non-zero of tensor fields of second order and called as birecurrence tensor fields of second order.

Definition 2.1. A Finsler space F_n which the normal projective curvature tensor U_{jkh}^i satisfies the condition (2.1) will be called *a generalized* BU - birecurrent space and denoted it briefly as $G(BU) - BRF_n$.

Transvecting (2.1) by y^h , using (1.2b), (1.3c), (1.9), we get

(2.2) $\mathbf{B}_m \mathbf{B}_l U_{jk}^i = a_{lm} U_{jk}^i + b_{lm} \left(\delta_j^i y_k + \delta_k^i y_j \right).$

Contracting the indices i and j in (2.1) and using (1.14), we get

(2.3) $\mathbf{B}_m \mathbf{B}_l U_{kh} = a_{lm} U_{kh} + b_{lm} (n+1) g_{kh}.$

contracting the indices i and h in (2.1), we get in view of (1.7), the

(2.4) $\mathbf{B}_m \mathbf{B}_l G_{jkr}^r = a_{lm} G_{jkr}^r + 2b_{lm} g_{jk}.$

In view of (2.3) and (1.15), we get $G_{kh} = a_{lm}G_{kh} + \frac{1}{2}b_{lm}(n+1)^2g_{kh}$. B_mB_l(2.5)

Transvecting (2.2) by y^k , using (1.12), (1.3c) and (1.1a), we get

(2.6) $\mathbf{B}_{m}\mathbf{B}_{l}G_{l}^{i} = a_{lm}G_{l}^{i} + b_{lm}(\delta_{l}^{i}F^{2} + y^{i}y_{j}).$

Transvecting (2.6) by y^j and using (1.13), (1.1a) and (1.3c), we get

$$B_m B_l G^i = a_{lm} G^i + 2b_{lm} y^i F^2.$$
(2.7)

Contracting the indices i and k in (2.2) and using (1.11), we get

(2.8) $B_m B_l G_{jr}^r = a_{lm} G_{jr}^r + b_{lm} (n+1) y_j.$ Thus, we conclude

Theorem 2.1. In $G(\mathcal{B}U) - BRF_n$, the torsion tensor U_{jk}^i , Ricci tensor U_{kh} , tensor G_{jkr}^r , Ricci tensor G_{kh} , deviation tensor G_j^i , vector G^i and the tensor G_{jr}^r are non-vanishing.

Differentiating (1.16) covariantly twice with respect to x^{l} and x^{m} in the sense of Berwald, we get

(2.9)
$$B_m B_l D_{jkh}^i = B_m B_l U_{jkh}^i - \frac{1}{2} \left(\delta_j^i B_m B_l U_{kh} + \delta_k^i B_m B_l U_{jh} \right).$$

Using (2.1) and (2.3) in (2.9), we get
(2.10)
$$B_m B_l D_{jkh}^i = a_{lm} \left[(U_{jkh}^i - \frac{1}{2} (\delta_j^i U_{kh} + \delta_k^i U_{jh}) \right]$$

$$-\frac{1}{2}(1-n)b_{lm}(\delta^i_j g_{kh} + \delta^i_k g_{jh}).$$

Using (1.16) in (2.10), we get

$$(2.11) \qquad \mathbf{B}_m \mathbf{B}_l D^i_{jkh} = a_{lm} D^i_{jkh} + \eta_{lm} \left(\delta^i_j g_{kh} + \delta^i_k g_{jh} \right),$$

where $\eta_{lm} = \frac{1}{2}(1-n)b_{lm}$. Thus, we conclude

Theorem 2.2. In $G(\mathcal{B}U) - BRF_n$, the Douglas tensor D_{jkh}^i is generalized birecurrent.

If the Douglas tensor D_{jkh}^i is generalized birecurrent and Ricci tensor U_{kh} is behaves as birecurrent in a Finsler space, then the space is necessarily to be $G(\mathcal{B}U) - BRF_n$. Thus Eq. (2.9) can be written as

(2.12) $B_m B_l U_{jkh}^i = B_m B_l D_{jkh}^i + \frac{1}{2} \left(\delta_j^i B_m B_l U_{kh} + \delta_k^i B_m B_l U_{jh} \right).$ Using (2.3) and (2.11) in (2.12), we get

(2.13)
$$B_m B_l U_{jkh}^i = a_{lm} [(D_{jkh}^i + \frac{1}{2} (\delta_j^i U_{kh} + \delta_k^i U_{jh})] + b_{lm} (\delta_j^i g_{kh} + \delta_k^i g_{jh}).$$

Using (1.16) in (2.13), we get

(2.14)
$$\mathbf{B}_m \mathbf{B}_l U^l_{jkh} = a_{lm} U^l_{jkh} + b_{lm} \left(\delta^l_j g_{kh} + \delta^l_k g_{jh} \right).$$

Thus, we conclude Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 9, June 2025

Theorem 2.3. In a Finsler space F_n , if Douglas tensor D_{jkh}^i is generalized birecurrent and the Ricci tensor U_{kh} behaves as birecurrent, then the space considered is necessarily $G(\mathcal{B}U) - BRF_n$.

