
I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 12, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-27803 11

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

AI-Assisted 2D to 3D Level Generation in Unreal

Engine 5
Mr. Nishant Naresh Gawade and Prof. Omprakash Mandge

MET Institute of Computer Science, Mumbai, India

mca23_1416ics@met.edu, omprakashm_ics@met.edu

Abstract: Modern level design in game development demands considerable time and effort, especially

when translating concept art or reference images into 3D environments. While Unreal Engine 5 provides

tools for procedural generation, it lacks the ability to semantically interpret visual content, often leading

to unsuitable asset placement. This research proposes an AI-enhanced framework to automate the

conversion of 2D images into corresponding 3D environments. The process initiates with an object

detection model like YOLO or a custom-trained convolutional neural network (CNN), which identifies

objects in the 2D image and records their labels, sizes, and positions in a structured JSON format.

Unreal Engine 5 then uses a custom C++ Actor to read this data, map it to appropriate 3D assets, and

place them accurately in the game world. Experiments with varied test images—ranging from fruit

arrangements to architectural layouts—demonstrated effective object detection and accurate 3D

representation. The approach reduced manual workload, supported asset reuse, and retained visual

consistency. This blend of computer vision and procedural design offers an innovative and scalable tool

for game creators.

Keywords: AI in Game Design, Unreal Engine 5, Object Detection, Procedural Generation, 2D-3D

Translation, Computer Vision

I. INTRODUCTION

Translating 2D references into immersive 3D game environments is a common but labor intensive process for game

developers. While game engines like Unreal Engine 5 offer

procedural tools for environment creation, they lack the intelligence to understand contextual elements in a reference

image. As a result, designers often spend time manually arranging

assets to reflect the source. Incorporating AI into the level design pipeline introduces a way to reduce manual work and

streamline content generation. Specifically, object detection models such as YOLOv8 can analyze images to extract

meaningful features like object types and positions. This spatial data, when mapped into the game engine, allows for a

structured recreation of the visual layout with minimal human input.

II. METHODOLOGY

The proposed workflow consists of two key stages:

1. Object Detection Using AI

A YOLOv8 model is used to process 2D images and identify key objects such as fruits, trees, or structures. Bounding

boxes are generated for each detected object. These boxes are then processed using a Python script to calculate the

center coordinates, which are normalized relative to the image resolution. This ensures consistency regardless of input

size. The image space is divided into a 10x10 grid

where each cell corresponds to a fixed Unreal Engine unit (typically 100–200 units). Each detected object's position,

along with its label and mapped grid location, is saved into a JSON file.

2. Integration with Unreal Engine

In Unreal Engine 5, a C++ class named AAutoSpawner is responsible for loading and parsing the JSON file. Each entry

is read and matched to a predefined asset in an internal map that links object labels to 3D models. The engine then

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

programmatically spawns each object at its respective world coordinate. This preserves the layout of the or

allowing designers to quickly generate coherent and interactive scenes.

III. RESULTS AND DIS

To validate the system, a test image containing a bowl, banana, apple, and orange was used. The YOLOv8 model

successfully identified all four objects. Their normalized coordinates were mapped to grid cells and then converted to

world positions in Unreal Engine

Table 1: Object Detection and Spatial Mapping Output

Detected

Object

Normalized Image Position (x, y)

Bowl (0.502, 0.609)

Banana (0.551, 0.315)

Apple (0.357, 0.437)

Orange (0.669, 0.473)

Each asset was accurately placed within the virtual scene, successfully replicating the image's composition. This

confirms that the framework is reliable for practical use. Additionally, the

extend it to include rotation data, object hierarchy, or real

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 12, May 2025

 DOI: 10.48175/IJARSCT-27803

programmatically spawns each object at its respective world coordinate. This preserves the layout of the or

allowing designers to quickly generate coherent and interactive scenes.

III. RESULTS AND DISCUSSION

To validate the system, a test image containing a bowl, banana, apple, and orange was used. The YOLOv8 model

four objects. Their normalized coordinates were mapped to grid cells and then converted to

Table 1: Object Detection and Spatial Mapping Output

Normalized Image Position (x, y) Grid Position (x, y) World Position (x, y)

(0.502, 0.609) (5, 6) (500, 600)

(0.551, 0.315) (5, 3) (500, 300)

(0.357, 0.437) (3, 4) (300, 400)

(0.669, 0.473) (6, 4) (600, 400)

Figure 1

accurately placed within the virtual scene, successfully replicating the image's composition. This

confirms that the framework is reliable for practical use. Additionally, the architecture is adaptable

bject hierarchy, or real-time interactions in more advanced applications.

Technology

Refereed, Multidisciplinary Online Journal

 12

Impact Factor: 7.67

programmatically spawns each object at its respective world coordinate. This preserves the layout of the original image,

To validate the system, a test image containing a bowl, banana, apple, and orange was used. The YOLOv8 model

four objects. Their normalized coordinates were mapped to grid cells and then converted to

Assigned Asset

SM_Bowl

SM_Banana

SM_Apple

SM_Orange

accurately placed within the virtual scene, successfully replicating the image's composition. This

architecture is adaptable—developers could

time interactions in more advanced applications.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 12, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-27803 13

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Final Result

By leveraging this automated system, designers significantly cut down development time. The solution is not limited to

static scenes; it could be applied to dynamic scenarios such as AR applications, educational simulators, and quick

prototyping platforms. The flexibility of the JSON structure and modularity of Unreal Engine’s asset system allows

easy customization for different genres or themes.

IV. CONCLUSION

This paper introduced a novel integration of object detection AI with Unreal Engine 5 for automated level generation.

By translating 2D references into 3D layouts using YOLOv8 and a custom C++ spawner, the method offers a time-

saving and accurate solution. The results

prove its effectiveness in maintaining spatial consistency and visual integrity. In future versions, adaptive behaviors,

improved semantic parsing, and voice-controlled design tools could be explored to make game development even more

intelligent and intuitive.

REFERENCES

[1]. Epic Games. (2023). Procedural Content Generation Overview. Unreal Engine 5

Documentation.https://dev.epicgames.com/documentation/en-us/unreal-engine/proced ural-content-generation-

overview

[2]. Epic Games. (2023). Unreal Engine 5 Documentation. https://docs.unrealengine.com/5.0/en-US/

[3]. Jocher, G., Chaurasia, A., Qiu, J., & Stoken, A. (2023). YOLOv8 by Ultralytics. Ultralytics.

https://github.com/ultralytics/ultralytics

[4]. Nicholas Renotte. (2021). Tensorflow Object Detection. https://youtu.be/yqkISICHH-U