III. The Necessary and Sufficient Conditions for Some Tensors to be Generalized Birrecurrent

We find the necessary and sufficient conditions for some tensors to be generalized birecurrent in $G(\mathcal{B}U) - BRF_n$. Let us consider $G(\mathcal{B}U) - BRF_n$ characterized by (2.1). Differentiating (2.4) partially with respect to y^h , using (1.2c), we get (3.1) $\dot{\partial}_h \mathcal{B}_m \mathcal{B}_l G_{jkr}^r = (\dot{\partial}_h a_{lm}) G_{jkr}^r + a_{lm} (\dot{\partial}_h G_{jkhr}^r) + 2(\dot{\partial}_h b_{lm}) g_{jk} + 4b_{lm} C_{hjk}$.

Using commutation formula exhibited by (1.4b) for G_{jkr}^r , using (1.2c), (1.6b) in (3.1), we get

$$(3.2) \qquad \mathcal{B}_m(\dot{\mathcal{O}}_h \mathcal{B}_l G^r_{jkr}) - \left(\mathcal{B}_s G^r_{jkr}\right) G^s_{hlm} - \left(\mathcal{B}_m G^r_{skr}\right) G^s_{hlj} - \left(\mathcal{B}_m G^r_{jsr}\right) G^s_{hl}$$

$$= (\partial_h \mathbf{a}_{lm}) G_{jkr}^r + \mathbf{a}_{lm} G_{jkhr}^r + 2(\partial_h \mathbf{b}_{lm}) g_{jk} + 4\mathbf{b}_{lm} C_{hjk}.$$

Again, applying the commutation formula (1.4b) for G_{ikr}^r , using (1.6b) in (3.2), we get

$$(3.3) \qquad \mathcal{B}_m \mathcal{B}_l G^r_{jkhr} - (\mathcal{B}_m G^r_{skr}) G^s_{hlj} - G^r_{skr} \left(\mathcal{B}_m G^s_{hlj} \right) - (\mathcal{B}_m G^r_{jsr}) G^s_{hlk} - G^r_{jsr} \left(\mathcal{B}_m G^s_{hlk} \right) - (\mathcal{B}_m G^r_{jsr}) G^s_{hlk} - (\mathcal{B}_m G^r_{jsr}) G^s_{hlk} - (\mathcal{B}_m G^r_{skr}) G^s_{hmj}$$

$$-(\mathcal{B}_l G_{jsr}^r)G_{hmk}^s = (\dot{\partial}_h a_{lm})G_{jkr}^r + a_{lm}G_{jkhr}^r + 2(\dot{\partial}_h b_{lm})g_{jk} + 4b_{lm}C_{hjk}$$

This shows that

$$(3.4) \qquad \qquad \mathcal{B}_m \mathcal{B}_l G^r_{jkhr} = \mathbf{a}_{lm} G^r_{jkhr}.$$

If and only if

$$(3.5) \qquad (\mathcal{B}_m G_{skr}^r) G_{hlj}^s + G_{skr}^r (\mathcal{B}_m G_{hlj}^s) + (\mathcal{B}_m G_{jsr}^r) G_{hlk}^s + G_{jsr}^r (\mathcal{B}_m G_{hlk}^s) + (\mathcal{B}_m G_{jsr}^r) G_{hlk}^s + (\mathcal{B}_s G_{jkr}^r) G_{hlm}^s + (\mathcal{B}_l G_{skr}^r) G_{hmj}^s + (\mathcal{B}_l G_{jsr}^r) G_{hmk}^s + (\dot{\partial}_h a_{lm}) G_{jkr}^r + 2(\dot{\partial}_h b_{lm}) g_{jk} + 4 b_{lm} C_{hjk} = 0.$$

Thus, we conclude

Theorem 3.1. In $G(\mathcal{B}U) - BRF_n$, the tensor G_{jkhr}^r behaves as birecurrent if and only if (3.5) holds. Transvecting (3.3) by y^l , using (1.3c) and (1.6c), we get

(3.6)
$$y^{l}\mathcal{B}_{m}\mathcal{B}_{l}G^{r}_{jkhr} - y^{l}(\mathcal{B}_{l}G^{r}_{skr})G^{s}_{hmj} - y^{l}(\mathcal{B}_{l}G^{r}_{jsr})G^{s}_{hmk} = y^{l}(\dot{\partial}_{h}a_{lm})G^{r}_{jkr} + y^{l}a_{lm}G^{r}_{ikhr} + 2y^{l}(\dot{\partial}_{h}b_{lm})g_{ik} + 4y^{l}b_{lm}C_{hik}.$$

This shows that

$$(3.7) y^{l} \mathcal{B}_{m} \mathcal{B}_{l} G_{jkhr}^{r} = y^{l} a_{lm} G_{jkhr}^{r}.$$

If and only if
$$(3.8) y^{l} (\mathcal{B}_{l} G_{skr}^{r}) G_{hmj}^{s} + y^{l} (\mathcal{B}_{m} G_{jsr}^{r}) G_{hmk}^{s} + y^{l} (\dot{\partial}_{h} a_{lm}) G_{jkr}^{r}.$$

$$+2y^{l}(\dot{\partial}_{h}\mathbf{b}_{lm})g_{jk}+4y^{l}\mathbf{b}_{lm}C_{hjk}=0.$$

Thus, we conclude

Theorem 3.2. In $G(\mathcal{B}\mathcal{U}) - \mathcal{B}\mathcal{R}\mathcal{F}_n$, the directional derivative of the tensor G^r_{jkhr} in directional of y^m is proportional to the tensor G^r_{jkhr} if and only if (3.8) holds.

Again, transvecting (3.3) by y^m , using (1.3c) and (1.6c), we get

$$(3.9) \qquad y^{m}\mathcal{B}_{m}\mathcal{B}_{l}G_{jkhr}^{r} - y^{m}G_{skr}^{r}(\mathcal{B}_{m}G_{hlj}^{s}) - y^{m}(\mathcal{B}_{m}G_{jsr}^{r})G_{hlk}^{s} - y^{m}G_{jsr}^{r}(\mathcal{B}_{l}G_{hlk}^{s}) - y^{m}(\mathcal{B}_{s}G_{jkr}^{r})G_{hlk}^{s} = y^{m}(\dot{\partial}_{h}a_{lm})G_{jkr}^{r} + a_{lm}y^{m}G_{jkhr}^{r} + 2y^{m}(\dot{\partial}_{h}b_{lm})g_{jk} + 4y^{m}b_{lm}C_{hjk}.$$

This shows that

 $(3.10) y^m \mathcal{B}_m \mathcal{B}_l G_{jkhr}^r = a_{lm} y^m G_{jkhr}^r + y^m b_{lm} C_{hjk}.$ If and only if $(3.11) y^m G_{skr}^r (\mathcal{B}_m G_{hlj}^s) + y^m (\mathcal{B}_m G_{jsr}^r) G_{hlk}^s + y^m G_{jsr}^r (\mathcal{B}_l G_{hlk}^s) + y^m (\mathcal{B}_s G_{jkr}^r) G_{hlk}^s + y^m (\dot{\partial}_h a_{lm}) G_{jkr}^r + 2y^m (\dot{\partial}_h b_{lm}) g_{jk} + y^m b_{lm} C_{hjk} = 0..$ Thus, we conclude

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-28299

820

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 9, June 2025

Theorem 3.3. In $G(\mathcal{B}U) - BRF_n$, the directional derivative of the tensor G_{jkhr}^r in the directional of y^l is proportional to the tensor G_{jkhr}^r if and only if (3.11) holds.

Differentiating (1.6a) twice covariantly with respect to x^{l} and x^{m} in the sense of Berwald, we get

 $\begin{array}{ll} (3.12) & \mathcal{B}_m \mathcal{B}_l U_{jkh}^i = \mathcal{B}_m \mathcal{B}_l G_{jkh}^i - \frac{1}{n+1} \Big(\, \delta_j^i \mathcal{B}_m \mathcal{B}_l G_{jkr}^r + y^i \mathcal{B}_m \mathcal{B}_l G_{jkhr}^r \Big). \\ \text{Using (2.1) in (3.12), we get} \\ (3.13) & a_{lm} U_{jkh}^i + b_{lm} \Big(\delta_i^i g_{kh} + \delta_k^i g_{jh} \Big) = \mathcal{B}_m \mathcal{B}_l G_{ikh}^i \\ \end{array}$

$$-\frac{1}{n+1} \Big(\delta^i_j \mathcal{B}_m \mathcal{B}_l G^r_{jkr} + y^i \mathcal{B}_m \mathcal{B}_l G^r_{jkhr} \Big).$$

Using (1.6a), (3.3) and (2.4) in above equation, we get

$$(3.14) \qquad \mathcal{B}_{m}\mathcal{B}_{l}G_{jkh}^{i} - a_{lm}G_{jkh}^{i} - b_{lm}\left(\delta_{j}^{i}g_{kh} + \delta_{k}^{i}g_{jh}\right) = \frac{y^{*}}{n+1} \left[(\mathcal{B}_{m}G_{skr}^{r})G_{hmj}^{s} + G_{skr}^{r}(\mathcal{B}_{m}G_{shj}^{s}) + (\mathcal{B}_{m}G_{jsr}^{r})G_{hlk}^{s} + G_{jsr}^{r}(\mathcal{B}_{l}G_{hlk}^{s}) + (\mathcal{B}_{s}G_{jkr}^{r})G_{hlk}^{s} + (\mathcal{B}_{s}G_{jkr}^{r})G_{hlm}^{s} + (\mathcal{B}_{m}G_{skr}^{r})G_{hmj}^{s} + (\mathcal{B}_{m}G_{jsr}^{r})G_{hmk}^{s} + (\dot{\partial}_{h}a_{lm})G_{jkr}^{r} + 2g_{jk}(\dot{\partial}_{h}b_{lm}) + 4b_{lm}C_{hjk} + 2b_{lm}\delta_{j}^{i}g_{jk}.$$

This shows that

ISSN: 2581-9429

(3.15) $\mathcal{B}_m \mathcal{B}_l G_{jkh}^i = a_{lm} G_{jkh}^i + b_{lm} \left(\delta_j^i g_{kh} + \delta_k^i g_{jh} \right)$ if and only if

$$(3.16) \qquad (\mathcal{B}_{m}G_{skr}^{r})G_{hmj}^{s} + G_{skr}^{r}(\mathcal{B}_{m}G_{hlj}^{s}) + (\mathcal{B}_{m}G_{jsr}^{r})G_{hlk}^{s} + G_{jsr}^{r}(\mathcal{B}_{l}G_{hlk}^{s}) + (\mathcal{B}_{s}G_{jkr}^{r})G_{hlk}^{s} + (\mathcal{B}_{s}G_{jkr}^{r})G_{hlm}^{s} + (\mathcal{B}_{m}G_{skr}^{r})G_{hmj}^{s} + (\mathcal{B}_{m}G_{jsr}^{r})G_{hmk}^{s} + (\partial_{h}a_{lm})G_{jkr}^{r} + (\partial_{h}b_{lm})(2g_{jk}) + 2b_{lm}\delta_{j}^{l}g_{jk} + 4b_{lm}C_{hjk} = 0.$$

Thus, we conclude

Theorem 3.4. In $G(\mathcal{B}U) - BRF_n$, the tensor G_{jkh}^i is generalized birecurrent if and only if (3.16) holds. Differentiating (1.5a) covariantly twice with respect to x^l and x^m in the sense of Berwald and using (1.3c), we get

(3.17) $B_m B_l U_{jk}^i = B_m B_l G_{jk}^i - \frac{1}{n+1} y^i B_m B_l G_{jkr}^r$. Using (2.3), (2.4) and (1.5a) in (3.17), we get (3.18) $B_m B_l G_{jk}^i = a_{lm} G_{jk}^i + b_{lm} (\delta_j^i y_k + \delta_k^i y_j)$. If and only if

(3.19) $\frac{2y^i}{n+1}g_{jk} = 0.$ Thus, we conclude

Theorem 3.5. In $G(\mathcal{B}U) - BRF_n$, the tensor G_{jk}^i is non-vanishing if and only if (3.19) holds.

IV. Projection on Indicatrix with respect to Berwald's Connection

Let us consider a Finsler space F_n which the curvature tensor U_{jkh}^i is generalized birecurrent in the sense of Berwald, i.e. characterized by the condition (2.1). Now, in view of (1.18), the projection of the curvature tensor U_{jkh}^i on indicatrix is given by

(4.1) $p.U_{jkh}^i = U_{bcd}^a h_a^i h_j^b h_k^c h_h^d.$

Taking the covariant derivative of (4.1) with respect to x^{l} and x^{m} in the sense of Berwald and using the fact that $B_{l}h_{i}^{i} = 0$, we get

(4.2)
$$\mathbf{B}_m \mathbf{B}_l \Big(p. U_{jkh}^i \Big) = \mathbf{B}_m \mathbf{B}_l U_{bcd}^a h_a^i h_j^b h_k^c h_h^d.$$

Using (2.1) in (4.2), we get

(4.3) $B_m B_l(p, U_{jkh}^i) = [a_{lm} U_{bcd}^a + b_{lm} (\delta_b^a g_{cd} + \delta_c^a g_{bd})] h_a^i h_b^j h_k^c h_h^d.$

In view of (1.20) and by using the fact that $B_l h_j^i = 0$, Eq. (4.3) can be written as

Copyright to IJARSCT www.ijarsct.co.in

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 9, June 2025

International In

(4.4) $B_m B_l(p, U_{jkh}^i) = a_{Im}(p, U_{jkh}^i) + b_{lm} p. \left(\delta_j^i g_{kh} + \delta_k^i g_{jh}\right).$ Thus, we conclude

Theorem 4.1. The projection of the curvature tensor U_{jkh}^i of $G(\mathcal{B}U) - BRF_n$, on indicatrix is generalized birecurrent in the sense of Berwald.

Let us consider a Finsler space for which the Douglas tensor D_{jkh}^{i} is generalized birecurrent in the sense of Berwald, i.e. characterized by (2.13). In view of (1.18), the projection of the Douglas tensor D_{ikh}^{i} on indicatrix is given by

(4.5)
$$p.D_{jkh}^i = D_{bcd}^a h_a^i h_j^b h_k^c h_h^d.$$

Taking the covariant derivative of (4.5) with respect to x^{l} and x^{m} in the sense of Berwald and using the fact $B_{l}h_{j}^{i} = 0$, we get

(4.6) $\mathbf{B}_m \mathbf{B}_l \left(p. D_{jkh}^i \right) = \mathbf{B}_m \mathbf{B}_l D_{bcd}^a h_a^i h_j^b h_k^c h_h^d.$

Using (2.11) in (4.6), we get

(4.7) $\mathbf{B}_m \mathbf{B}_l (p, D_{jkh}^i) = [a_{lm} D_{jkh}^i + \eta_{lm} (\delta_b^a g_{cd} + \delta_c^a g_{bd})] h_a^i h_j^b h_k^c h_h^d.$ In view of (1.18) and by using the fact $\mathbf{B}_l h_i^i = 0$, Eq. (4.7) can be written as

(4.8) $\mathbf{B}_m \mathbf{B}_l \left(p. D_{jkh}^i \right) = a_{lm} \left(p. D_{jkh}^i \right) + \eta_{lm} \left[p. (\delta_j^i g_{kh} + \delta_k^i g_{jh}) \right].$ Thus, we conclude

Theorem 4.2. The projection of the Douglas tensor D_{jkh}^i of $G(\mathcal{B}U) - BRF_n$, on indicatrix is generalized birecurrent in the sense of Berwald.

Let us consider a Finsler space which the projection of the curvature tensor U_{jkh}^{i} is generalized birecurrent in the sense of Berwald, i.e. characterized by (2.1). Using (1.18) in (2.1), we get

(4.9) $\mathbf{B}_{m}\mathbf{B}_{l}(U_{bcd}^{a}h_{a}^{i}h_{b}^{b}h_{k}^{c}h_{h}^{d}) = [a_{lm}(U_{bcd}^{a} + b_{lm}(\delta_{b}^{a}g_{cd} + \delta_{c}^{a}g_{bd})]h_{a}^{i}h_{b}^{b}h_{k}^{c}h_{h}^{d}.$ Using (1.19) in (4.9), we get

$$\begin{aligned} (4.10) \qquad & \mathbb{B}_m \mathbb{B}_l \Big\{ U^a_{bcd} (\delta^i_a - l^i l_a) (\delta^b_j - l^b l_j) (\delta^c_k - l^c l_k) (\delta^d_h - l^d l_h) \Big\} \\ &= a_{Im} \Big\{ U^a_{bcd} (\delta^i_a - l^i l_a) (\delta^b_j - l^b l_j) (\delta^c_k - l^c l_k) (\delta^d_h - l^d l_h) \Big\} \\ &+ b_{lm} \Big\{ \delta^a_b g_{cd} + \delta^a_c g_{bd}) (\delta^i_a - l^i l_a) (\delta^b_j - l^b l_j) (\delta^c_k - l^c l_k) (\delta^d_h - l^d l_h) \Big\}. \end{aligned}$$

Which can be written as

$$\begin{aligned} (4.11) \qquad & \mathbb{B}_{m} \mathbb{B}_{l} \Big(U_{jkh}^{l} - U_{jkd}^{l} l^{d} l_{h} - U_{jch}^{l} l^{c} l_{k} + U_{jcd}^{l} l^{c} l_{k} l^{d} l_{h} - U_{jkh}^{a} l^{l} l_{a} \Big(\\ & + U_{jkd}^{a} l^{l} l_{a} l^{d} l_{h} + U_{jch}^{a} l^{l} l_{a} l^{c} l_{k} - U_{jcd}^{a} l^{l} l_{a} l^{c} l_{k} l^{d} l_{h} \Big) \\ &= a_{lm} \Big(U_{jkh}^{i} - U_{jkd}^{i} l^{d} l_{h} - U_{jch}^{i} l^{c} l_{k} + U_{jcd}^{i} l^{c} l_{k} l^{d} l_{h} - U_{jkh}^{a} l^{i} l_{a} \\ & -U_{jkd}^{a} l^{l} l_{a} l^{d} l_{h} + U_{jch}^{a} l^{i} l_{a} l^{c} l_{k} - U_{jcd}^{a} l^{i} l_{a} l^{c} l_{k} l^{d} l_{h} \Big) \\ &+ b_{lm} \Big[(\delta_{j}^{i} g_{kh} - \delta_{j}^{i} g_{kd} l^{d} l_{h} - \delta_{j}^{i} g_{ch} l^{c} l_{k} + \delta_{j}^{i} g_{cd} l^{c} l_{k} l^{d} l_{h} - \delta_{b}^{i} g_{kh} l^{b} l_{j} \\ &+ \delta_{b}^{i} g_{kd} l^{b} l_{j} l^{d} l_{h} + \delta_{b}^{i} g_{ch} l^{b} l_{j} l^{c} l_{k} - \delta_{j}^{a} g_{kh} l^{i} l_{a} - \delta_{b}^{i} g_{cd} l^{b} l_{j} l^{c} l_{k} l^{d} l_{h} \\ &+ \delta_{j}^{a} g_{kd} l^{i} l_{a} l^{d} l_{h} + \delta_{j}^{a} g_{ch} l^{i} l_{a} l^{c} l_{k} - \delta_{j}^{a} g_{cd} l^{i} l_{a} l^{b} l_{j} l^{c} l_{k} l^{d} l_{h} \\ &+ \delta_{j}^{a} g_{kd} l^{i} l_{a} l^{d} l_{h} + \delta_{j}^{a} g_{ch} l^{i} l_{a} l^{c} l_{k} - \delta_{j}^{a} g_{cd} l^{i} l_{a} l^{b} l_{j} l^{c} l_{k} l^{d} l_{h} \\ &+ \delta_{j}^{a} g_{kd} l^{i} l_{a} l^{b} l_{j} l^{d} l_{h} - \delta_{b}^{a} g_{ch} l^{i} l_{a} l^{b} l_{j} l^{d} l_{h} + \delta_{b}^{a} g_{cd} l^{i} l_{a} l^{b} l_{j} l^{c} l_{k} l^{d} l_{h} \\ &+ \delta_{k}^{a} g_{bd} l^{i} l_{a} l^{b} l_{j} l^{d} l_{h} - \delta_{c}^{i} g_{jh} l^{c} l_{k} + \delta_{c}^{i} g_{jd} l^{c} l_{k} l^{d} l_{h} - \delta_{k}^{i} g_{bh} l^{b} l_{j} \\ &+ \delta_{k}^{a} g_{jd} l^{i} l_{a} l^{d} l_{h} + \delta_{c}^{a} g_{jh} l^{i} l_{a} l^{c} l_{k} - \delta_{c}^{a} g_{jd} l^{i} l_{a} l^{c} l_{k} l^{d} l_{h} + \delta_{k}^{a} g_{bh} l^{i} l_{l} l^{b} l_{j} \\ &+ \delta_{k}^{a} g_{jd} l^{i} l_{a} l^{d} l_{h} + \delta_{c}^{a} g_{jh} l^{i} l_{a} l^{c} l_{k} - \delta_{c}^{a} g_{jd} l^{i} l_{a} l^{c} l_{k} l^{d} l_{h} + \delta_{k}^{a} g_{bh} l^{i} l_{a} l^{b} l_{j} \\ &+ \delta_{k}^{a} g_{jd} l^{i} l_{a} l^{d} l_{h} - \delta_{c}^{a} g_{bh} l^{i} l_{a} l^{c} l_{k} + \delta_{c}^$$

Using (1.9), (3.17), (1.2b) and (1.3g) in (4.11), we get

$$\begin{array}{ll} (4.12) & \mathbb{B}_{m} \mathbb{B}_{l} \left(U_{jkh}^{i} - \frac{1}{F} U_{jk}^{i} l_{h} - \frac{1}{F} U_{jh}^{i} l_{k} - U_{jkh}^{a} l^{i} l_{a} + U_{jk}^{a} l^{i} l_{a} l_{h} + \frac{1}{F} U_{jh}^{a} l^{i} l_{a} l_{k} \right) \\ &= a_{lm} \left(U_{jkh}^{i} - \frac{1}{F} U_{jk}^{i} l_{h} - \frac{1}{F} U_{jh}^{i} l_{k} - U_{jkh}^{a} l^{i} l_{a} + U_{jk}^{a} l^{i} l_{a} l_{h} + \frac{1}{F} U_{jh}^{a} l^{i} l_{a} l_{k} \right) \\ &+ b_{lm} \{ \left[\delta_{j}^{i} g_{kh} - \frac{1}{F} \delta_{j}^{i} y_{k} l_{h} - \frac{1}{F} \delta_{j}^{i} y_{h} l_{k} - \delta_{j}^{a} g_{kh} l^{i} l_{a} + \delta_{j}^{a} y_{k} l^{i} l_{a} l_{h} + \delta_{j}^{a} y_{h} l^{i} l_{a} l_{k} \right) \\ \end{array}$$

Copyright to IJARSCT www.ijarsct.co.in

822

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 9, June 2025

$$+ \left[\delta_k^i g_{jh} - \frac{1}{F} \delta_k^i y_j l_h - \frac{1}{F} \delta_h^i y_j l_k - \delta_k^a g_{jh} l^i l_a + \delta_k^a y_j l^i l_a l_h + \delta_h^a y_j l^i l_a l_k\right]\}.$$

Since the torsion tensor U_{jk}^i is given by (2.2) and in view of (2.2), (1.3a) and (1.3c), the eq. (4.12) can be written as

(4.13)
$$\mathbb{B}_m \mathbb{B}_l \Big(U_{jkh}^i - U_{jkh}^a l^i l_a \Big) = [a_{lm} U_{jkh}^i + b_{lm} (\delta_j^i g_{kh} - \delta_k^i g_{jh})] \\ - [a_{lm} U_{ikh}^a + b_{lm} (\delta_i^i g_{kh} - \delta_k^i g_{ih})] l^i l_a.$$

Thus, we conclude

Theorem 4.3. If the projection of the tensor $(U_{jkh}^i - U_{jkh}^a l^i l_a)$ on indicatrix is generalized birecurrent, then the space is $G(\mathcal{B}U) - BRF_n$.

Remark 4.1. In $G(\mathcal{B}U) - BRF_n$, the projection of the U^i_{jkh} on indicatrix is generalized birecurrent, if and only if $U^a_{ikh}l^il_a$ is generalized birecurrent.

Let us consider a Finsler space F_n which the projection of the Douglas tensor D_{jkh}^i on indicatrix is generalized birecurrent i.e. characterized by (2.11). Using (1.18) in (2.11), we get

(4.14) $B_m B_l D_{bcd}^a h_a^i h_j^b h_k^c h_h^d = [a_{lm} D_{bcd}^a + \eta_{lm} (\delta_b^a g_{cd} + \delta_c^a g_{bd})] h_a^i h_j^b h_k^c h_h^d$ Using (1.19) in (5.14), we get

$$\begin{array}{ll} (4.15) & \mathbb{B}_{m} \mathbb{B}_{l} \Big\{ D^{a}_{bcd} (\delta^{i}_{a} - l^{i}l_{a}) (\delta^{b}_{j} - l^{b}l_{j}) (\delta^{c}_{k} - l^{c}l_{k}) (\delta^{d}_{h} - l^{d}l_{h}) \Big\} \\ & = a_{lm} \Big\{ D^{a}_{bcd} (\delta^{i}_{a} - l^{i}l_{a}) (\delta^{b}_{j} - l^{b}l_{j}) (\delta^{c}_{k} - l^{c}l_{k}) (\delta^{d}_{h} - l^{d}l_{h}) \Big\} \\ & + \eta_{lm} \Big\{ (\delta^{i}_{j}g_{cd} + \delta^{i}_{k}g_{bd}) (\delta^{i}_{a} - l^{i}l_{a}) (\delta^{b}_{j} - l^{b}l_{j}) \Big(\delta^{d}_{h} - l^{d}l_{h} \Big) (\delta^{d}_{h} - l^{d}l_{h}) \Big\}. \end{array}$$

In view of (4.15), using (1.3e), we get

(4.16)
$$B_m B_l (D_{jkh}^i - D_{jkh}^a l^i l_a) = [a_{lm} D_{jkh}^i + \eta_{lm} (\delta_j^i g_{kh} - \delta_k^i g_{jh})] - [a_{lm} D_{jkh}^a + \eta_{lm} (\delta_j^i g_{kh} - \delta_k^i g_{jh})] l^i l_a.$$

Thus, we conclude

Theorem 4.4. If the projection of the tensor $(D_{jkh}^{i} - D_{jkh}^{a}l^{i}l_{a})$ on indicatrix is generalized birecurrent, then the space is $G(\mathcal{B}U) - BRF_{n}$.

Corollary 4.2. In $G(\mathcal{B}U) - BRF_n$ the projection of the D_{jkh}^i on indicatrix is birecurrent, if and only if $D_{jkh}^a l^i l_a$ is generalized birecurrent.

V. Conclusion

We studied different tensors which satisfy the generalized birecurrent property in Berwald sense. The necessary and sufficient conditions for the Douglas tensor $\Box_{\Box\Box\Box}^{\Box}$ to be generalized birecurrent have been obtained. Also, we discussed the projection on indicatrix in sense of Berwald for some tensors which behave as generalized birecurrent in $G(\mathcal{B}U) - BRF_n$.

REFERENCES

- Abdallah A. A., Study on the relationship between two curvature tensors in Finsler spaces, Journal of Mathematical Analysis and Modeling, 4(2), 112-120, (2023).
- [2]. Abdallah A. A., Navlekar A. A. and Ghadle K. P., The necessary and sufficient condition for some tensors which satisfy a generalized *BP* –recurrent Finsler space, International Journal of Scientific and Engineering Research, 10(11), 135-140, (2019).
- [3]. Abdallah A. A., Navlekar A. A. and Ghadle K. P., On certain generalized *BP* –birecurrent Finsler space, Journal of International Academy of Physical Sciences, 25(1), 63-82, (2021).
- [4]. Abdallah A. A., Navlekar A. A., Ghadle K. P. and Hardan B., Fundamentals and recent studies of Finsler geometry, International Journal of Advances in Applied Mathematics and Mechanics, 10(2), 27-38, (2022).

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

T International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 9, June 2025

- [5]. Ahmed F. A. and Abdallah A. A., The conditions for various tensors to be generalized *B* -trirecurrent tensor, International Journal of Advanced Research in Science, Communication and Technology, 4(2), 511-517, (2024).
- [6]. Ghadle K. P., Navlekar A. A. and Abdallah A. A., On *B* –covariant derivative of first order for some tensors in different spaces, Journal of Mathematical Analysis and Modeling, 2(2), 30-37, (2021).
- [7]. Gheorghe M., The indicatrix in Finsler geometry, Analele Stiintifice Ale Uuiversitătii Matematică. Tomul LIII, 163-180, (2007).
- [8]. Izumi H., On *P**-Finsler space I, II, Memo. Defence Acad. (Japan), 16, 133-138, (1977).
- [9]. Hamoud A. A., Navlekar A. A., Abdallah A. A. and Ghadle K. P., Decomposition for Cartan's second curvature tensor of different order in Finsler spaces, Nonlinear Functional Analysis and Applications, 27(2), 433-448, (2022).
- [10]. Hamoud A. A., Navlekar A. A., Abdallah A. A. and Ghadle K. P., On special spaces of h(hv) –torsion tensor C_{jkh} in generalized recurrent Finsler space, Bull. Pure Appl. Sci. Sect. E Math. Stat. 41E (1), 74-80, (2022).
- [11]. Matsumoto M, Remarks on Berwald and Landsberg Spaces, Contemporary Math. 195, 79-81, (1996).
- [12]. Qasem F. Y., On transformation in Finsler spaces, D.Phil. Thesis, University of Allahabad, Allahabad (India), (2000).
- [13]. Qasem F. Y. and Hadi W. H., On a generalized βR -birecurrent Finsler spaces, American Sci. Res. J. of Engi. Tech. and Sci. 19(1), 9-18, (2016).
- [14]. Rund H. (1959); 2nd (in Russian), Nauka, Moscow, The differential geometry of Finsler spaces, Springer-verlag, Berlin Göttingen-Heidelberg, (1981).
- [15]. Saleem A. A. and Abdallah A. A., Certain identities of C^h in Finsler spaces, International Journal of Advanced Research in Science, Communication and Technology, 3(2), 620-622, (2023).
- [16]. Saleem A. A., On a generalized $\mathcal{B}_m U$ recurrent Finsler space, University of Aden Journal of Natural and Applied Sciences, 23(2), 457-462, (2019).
- [17]. Saleem A. A. and Abdallah A. A., On U recurrent Finsler space, Int. R. J. of. Inn. in. Eng. And Tech. 6(1), 58 – 63, (2022).
- [18]. Saleem A. A. and Abdallah A. A., Study on U^h birecurrent Finsler space, IJARSCT. 2(3), 28 39, (2022).
- [19]. Yano K., The theory of lie-derivatives and its applications. North Holland publishing Co. Amsterdam, (1957).

